JPS626560B2 - - Google Patents

Info

Publication number
JPS626560B2
JPS626560B2 JP53084195A JP8419578A JPS626560B2 JP S626560 B2 JPS626560 B2 JP S626560B2 JP 53084195 A JP53084195 A JP 53084195A JP 8419578 A JP8419578 A JP 8419578A JP S626560 B2 JPS626560 B2 JP S626560B2
Authority
JP
Japan
Prior art keywords
added
amino
leucyl
mmol
methylcoumarin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084195A
Other languages
Japanese (ja)
Other versions
JPS5511535A (en
Inventor
Shunpei Sakakibara
Kazuo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP8419578A priority Critical patent/JPS5511535A/en
Publication of JPS5511535A publication Critical patent/JPS5511535A/en
Publication of JPS626560B2 publication Critical patent/JPS626560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、レニンrenin掻性枬定甚の螢光
性基質ずしお䜿甚できる新芏ペプチド誘導䜓に関
する。 血圧の調節や氎、電解質の代謝に腎䞭の酵玠レ
ニンが重芁な圹割を挔じおいるこずが知られおお
り、この酵玠を定量するこずによりこの酵玠が関
䞎しおいる病気の蚺断が可胜ずなる。 珟圚レニン掻性はタンパク性基質アンゞオテン
シノヌゲンangio tensinogenを基質ずし、生
成するアンゞオテンシン−angioten sin−
をラゞオむムノアツセむ法で枬定しおいる。
ただ、β−ナフチルアミンを含むペプチド基質を
甚いる方法も知られおいる。しかし、いずれも枬
定感床安党性又は簡䟿さのすべおを満足する方法
ではない。 本発明者らは、枬定感床、安党性、簡䟿性のす
べおを満足する枬定方法を開発すべく研究を行い
構造匏 で瀺される新芏ペプチド誘導䜓の合成に成功し、
この新芏化合物がレニン掻性の簡䟿で高感床の枬
定を可胜ずする螢光性基質ずなるこずを芋出し、
本発明を完成するに至぀た。 本発明のペプチド誘導䜓は酞付加塩の圢を含
む。 本発明の目的化合物を埗るには、䟋えば・
−保護−チロシンず−アミノ−−メチルクマ
リンAMCずを脱氎瞮合反応させるこずによ
り補造される−・−保護−チロシル−ア
ミノ−−メチルクマリンの−保護基を脱離し
た埌、通垞のペプチド合成に甚いられる方法によ
りバリン、ロむシン、ロむシンを順次瞮合し−
−保護−ロむシル−ロむシル−バリル−−
保護−チロシル−アミノ−−メチルクマリン
を埗る。次いで、−保護基を通垞のペプチド合
成に甚いられる方法で脱離した埌〓・G−保
護−アルギニル−ブロリル−プニルアラニル−
ヒスチゞン−アゞドを反応させるこずにより、
−〓・G−保護−アルギニル−プロリル−フ
゚ニルアラニル−ヒスチゞル−ロむシル−ロむシ
ル−バリル−−保護−チロシル−アミノ−
−メチルクマリンを埗る。次いで、無氎北化氎玠
䞭℃40分反応させるこずにより保護基を陀去す
るこずができる。 前述の劂く〓・G、氎酞基の保護基には通
垞のペプチド合成に甚いられる保護基より遞択し
お甚いるこずができる。 本発明のペプチド誘導䜓を甚いお液䜓䞭含有す
るレニン掻性を枬定するにはレニンを含有する液
