JPS626560B2 - - Google Patents

Info

Publication number
JPS626560B2
JPS626560B2 JP53084195A JP8419578A JPS626560B2 JP S626560 B2 JPS626560 B2 JP S626560B2 JP 53084195 A JP53084195 A JP 53084195A JP 8419578 A JP8419578 A JP 8419578A JP S626560 B2 JPS626560 B2 JP S626560B2
Authority
JP
Japan
Prior art keywords
added
amino
leucyl
mmol
methylcoumarin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084195A
Other languages
Japanese (ja)
Other versions
JPS5511535A (en
Inventor
Shunpei Sakakibara
Kazuo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP8419578A priority Critical patent/JPS5511535A/en
Publication of JPS5511535A publication Critical patent/JPS5511535A/en
Publication of JPS626560B2 publication Critical patent/JPS626560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、レニン(renin)活性測定用の螢光
性基質として使用できる新規ペプチド誘導体に関
する。 血圧の調節や水、電解質の代謝に腎中の酵素レ
ニンが重要な役割を演じていることが知られてお
り、この酵素を定量することによりこの酵素が関
与している病気の診断が可能となる。 現在レニン活性はタンパク性基質アンジオテン
シノーゲン(angio tensinogen)を基質とし、生
成するアンジオテンシン−(angioten sin−
)をラジオイムノアツセイ法で測定している。
まだ、β−ナフチルアミンを含むペプチド基質を
用いる方法も知られている。しかし、いずれも測
定感度安全性又は簡便さのすべてを満足する方法
ではない。 本発明者らは、測定感度、安全性、簡便性のす
べてを満足する測定方法を開発すべく研究を行い
構造式: で示される新規ペプチド誘導体の合成に成功し、
この新規化合物がレニン活性の簡便で高感度の測
定を可能とする螢光性基質となることを見出し、
本発明を完成するに至つた。 本発明のペプチド誘導体は酸付加塩の形を含
む。 本発明の目的化合物を得るには、例えばN・O
−保護−チロシンと7−アミノ−4−メチルクマ
リン(AMC)とを脱水縮合反応させることによ
り製造される7−(N・O−保護−チロシル)−ア
ミノ−4−メチルクマリンのN−保護基を脱離し
た後、通常のペプチド合成に用いられる方法によ
りバリン、ロイシン、ロイシンを順次縮合し7−
(N−保護−ロイシル−ロイシル−バリル−0−
保護−チロシル)−アミノ−4−メチルクマリン
を得る。次いで、N−保護基を通常のペプチド合
成に用いられる方法で脱離した後N〓・NG−保
護−アルギニル−ブロリル−フエニルアラニル−
ヒスチジン−アジドを反応させることにより、7
−(N〓・NG−保護−アルギニル−プロリル−フ
エニルアラニル−ヒスチジル−ロイシル−ロイシ
ル−バリル−O−保護−チロシル)−アミノ−4
−メチルクマリンを得る。次いで、無水弗化水素
中0℃40分反応させることにより保護基を除去す
ることができる。 前述の如くN〓・NG、水酸基の保護基には通
常のペプチド合成に用いられる保護基より選択し
て用いることができる。 本発明のペプチド誘導体を用いて液体中含有す
るレニン活性を測定するにはレニンを含有する液
体と一般式 で示されるペプチド誘導体とを接触せしめ、次い
で遊離生成する7−(ロイシル−バリル−チロシ
ル)−アミノ−4−メチルクマリンに、アミノペ
プチダーゼM等前記遊離生成したペプチド誘導体
に作用してAMCを遊離生成せしめる酵素を接触
せしめた後、遊離生成したAMCを定量すること
により液体中のレニン活性を高感度に測定でき
る。以下、参考例及び実施例により本発明を詳細
に説明する。 参考例 1 N−t−ブチルオキシカルボニル−0−2・6
−ジクロロベンジル−L−チロシン22g(50ミリ
モル)をテトラヒドロフラン200mlにとかし冷却
下かきまぜながらジシクロヘキシルカルボジイミ
ド5.2g(25ミリモル)を加えた。 1時間後析出したジシクロヘキシルウレアを濾
去し、濾液を冷却下かきまぜながらAMC4.4g
(25ミリモ)のジメチルホルムアミド(DMF)15
ml溶液を滴加した。そのまま、20℃1日かきまぜ
た後、溶媒を溜去し、残渣に酢酸エチル100mlを
加えてとかし、1規定塩酸100mlと共に振りまぜ
洗浄した。有機層はつづいて5%重そう水、次い
で水、各100mlにて洗浄した後、無水硫酸マグネ
シウムで乾燥後、酢酸エチルを溜去した。残渣を
メチルアルコール100mlより再結晶し、7−(N−
t−ブチルオキシカルボニル−0−2・6−ジク
ロロベンジル−L−チロシル)−アミノ−4−メ
チルクマリン9.8g(収率65.3%)を得た。 融 点 234〜235℃(分解)。 〔α〕27 =+57.7゜(C=2.13、DMF) 元素分析: 測定値 C62.23%、H5.01%、N4.54% C31H30N2O6Cl2としての計算値、
C62.31%、H5.06%、N4.69% 参考例 2 7−(N−t−ブチルオキシカルボニル−0−
2・6−ジクロロベンジル−L−チロシル)−ア
ミノ−4−メチルクマリン1.79g(3ミリモル)
にトリフロロ酢酸10mlを加え20℃ 20分かきまぜ
た後、トリフロロ酢酸を溜去し残留物にエーテル
100mlを加え生じた。 7−(0−2・6−ジクロロベンジル−L−チ
ロシル)−アミノ−4−メチルクママリントリフ
ロロ酢酸塩を濾取した。 これをDMF10mlにとかし、N〓−t−ブチル
オキシカルボニル−L−バリン−N−ヒドロキシ
スクシンイミドエステル1.13g(3.6ミリモル)
を加え、トリエチルアミンを加えPHを7とした後
室温にて1夜かきまぜた。 溶媒を溜去し、クロロホルム100mlとメタノー
ル5mlにとかし0.5規定塩酸100ml次いで水100ml
にて洗浄した後、有機層を無水硫酸マグネシウム
で乾燥した溶媒を溜去し残渣をメタノール5mlと
クロロホルム50mlにとかしエーテルを加えること
により再結晶し、7−(N−t−ブチルオキシカ
ルボニル−L−バリル−L−チロシル)−アミノ
−4−メチルクマリン1.9g(収率91%)を得
た。 融 点 214〜215℃(分解)。 〔α〕27 =+33.7゜(C=1.07、DMF) 元素分析: 実測値 C61.79%、H5.55%、N5.88% C36H39N3O7Cl2として計算値
C62.07%、H5.64%、N6.03% 参考例 3 7−(t−ブチルオキシカルボニル−L−バリ
ル−0−2・6−ジクロロベンジル−L−チロシ
ル)−アミノ−4−メチルクマリン1.4g(2ミリ
モル)にジクロロメタン10mlと酢酸5mlを加えて
とかし、トルエンスルホン酸1水和物1.15g(6
ミリモル)を加え20℃にてジククロロメタンを溜
去した。その後20℃1時間かきまぜた後エーテル
100mlを加え生じた7−(L−バリル−0−2・6
−ジクロロベンジル−L−チロシル)−アミノ−
4−メチルクマリン トルエンスルホン酸塩の沈
澱を濾取した。 これをDMF10mlにとかしトリエチルアミンで
PH7に調節した後N〓−t−ブチルオキシカルボ
ニル−L−ロイシン−N−ヒドロキシスクシンイ
ミドエステル788mg(2.4ミリモル)を加え室温に
て1夜かきまぜた。溶媒を溜去し水50mlを加え生
じた沈殿を濾取し、メチルアルコール5mlとクロ
ロホルム50mlにとかし不溶物を濾去した後、濾液
にエーテルを加え再結晶することにより7−(t
−ブチルオキシカルボニル−L−ロイシル−L−
バリル−0−2・6−ジクロロベンジル−L−チ
ロシル)−アミノ−4−メチルクマリン700mg(収
率43%)を得た。 融 点 240〜241℃(分解)。 〔α〕27 =+25.9゜(C=1.85、DMF) 元素分析: 実測値 C62.28%、H6.13%、N6.78% C42H50N4O8Cl2として計算値
C62.29%、H6.22%、N6.92% 参考例 4 7−(t−ブチルオキシカルボニル−L−ロイ
シル−L−バリル−0−2・6−ジクロロベンジ
ル−L−チロシル)−アミノ−4−メチルクマリ
ン647mg(0.8ミリモル)にジクロロメタン10mlと
酢酸3mlを加えとかし、トルエンスルホン酸1水
和物458mg(2.4ミリモル)を加え、20℃にてジク
ロロメタンを溜去した後20℃にて1時間かきまぜ
た。次いでエーテル100mlを加え生じた7−(L−
ロイシル−L−バリル−0−2・6−ジクロロベ
ンジル−L−チロシル)−アミノ−4−メチルク
マリン トルエンスルホン酸塩の沈澱を濾取し
た。 これをDMF5mlにとかしトリエチルアミンでPH
を7に調節した後、N〓−t−ブチルオキシカル
ボニル−L−ロイシン−N−ヒドロキシスクシン
イミドエステル328mg(1ミリモル)を加え室温
にて1夜かきまぜた。次いで溶媒を溜去し水50ml
を加え生じる沈澱を濾取し、メチルアルコール5
mlとクロロホルム30mlにとかし不溶物を濾去した
後エーテルを加えることにより再結晶し、7−
(N−t−ブチルオキシカルボニル−L−ロイシ
ル−L−ロイシル−L−バリル−0−2・6−ジ
クロロベンジル−L−チロシン)−アミノ−4−
メチルクマリン560mg(収率76%)を得た。 融 点 245〜247℃(分解)。 〔α〕27 =+1.4(C=1.60、DMF) 元素分析: 実測値 C62.63%、H6.51%、N7.55% C48H61N5O9Cl2としての計算値
C62.46%、H6.66%、N7.59% 参考例 5 N〓−t−アミルオキシカルボニル−NG−ト
シル−L−アルギニン−66.6g(0.15モル)とL
−プロリンベンジルエステル塩酸塩40.2g