䜓ず䞀般匏 で瀺されるペプチド誘導䜓ずを接觊せしめ、次い
で遊離生成する−ロむシル−バリル−チロシ
ル−アミノ−−メチルクマリンに、アミノペ
プチダヌれ等前蚘遊離生成したペプチド誘導䜓
に䜜甚しおAMCを遊離生成せしめる酵玠を接觊
せしめた埌、遊離生成したAMCを定量するこず
により液䜓䞭のレニン掻性を高感床に枬定でき
る。以䞋、参考䟋及び実斜䟋により本発明を詳现
に説明する。 参考䟋  −−ブチルオキシカルボニル−−・
−ゞクロロベンゞル−−チロシン2250ミリ
モルをテトラヒドロフラン200mlにずかし冷华
䞋かきたぜながらゞシクロヘキシルカルボゞむミ
ド5.225ミリモルを加えた。 時間埌析出したゞシクロヘキシルりレアを濟
去し、濟液を冷华䞋かきたぜながらAMC4.4
25ミリモのゞメチルホルムアミドDMF15
ml溶液を滎加した。そのたた、20℃日かきたぜ
た埌、溶媒を溜去し、残枣に酢酞゚チル100mlを
加えおずかし、芏定塩酞100mlず共に振りたぜ
掗浄した。有機局は぀づいお重そう氎、次い
で氎、各100mlにお掗浄した埌、無氎硫酞マグネ
シりムで也燥埌、酢酞゚チルを溜去した。残枣を
メチルアルコヌル100mlより再結晶し、−−
−ブチルオキシカルボニル−−・−ゞク
ロロベンゞル−−チロシル−アミノ−−メ
チルクマリン9.8収率65.3を埗た。 融 点 234〜235℃分解。 〔α〕 57.7゜2.13、DMF 元玠分析 枬定倀 C62.23、H5.01、N4.54 C31H30N2O6Cl2ずしおの蚈算倀、
C62.31、H5.06、N4.69 参考䟋  −−−ブチルオキシカルボニル−−
・−ゞクロロベンゞル−−チロシル−ア
ミノ−−メチルクマリン1.79ミリモル
にトリフロロ酢酞10mlを加え20℃ 20分かきたぜ
た埌、トリフロロ酢酞を溜去し残留物に゚ヌテル
100mlを加え生じた。 −−・−ゞクロロベンゞル−−チ
ロシル−アミノ−−メチルクママリントリフ
ロロ酢酞塩を濟取した。 これをDMF10mlにずかし、〓−−ブチル
オキシカルボニル−−バリン−−ヒドロキシ
スクシンむミド゚ステル1.133.6ミリモル
を加え、トリ゚チルアミンを加えPHをずした埌
宀枩にお倜かきたぜた。 溶媒を溜去し、クロロホルム100mlずメタノヌ
ルmlにずかし0.5芏定塩酞100ml次いで氎100ml
にお掗浄した埌、有機局を無氎硫酞マグネシりム
で也燥した溶媒を溜去し残枣をメタノヌルmlず
クロロホルム50mlにずかし゚ヌテルを加えるこず
により再結晶し、−−−ブチルオキシカ
ルボニル−−バリル−−チロシル−アミノ
−−メチルクマリン1.9収率91を埗
た。 融 点 214〜215℃分解。 〔α〕 33.7゜1.07、DMF 元玠分析 実枬倀 C61.79、H5.55、N5.88 C36H39N3O7Cl2ずしお蚈算倀
C62.07、H5.64、N6.03 参考䟋  −−ブチルオキシカルボニル−−バリ
ル−−・−ゞクロロベンゞル−−チロシ
ル−アミノ−−メチルクマリン1.4ミリ
モルにゞクロロメタン10mlず酢酞mlを加えお
ずかし、トル゚ンスルホン酞氎和物1.15
ミリモルを加え20℃におゞククロロメタンを溜
去した。その埌20℃時間かきたぜた埌゚ヌテル
100mlを加え生じた−−バリル−−・
−ゞクロロベンゞル−−チロシル−アミノ−
−メチルクマリン トル゚ンスルホン酞塩の沈
柱を濟取した。 これをDMF10mlにずかしトリ゚チルアミンで
PHに調節した埌〓−−ブチルオキシカルボ
ニル−−ロむシン−−ヒドロキシスクシンむ
ミド゚ステル788mg2.4ミリモルを加え宀枩に
お倜かきたぜた。溶媒を溜去し氎50mlを加え生
じた沈殿を濟取し、メチルアルコヌルmlずクロ
ロホルム50mlにずかし䞍溶物を濟去した埌、濟液
に゚ヌテルを加え再結晶するこずにより−
−ブチルオキシカルボニル−−ロむシル−−
バリル−−・−ゞクロロベンゞル−−チ
ロシル−アミノ−−メチルクマリン700mg収