(0.165モル)をジクロロメタン500mlにとかし、
N・N−ジメチルアミノプロピル−N′−エチル
カルボジイミド25.4g(0.164モル)を滴加し
た。1夜室温にてかきまぜた後、溶媒を溜去、残
溜物を酢酸エチル500mlにとかし1規定塩酸500ml
とともに振りまぜ洗浄した。つづいて、水500
ml、5%重そう水500ml、水500mlと順次振りませ
洗浄した後有機層は硫酸マグネシウムで乾燥した
溶媒を溜去し、残渣をメチルアルコールにとかし
エーテルを加えることにより再結晶しN〓−t−
アミルオキシカルボニル−NG−トシル−L−ア
ルギニル−L−プロリンベンジルエステル52g
(収率55%)を得た。 融 点 166℃〜167.5℃ 〔α〕23 −34.5゜(C=1.0、DMF) 元素分析: 実測値 C58.58%、H6.94%、N11.26% C31H43O7N5Sとしての計算値
C59.12%、H6.88%、N11.12% 参考例 6 N〓−t−アミルオキシカルボニル−NG−ト
シル−L−アルギニル−L−プロリン ベンジル
エステル40g(64ミリモル)をエチルアルコール
1にとかし、5%パラジウム炭素触媒を加え、
室温常圧にてかきまぜながら水素ガスを通じ9時
間還元反応を行わせた後触媒を濾去し溶媒を溜去
した。残渣にエーテルとn−ヘキサンを加えて固
化させ濾取することによりN〓−t−アミルオキ
シカルボニル−NG−トシル−L−アルギニル−
L−プロリン34g(収率99%)を得た。この物質
はそのまま精製せずに次の実験に用いた。 参考例 7 N〓−t−アミルオキシカルボニル−NG−ト
シル−L−アルギニル−L−プロリン5.4g(10
ミリモル)とトリフロロ酢酸−P−ニトロフエニ
ルエステル4.7g(20ミリモル)を乾燥したピリ
ジン50mlにとかし50℃にて3時間かきまぜた後水
1mlを加え濃縮乾固し、N〓−t−アミルオキシ
−カルボニル−NG−トシル−L−アルギニル−
L−プロリン−P−ニトロフエニルエステルを含
む油状物を得た。 一方、N〓−カルボベンゾキシ−L−フエニル
アラニル−L−ヒスチジンメチルエステル4.5g
(10ミリモル)に25%臭化水素酢酸溶液20mlを加
え、室温にて1時間かきまぜた後エーテル500ml
を加え生じた沈澱を傾瀉により得た。 これをDMF50mlにとかしトリエチルアミンン
でPHを7に調節し上記N〓−t−アミルオキシカ
ルボニル−NG−トシル−L−アルギニル−L−
プロリン−P−ニトロフエニルエステルを含む油
状物を加え室温にて1夜かきまぜた後、溶媒を溜
去した。残留物を酢酸エチル100mlにとかし、0.5
規定塩酸100mlと振りまぜ洗浄した。つづいて水
100mlと振りまぜ洗浄した後、有機層を硫酸マグ
ネシウムで乾燥した。溶媒を留去し残渣にエーテ
ル100mlを加えて固化させ、N〓−t−アミルオ
キシカルボニル−NG−トシル−L−アルギニル
−L−プロリル−L−フエニルアラニル−L−ヒ
スチジンメチルエステルを得た。収量6.8g(収
率81%)。この物質にはシリカゲル薄層クロマト
グラフイー溶媒系クロロホルム:メタノール:酢
酸=85:10:5にてP−ニトロフエノールと考え
られる副生物が含まれていたが、これ以上の精製
をせず次の反応に使用した。 参考例 8 N〓−t−アミルオキシカルボニル−N〓−ト
シル−L−アルギニル−L−プロリル−L−フエ
ニルアラニル−L−ヒスチジンメチルエステル
2.5g(3ミリモル)をメチルアルコール50mlに
とかしヒドラジン1水和物5.6ml(約90ミリモ
ル)を加え室温にて1日かきまぜた後、溶媒を溜
去した。残留物に水10mlを加え可溶物を除き、つ
づいて少量のメタノールとエーテル100mlを加え
固化させN〓−t−アミルオキシカルボニル−N
G−トシル−L−アルギニル−L−プロリル−L
−フエニルアラニル−L−ヒスチジンヒドラジド
を得た。収量1.35g(収率54%)。 この物質にはシリカゲル薄層クロマトグラフイ
ー溶媒系クロロホルム:メタノール:酢酸=85:
15:5にて2つの副生物が少量ずつ認められたが
これ以上精製することなく次の反応に使用した。 参考例 9 N〓−t−アミルオキシカルボニル−NG−ト
シル−L−アルギニル−L−プロリル−L−フエ
ニルアラニル−L−ヒスチジンヒドラジド269mg
(0.3ミリモル)をDMF4mlにとかし5.4規定塩化水
素ジオキサン溶液を加え−30℃でかきまぜながら
イソアミルナイトライト0.1mlを加えた。−10℃に
て30分かきまぜることによりN〓−t−アミルオ
キシカルボニル−NG−トシル−L−アルギニル
−L−プロリル−L−フエニルアラニル−L−ヒ
スチジンアジド溶液〔〕とした。 一方、7−(N−t−ブチルオキシカルボニル
−L−ロイシル−L−ロイシル−L−バリル−0
−2・6−ジクロロベンジル−L−チロシル)−
アミノ−4−メチルクマリン184.4mg(0.2ミリモ
ル)にジクロロメタン5mlと酢酸1mlを加え、ト
ルエンスルホン酸1水和物191mg(1ミリモル)
を加え20℃にてジクロロメタンを減圧溜去した
後、20℃にて3時間かきまぜた。次いで、エーテ
ル50mlを加え生じる沈澱を濾取しエーテルで洗う
ことにより7−(L−ロイシル−L−ロイシル−
L−バリル−0−2・6ジクロロベンジル−L−
チロシル)−アミノ−4−メチルクマリントルエ
ンスルホン酸塩を得た。これをDMF5mlにとかし
トリエチルアミンでPHを7とする〔〕上記
〔〕を−50℃に冷しトリエチルアミン0.76mlを
加え〔〕を加える。0℃〜2℃にて1日かきま
ぜた後、溶媒を溜去し残渣に水10mlを加え生じた
沈殿を濾取した。 これをメチルアルコール1mlと酢酸エチル10ml
にとかし不溶物を濾去した後エーテル20mlを加え
再沈澱を行い精製し、7−(N〓−t−アミルオ
キシカルボニル−NG−トシル−L−アルギニル
−L−プロリル−L−フエニルアラニル−L−ヒ
スチジル−L−ロイシル−L−バリル−0−2・
6−ジクロロベンジル−L−チロシル)−アミノ
−4−メチルクマリン250mg(収率77%)を得
た。 この物質にはシリカゲル薄層クロマト溶媒系ク
ロロホルム:メタノール:酢酸=85:15:5によ
り3〜4ケの副生物及び未反応物が認められた
が、これ以上の精製は行わなかつた。 実施例 7−(N〓−t−アミルオキシカルボニル−NG
−トシル−L−アルギニル−L−プロリル−L−
フエニルアラニル−L−ヒスチジル−L−ロイシ
ル−L−ロイシル−L−バリル−0−2・6ジク
ロロベンジル−L−チロシル)−アミノ−4−メ
チルクマリン244mg(0.15ミリモル)にアニソー
ル1mlを加え無水弗化水素3mlと共に0℃40分反
応させ、保護基を脱離した後、弗化水素を溜去し
残留物に1モル酢酸20mlとエーテル50mlを加え抽
出した。水層をダウケミカル社製「Dowex」1
イオン交換樹脂(酢酸型)10mlを通過させ、付着
した弗化水素を除いた後、凍結乾燥し粉末を得
た。これを、ゲル濾過用樹脂LH−20のカラムク
ロマトググラフイー(5×160cm)溶媒1モル酢
酸にて精製し目的物7−(L−アルギニル−L−
プロリル−L−フエニルアラニル−L−ヒスチジ
ル−L−ロイシル−L−ロイシル−L−バリル−
L−チロシル)−アミノ−4−メチルクマリン
2酢酸塩、1水和物60mg(収率30%)を得た。 この化合物に含まれているアミノ酸の比率をア
ミノ酸分析機により定量した。
The present invention relates to novel peptide derivatives that can be used as fluorescent substrates for measuring renin activity. It is known that the enzyme renin in the kidney plays an important role in regulating blood pressure and metabolizing water and electrolytes, and quantifying this enzyme makes it possible to diagnose diseases related to this enzyme. Become. Currently, renin activity uses the proteinaceous substrate angiotensinogen as a substrate, and produces angiotensin (angiotensin).
) is measured by radioimmunoassay method.
However, methods using peptide substrates containing β-naphthylamine are also known. However, none of these methods satisfy all of the requirements of measurement sensitivity, safety, and simplicity. The present inventors conducted research to develop a measurement method that satisfies all of measurement sensitivity, safety, and simplicity, and the structural formula: We succeeded in synthesizing a new peptide derivative shown in
We discovered that this new compound serves as a fluorescent substrate that enables simple and highly sensitive measurement of renin activity.
The present invention has now been completed. The peptide derivatives of the invention include acid addition salt forms. To obtain the target compound of the present invention, for example, N.O.