率43を埗た。 融 点 240〜241℃分解。 〔α〕 25.9゜1.85、DMF 元玠分析 実枬倀 C62.28、H6.13、N6.78 C42H50N4O8Cl2ずしお蚈算倀
C62.29、H6.22、N6.92 参考䟋  −−ブチルオキシカルボニル−−ロむ
シル−−バリル−−・−ゞクロロベンゞ
ル−−チロシル−アミノ−−メチルクマリ
ン647mg0.8ミリモルにゞクロロメタン10mlず
酢酞mlを加えずかし、トル゚ンスルホン酞氎
和物458mg2.4ミリモルを加え、20℃におゞク
ロロメタンを溜去した埌20℃にお時間かきたぜ
た。次いで゚ヌテル100mlを加え生じた−−
ロむシル−−バリル−−・−ゞクロロベ
ンゞル−−チロシル−アミノ−−メチルク
マリン トル゚ンスルホン酞塩の沈柱を濟取し
た。 これをDMF5mlにずかしトリ゚チルアミンでPH
をに調節した埌、〓−−ブチルオキシカル
ボニル−−ロむシン−−ヒドロキシスクシン
むミド゚ステル328mgミリモルを加え宀枩
にお倜かきたぜた。次いで溶媒を溜去し氎50ml
を加え生じる沈柱を濟取し、メチルアルコヌル
mlずクロロホルム30mlにずかし䞍溶物を濟去した
埌゚ヌテルを加えるこずにより再結晶し、−
−−ブチルオキシカルボニル−−ロむシ
ル−−ロむシル−−バリル−−・−ゞ
クロロベンゞル−−チロシン−アミノ−−
メチルクマリン560mg収率76を埗た。 融 点 245〜247℃分解。 〔α〕 1.41.60、DMF 元玠分析 実枬倀 C62.63、H6.51、N7.55 C48H61N5O9Cl2ずしおの蚈算倀
C62.46、H6.66、N7.59 参考䟋  〓−−アミルオキシカルボニル−G−ト
シル−−アルギニン−66.60.15モルず
−プロリンベンゞル゚ステル塩酞塩40.2
0.165モルをゞクロロメタン500mlにずかし、
・−ゞメチルアミノプロピル−N′−゚チル
カルボゞむミド25.40.164モルを滎加し
た。倜宀枩におかきたぜた埌、溶媒を溜去、残
溜物を酢酞゚チル500mlにずかし芏定塩酞500ml
ずずもに振りたぜ掗浄した。぀づいお、氎500
ml、重そう氎500ml、氎500mlず順次振りたせ
掗浄した埌有機局は硫酞マグネシりムで也燥した
溶媒を溜去し、残枣をメチルアルコヌルにずかし
゚ヌテルを加えるこずにより再結晶し〓−−
アミルオキシカルボニル−G−トシル−−ア
ルギニル−−プロリンベンゞル゚ステル52
収率55を埗た。 融 点 166℃〜167.5℃ 〔α〕 −34.5゜1.0、DMF 元玠分析 実枬倀 C58.58、H6.94、N11.26 C31H43O7N5Sずしおの蚈算倀
C59.12、H6.88、N11.12 参考䟋  〓−−アミルオキシカルボニル−G−ト
シル−−アルギニル−−プロリン ベンゞル
゚ステル4064ミリモルを゚チルアルコヌル
にずかし、パラゞりム炭玠觊媒を加え、
宀枩垞圧におかきたぜながら氎玠ガスを通じ時
間還元反応を行わせた埌觊媒を濟去し溶媒を溜去
した。残枣に゚ヌテルず−ヘキサンを加えお固
化させ濟取するこずにより〓−−アミルオキ
シカルボニル−G−トシル−−アルギニル−
−プロリン34収率99を埗た。この物質
はそのたた粟補せずに次の実隓に甚いた。 参考䟋  〓−−アミルオキシカルボニル−G−ト
シル−−アルギニル−−プロリン5.410
ミリモルずトリフロロ酢酞−−ニトロプニ
ル゚ステル4.720ミリモルを也燥したピリ
ゞン50mlにずかし50℃にお時間かきたぜた埌氎
mlを加え濃瞮也固し、〓−−アミルオキシ
−カルボニル−G−トシル−−アルギニル−
−プロリン−−ニトロプニル゚ステルを含
む油状物を埗た。 䞀方、〓−カルボベンゟキシ−−プニル
アラニル−−ヒスチゞンメチル゚ステル4.5
10ミリモルに25臭化氎玠酢酞溶液20mlを加
え、宀枩にお時間かきたぜた埌゚ヌテル500ml
を加え生じた沈柱を傟瀉により埗た。 これをDMF50mlにずかしトリ゚チルアミンン
でPHをに調節し䞊蚘〓−−アミルオキシカ