-Protection-N-protecting group of 7-(N.O-protected-tyrosyl)-amino-4-methylcoumarin produced by dehydration condensation reaction of tyrosine and 7-amino-4-methylcoumarin (AMC) After 7-
(N-protected-leucyl-leucyl-valyl-0-
Protected-tyrosyl)-amino-4-methylcoumarin is obtained. Next, the N-protecting group is removed by a method commonly used in peptide synthesis, and then N-N G -protected-arginyl-brolyl-phenylalanyl-
By reacting histidine-azide, 7
-(N〓・N G -protected-arginyl-prolyl-phenylalanyl-histidyl-leucyl-leucyl-valyl-O-protected-tyrosyl)-amino-4
- Obtain methylcoumarin. The protecting group can then be removed by reacting in anhydrous hydrogen fluoride at 0°C for 40 minutes. As mentioned above, the protecting group for N–·N G and the hydroxyl group can be selected from the protecting groups commonly used in peptide synthesis. To measure the renin activity contained in a liquid using the peptide derivative of the present invention, a renin-containing liquid and the general formula 7-(leucyl-valyl-tyrosyl)-amino-4-methylcoumarin is then brought into contact with the peptide derivative represented by the formula, and then AMC is generated by acting on the peptide derivative such as aminopeptidase M, etc. The renin activity in the liquid can be measured with high sensitivity by quantifying the amount of free AMC produced after contacting with the enzyme. Hereinafter, the present invention will be explained in detail with reference to Reference Examples and Examples. Reference example 1 N-t-butyloxycarbonyl-0-2.6
22 g (50 mmol) of -dichlorobenzyl-L-tyrosine was dissolved in 200 ml of tetrahydrofuran, and while stirring under cooling, 5.2 g (25 mmol) of dicyclohexylcarbodiimide was added. After 1 hour, the precipitated dicyclohexylurea was removed by filtration, and the filtrate was stirred while cooling to give 4.4 g of AMC.
(25 mm) of dimethylformamide (DMF) 15
ml solution was added dropwise. After stirring for 1 day at 20°C, the solvent was distilled off, the residue was dissolved with 100 ml of ethyl acetate, and washed by shaking with 100 ml of 1N hydrochloric acid. The organic layer was washed with 100 ml each of 5% deuterated water and then water, dried over anhydrous magnesium sulfate, and then ethyl acetate was distilled off. The residue was recrystallized from 100 ml of methyl alcohol to give 7-(N-
9.8 g (yield: 65.3%) of t-butyloxycarbonyl-0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 234-235°C (decomposition). [α] 27 D = +57.7゜ (C = 2.13, DMF) Elemental analysis: Measured values C62.23%, H5.01%, N4.54% Calculated values as C 31 H 30 N 2 O 6 Cl 2 ,
C62.31%, H5.06%, N4.69% Reference example 2 7-(Nt-butyloxycarbonyl-0-
2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin 1.79 g (3 mmol)
Add 10 ml of trifluoroacetic acid to the solution and stir at 20℃ for 20 minutes, then distill off the trifluoroacetic acid and add ether to the residue.
100 ml was added to form a solution. 7-(0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methyl coumarin trifluoroacetate was collected by filtration. Dissolve this in 10 ml of DMF and give 1.13 g (3.6 mmol) of N-t-butyloxycarbonyl-L-valine-N-hydroxysuccinimide ester.
was added, triethylamine was added to adjust the pH to 7, and the mixture was stirred overnight at room temperature. Distill the solvent, dissolve in 100 ml of chloroform and 5 ml of methanol, add 100 ml of 0.5N hydrochloric acid, and then 100 ml of water.
After washing with 1.9 g (yield: 91%) of -valyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 214-215°C (decomposition). [α] 27 D = +33.7゜ (C = 1.07, DMF) Elemental analysis: Actual value C61.79%, H5.55%, N5.88% Calculated value as C 36 H 39 N 3 O 7 Cl 2
C62.07%, H5.64%, N6.03% Reference example 3 7-(t-Butyloxycarbonyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin Add 10 ml of dichloromethane and 5 ml of acetic acid to 1.4 g (2 mmol) and dissolve to give 1.15 g (6 mmol) of toluenesulfonic acid monohydrate.
mmol) was added, and dichloromethane was distilled off at 20°C. After stirring for 1 hour at 20℃, ether
Add 100ml of 7-(L-valyl-0-2.6)
-dichlorobenzyl-L-tyrosyl)-amino-
The precipitate of 4-methylcoumarin toluenesulfonate was collected by filtration. Dissolve this in 10ml of DMF and add triethylamine.
After adjusting the pH to 7, 788 mg (2.4 mmol) of N-t-butyloxycarbonyl-L-leucine-N-hydroxysuccinimide ester was added and stirred overnight at room temperature. The solvent was distilled off, 50 ml of water was added, the resulting precipitate was collected by filtration, dissolved in 5 ml of methyl alcohol and 50 ml of chloroform, and insoluble matter was removed by filtration. Ether was added to the filtrate and recrystallized to obtain 7-(t
-Butyloxycarbonyl-L-leucyl-L-
700 mg (yield: 43%) of valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 240-241℃ (decomposition). [α] 27 D = +25.9゜ (C = 1.85, DMF) Elemental analysis: Actual value C62.28%, H6.13%, N6.78% Calculated value as C 42 H 50 N 4 O 8 Cl 2
C62.29%, H6.22%, N6.92% Reference example 4 7-(t-Butyloxycarbonyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino- Add and dissolve 10 ml of dichloromethane and 3 ml of acetic acid to 647 mg (0.8 mmol) of 4-methylcoumarin, add 458 mg (2.4 mmol) of toluenesulfonic acid monohydrate, distill off dichloromethane at 20°C, and then stir at 20°C for 1 hour. Stirred. Then, 100 ml of ether was added to the resulting 7-(L-
The precipitate of leucyl-L-valyl-0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin toluenesulfonate was collected by filtration. Dissolve this in 5ml of DMF and PH with triethylamine.
After adjusting the pH to 7, 328 mg (1 mmol) of N-t-butyloxycarbonyl-L-leucine-N-hydroxysuccinimide ester was added and stirred overnight at room temperature. Then, distill off the solvent and add 50ml of water.
was added, the resulting precipitate was collected by filtration, and methyl alcohol 5
ml and 30 ml of chloroform, filtered off the insoluble materials, and recrystallized by adding ether.
(N-t-butyloxycarbonyl-L-leucyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosine)-amino-4-
560 mg (yield 76%) of methylcoumarin was obtained. Melting point 245-247°C (decomposition). [α] 27 D = +1.4 (C = 1.60, DMF) Elemental analysis: Actual value C62.63%, H6.51%, N7.55% Calculated value as C 48 H 61 N 5 O 9 Cl 2
C62.46%, H6.66%, N7.59% Reference example 5 N-t-amyloxycarbonyl-N G -tosyl-L-arginine-66.6g (0.15 mol) and L
-Proline benzyl ester hydrochloride 40.2g
(0.165 mol) in 500 ml of dichloromethane,
25.4 g (0.164 mol) of N.N-dimethylaminopropyl-N'-ethylcarbodiimide was added dropwise. After stirring overnight at room temperature, the solvent was distilled off, the residue was dissolved in 500 ml of ethyl acetate, and the residue was dissolved in 500 ml of 1N hydrochloric acid.
It was washed by shaking it together. Next, 500 water
After washing by shaking sequentially with 500 ml of 5% heavy sour water and 500 ml of water, the organic layer was dried with magnesium sulfate, the solvent was distilled off, the residue was dissolved in methyl alcohol, and recrystallized by adding ether. −
Amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline benzyl ester 52g
(yield 55%). Melting point 166℃~167.5℃ [α] 23D -34.5゜ (C=1.0, DMF) Elemental analysis: Actual value C58.58%, H6.94%, N11.26% C 31 H 43 O 7 N 5 S Calculated value as
C59.12%, H6.88%, N11.12% Reference example 6 N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline 40 g (64 mmol) of benzyl ester in 1 part of ethyl alcohol Comb, add 5% palladium on carbon catalyst,
After the reduction reaction was carried out for 9 hours by passing hydrogen gas under stirring at room temperature and normal pressure, the catalyst was filtered off and the solvent was distilled off. The residue was solidified by adding ether and n-hexane and collected by filtration to give N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-
34 g (yield 99%) of L-proline was obtained. This material was used in the next experiment without being purified. Reference example 7 N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline 5.4 g (10
mmol) and trifluoroacetic acid-P-nitrophenyl ester (4.7 g (20 mmol)) were dissolved in 50 ml of dry pyridine, stirred at 50°C for 3 hours, then added with 1 ml of water and concentrated to dryness to obtain N-t-amyloxy- Carbonyl-N G -tosyl-L-arginyl-
An oil containing L-proline-P-nitrophenyl ester was obtained. Meanwhile, 4.5 g of N-carbobenzoxy-L-phenylalanyl-L-histidine methyl ester
(10 mmol) was added with 20 ml of 25% hydrogen bromide acetic acid solution, stirred at room temperature for 1 hour, and then 500 ml of ether was added.
The resulting precipitate was obtained by decantation. Dissolve this in 50 ml of DMF, adjust the pH to 7 with triethylamine, and add the above N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-
An oil containing proline-P-nitrophenyl ester was added and stirred overnight at room temperature, and then the solvent was distilled off. Dissolve the residue in 100 ml of ethyl acetate and add 0.5
It was washed by shaking with 100 ml of normal hydrochloric acid. followed by water
After shaking and washing with 100 ml, the organic layer was dried with magnesium sulfate. The solvent was distilled off and the residue was solidified by adding 100 ml of ether to obtain Nt-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine methyl ester. Yield: 6.8g (yield: 81%). This material contained a by-product thought to be P-nitrophenol in silica gel thin layer chromatography using a solvent system of chloroform:methanol:acetic acid = 85:10:5, but it was not purified further and was used in the reaction. Reference example 8 N-t-amyloxycarbonyl-N-tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine methyl ester
2.5 g (3 mmol) was dissolved in 50 ml of methyl alcohol, 5.6 ml (approximately 90 mmol) of hydrazine monohydrate was added, and after stirring at room temperature for one day, the solvent was distilled off. Add 10 ml of water to the residue to remove soluble materials, then add a small amount of methanol and 100 ml of ether to solidify N-t-amyloxycarbonyl-N.
G -tosyl-L-arginyl-L-prolyl-L
-Phenylalanyl-L-histidine hydrazide was obtained. Yield: 1.35g (yield 54%). This substance is used for silica gel thin layer chromatography solvent system chloroform:methanol:acetic acid = 85:
Small amounts of two by-products were observed at 15:5, but these were used in the next reaction without further purification. Reference example 9 N-t-amyloxycarbonyl-NG-tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine hydrazide 269 mg
(0.3 mmol) was dissolved in 4 ml of DMF, a 5.4 N hydrogen chloride dioxane solution was added, and 0.1 ml of isoamyl nitrite was added while stirring at -30°C. The mixture was stirred at -10°C for 30 minutes to obtain a Nt-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine azide solution []. On the other hand, 7-(Nt-butyloxycarbonyl-L-leucyl-L-leucyl-L-valyl-0
-2,6-dichlorobenzyl-L-tyrosyl)-
Add 5 ml of dichloromethane and 1 ml of acetic acid to 184.4 mg (0.2 mmol) of amino-4-methylcoumarin to obtain 191 mg (1 mmol) of toluenesulfonic acid monohydrate.
was added and dichloromethane was distilled off under reduced pressure at 20°C, followed by stirring at 20°C for 3 hours. Next, 50 ml of ether was added, and the resulting precipitate was collected by filtration and washed with ether to obtain 7-(L-leucyl-L-leucyl-
L-valyl-0-2,6 dichlorobenzyl-L-
Tyrosyl)-amino-4-methylcoumarin toluenesulfonate was obtained. Dissolve this in 5 ml of DMF and adjust the pH to 7 with triethylamine. Cool the above [] to -50°C, add 0.76 ml of triethylamine, and add []. After stirring for one day at 0°C to 2°C, the solvent was distilled off, 10ml of water was added to the residue, and the resulting precipitate was collected by filtration. Combine this with 1 ml of methyl alcohol and 10 ml of ethyl acetate.
After stirring and filtering off the insoluble matter, 20 ml of ether was added for reprecipitation and purification to give 7-(N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L). -Histidyl-L-leucyl-L-valyl-0-2.
250 mg (yield 77%) of 6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Although 3 to 4 by-products and unreacted substances were observed in this substance using silica gel thin layer chromatography using a solvent system of chloroform:methanol:acetic acid=85:15:5, no further purification was performed. Example 7-(N〓-t-amyloxycarbonyl- NG
-tosyl-L-arginyl-L-prolyl-L-
Add 1 ml of anisole to 244 mg (0.15 mmol) of phenylalanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin and anhydrous fluorination. After reacting with 3 ml of hydrogen at 0°C for 40 minutes to remove the protective group, hydrogen fluoride was distilled off, and 20 ml of 1 molar acetic acid and 50 ml of ether were added to the residue for extraction. The water layer was prepared using “Dowex”1 manufactured by Dow Chemical Company.
After passing through 10 ml of ion exchange resin (acetic acid type) to remove attached hydrogen fluoride, the mixture was freeze-dried to obtain a powder. This was purified by column chromatography using gel filtration resin LH-20 (5 x 160 cm) using 1 mol acetic acid as a solvent to obtain the desired product 7-(L-arginyl-L-
Prolyl-L-phenylalanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-
L-tyrosyl)-amino-4-methylcoumarin
60 mg (yield 30%) of diacetate monohydrate was obtained. The ratio of amino acids contained in this compound was determined using an amino acid analyzer.

【表】 元素分析値 実測値 C59.17%、H7.04%、N14.95% C68H84D11N14・2CH3COOH・H2Oとしての計算
値 C59.17%、H7.07%、N14.64% 〔α〕22 =−42.4℃(C=0.77 20%CH3COOH) セルロース薄層クロマトグラフイー 溶媒系 n−ブタノール:酢酸:水=4:1:5
Rf=0.66 n−ブタノール:酢酸:水:ピリジン=
15:3:12:10 Rf=0.82 に、坂口試薬、パウリ試薬、ニンヒドリン試薬落
及び螢光にて単一なスポツトを与えた。 本発明のペプチド誘導体がレニン活性測定用の
螢光基質となることを示す実験を行つた。 7−(L−アルギニル−L−プロリル−L−フ
エニル−アラニル−L−ヒスチジル−L−ロイシ
ル−L−ロイシル−L−バリル−L−チロシル)
−アミノ−4−メチルクマリン 2酢酸塩・1水
和物のDMF溶液(μmoles/ml)25入と0.05Mピ
ロリド酸緩衝液(PH5.6)250入中に純粋レニン
0.6〜2.6μPHを37℃で60分間反応せしめた後、5
分間100℃に加熱して酵素を失活させた。これに
10入のアミノペプチダーゼ(aminopepti−
dase)M(5U/ml水)を加えて37℃で60分間反
応せしめ得られた反応液について、けい光スペク
トルのEm440nm(EX380nmで励起)の波長を
用いてけい光強度を測定した。各濃度の純粋レニ
ンについての結果を次に示す。
[Table] Elemental analysis values Actual values C59.17%, H7.04%, N14.95% C 68 H 84 D 11 N 14・2CH 3 COOH・H 2 O Calculated values C59.17%, H7.07 %, N14.64% [α] 22 D = -42.4°C (C = 0.77 20% CH 3 COOH) Cellulose thin layer chromatography solvent system n-butanol:acetic acid:water = 4:1:5
Rf=0.66 n-butanol:acetic acid:water:pyridine=
A single spot was given at 15:3:12:10 Rf=0.82 using Sakaguchi reagent, Pauli reagent, ninhydrin reagent drop and fluorescence. Experiments were conducted to demonstrate that the peptide derivatives of the present invention serve as fluorescent substrates for measuring renin activity. 7-(L-arginyl-L-prolyl-L-phenyl-alanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-L-tyrosyl)
-Amino-4-methylcoumarin Diacetate monohydrate in 25 DMF solutions (μmoles/ml) and 250 volumes of 0.05M pyrrolidate buffer (PH5.6) were mixed with pure renin.
After reacting 0.6 to 2.6μPH at 37℃ for 60 minutes,
The enzyme was inactivated by heating to 100°C for minutes. to this
10 pieces of aminopeptidase (aminopepti-
dase) M (5 U/ml water) was added and reacted at 37°C for 60 minutes, and the fluorescence intensity of the resulting reaction solution was measured using a wavelength of Em 440 nm (excited at EX 380 nm) of the fluorescence spectrum. The results for each concentration of pure renin are shown below.

【表】 以上の結果から、本基質はレニン濃度に比例し
てAMCを生成せしめることがわかる。一方、本
基質は反応時間に比例してAMCを生成せしめる
ことも確かめた。 従つて試料溶液に本基質を上記の方法に準じて
作用せしめて生成するAMC量を測定し標準曲線
と比較すれば、試料溶液中のレニン活性量を正確
に測定でき、前述の病気診断に役立つことがわか
る。
[Table] From the above results, it can be seen that this substrate produces AMC in proportion to the renin concentration. On the other hand, it was also confirmed that this substrate produced AMC in proportion to the reaction time. Therefore, by applying this substrate to a sample solution according to the method described above, measuring the amount of AMC produced and comparing it with the standard curve, the amount of renin activity in the sample solution can be accurately measured, which is useful in the diagnosis of the aforementioned diseases. I understand that.

Claims (1)

【特許請求の範囲】 1 構造式: で示されるペプチド誘導体。[Claims] 1 Structural formula: A peptide derivative represented by
JP8419578A 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity Granted JPS5511535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8419578A JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8419578A JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Publications (2)

Publication Number Publication Date
JPS5511535A JPS5511535A (en) 1980-01-26
JPS626560B2 true JPS626560B2 (en) 1987-02-12

Family

ID=13823680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8419578A Granted JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Country Status (1)

Country Link
JP (1) JPS5511535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945260A (en) * 1982-09-06 1984-03-14 泉陽機工株式会社 Vehicle conveyor
US4522128A (en) * 1983-01-10 1985-06-11 Regents Of The University Of Minnesota Switch mechanism

Also Published As

Publication number Publication date
JPS5511535A (en) 1980-01-26

Similar Documents

Publication Publication Date Title
JPS6126558B2 (en)
JPS6134440B2 (en)
US4147692A (en) Novel dipeptide derivatives, and method of measuring enzymatic activity
JP4138331B2 (en) Fluorescent sensor for phosphate ion and phosphorylated peptide
JPH0873422A (en) New amino acid ester and method for detecting leukocyte, esterase or protease
JPS626560B2 (en)
CN109776379A (en) It is a kind of to can be used for responding the near infrared fluorescent probe and preparation method thereof that in living cells and pH changes in chronic wounds development process
JP4279065B2 (en) Zinc fluorescent probe
JPS6121640B2 (en)
US4257939A (en) Peptide derivative
JP2023550371A (en) Synthesis of prostate specific membrane antigen (PSMA) ligand
US4191809A (en) Method of measuring enzymatic activity using novel peptide derivatives
JPS6332348B2 (en)
JP2629375B2 (en) Method for producing amino-protected dopa or dopa derivative
JP2698730B2 (en) Labeled dye and its precursor, method for synthesizing the same, and method for detecting methamphetamine using labeled dye
JPS6027675B2 (en) 7-Arginylamino-4-methylcoumarin
JPS6130559B2 (en)
JPS5842862B2 (en) peptide derivative
JPH0321034B2 (en)
JPS6328075B2 (en)
CN118290397A (en) Compound, preparation method thereof and application thereof in detection of squalene epoxidase
JP2023550412A (en) Synthesis of prostate specific membrane antigen (PSMA) ligand
JPS6342637B2 (en)
JP2660864B2 (en) Aminoacetophenone derivatives and methods for measuring enzyme activity using the same
CN115536652A (en) Frequency up-conversion xanthene fluorescent probe, preparation method thereof and application thereof in mercaptan detection