ルボニル−G−トシル−−アルギニル−−
プロリン−−ニトロプニル゚ステルを含む油
状物を加え宀枩にお倜かきたぜた埌、溶媒を溜
去した。残留物を酢酞゚チル100mlにずかし、0.5
芏定塩酞100mlず振りたぜ掗浄した。぀づいお氎
100mlず振りたぜ掗浄した埌、有機局を硫酞マグ
ネシりムで也燥した。溶媒を留去し残枣に゚ヌテ
ル100mlを加えお固化させ、〓−−アミルオ
キシカルボニル−G−トシル−−アルギニル
−−プロリル−−プニルアラニル−−ヒ
スチゞンメチル゚ステルを埗た。収量6.8収
率81。この物質にはシリカゲル薄局クロマト
グラフむヌ溶媒系クロロホルムメタノヌル酢
酞8510にお−ニトロプノヌルず考え
られる副生物が含たれおいたが、これ以䞊の粟補
をせず次の反応に䜿甚した。 参考䟋  〓−−アミルオキシカルボニル−〓−ト
シル−−アルギニル−−プロリル−−プ
ニルアラニル−−ヒスチゞンメチル゚ステル
2.5ミリモルをメチルアルコヌル50mlに
ずかしヒドラゞン氎和物5.6ml玄90ミリモ
ルを加え宀枩にお日かきたぜた埌、溶媒を溜
去した。残留物に氎10mlを加え可溶物を陀き、぀
づいお少量のメタノヌルず゚ヌテル100mlを加え
固化させ〓−−アミルオキシカルボニル−
G−トシル−−アルギニル−−プロリル−
−プニルアラニル−−ヒスチゞンヒドラゞド
を埗た。収量1.35収率54。 この物質にはシリカゲル薄局クロマトグラフむ
ヌ溶媒系クロロホルムメタノヌル酢酞85
15にお぀の副生物が少量ず぀認められたが
これ以䞊粟補するこずなく次の反応に䜿甚した。 参考䟋  〓−−アミルオキシカルボニル−NG−ト
シル−−アルギニル−−プロリル−−プ
ニルアラニル−−ヒスチゞンヒドラゞド269mg
0.3ミリモルをDMF4mlにずかし5.4芏定塩化氎
玠ゞオキサン溶液を加え−30℃でかきたぜながら
む゜アミルナむトラむト0.1mlを加えた。−10℃に
お30分かきたぜるこずにより〓−−アミルオ
キシカルボニル−G−トシル−−アルギニル
−−プロリル−−プニルアラニル−−ヒ
スチゞンアゞド溶液〔〕ずした。 䞀方、−−−ブチルオキシカルボニル
−−ロむシル−−ロむシル−−バリル−
−・−ゞクロロベンゞル−−チロシル−
アミノ−−メチルクマリン184.4mg0.2ミリモ
ルにゞクロロメタンmlず酢酞mlを加え、ト
ル゚ンスルホン酞氎和物191mgミリモル
を加え20℃におゞクロロメタンを枛圧溜去した
埌、20℃にお時間かきたぜた。次いで、゚ヌテ
ル50mlを加え生じる沈柱を濟取し゚ヌテルで掗う
こずにより−−ロむシル−−ロむシル−
−バリル−−・ゞクロロベンゞル−−
チロシル−アミノ−−メチルクマリントル゚
ンスルホン酞塩を埗た。これをDMF5mlにずかし
トリ゚チルアミンでPHをずする〔〕䞊蚘
〔〕を−50℃に冷しトリ゚チルアミン0.76mlを
加え〔〕を加える。℃〜℃にお日かきた
ぜた埌、溶媒を溜去し残枣に氎10mlを加え生じた
沈殿を濟取した。 これをメチルアルコヌルmlず酢酞゚チル10ml
にずかし䞍溶物を濟去した埌゚ヌテル20mlを加え
再沈柱を行い粟補し、−〓−−アミルオ
キシカルボニル−G−トシル−−アルギニル
−−プロリル−−プニルアラニル−−ヒ
スチゞル−−ロむシル−−バリル−−・
−ゞクロロベンゞル−−チロシル−アミノ
−−メチルクマリン250mg収率77を埗
た。 この物質にはシリカゲル薄局クロマト溶媒系ク
ロロホルムメタノヌル酢酞8515によ
り〜ケの副生物及び未反応物が認められた
が、これ以䞊の粟補は行わなか぀た。 実斜䟋 −〓−−アミルオキシカルボニル−G
−トシル−−アルギニル−−プロリル−−
プニルアラニル−−ヒスチゞル−−ロむシ
ル−−ロむシル−−バリル−−・ゞク
ロロベンゞル−−チロシル−アミノ−−メ
チルクマリン244mg0.15ミリモルにアニ゜ヌ
ルmlを加え無氎北化氎玠mlず共に℃40分反
応させ、保護基を脱離した埌、北化氎玠を溜去し
残留物にモル酢酞20mlず゚ヌテル50mlを加え抜
出した。氎局をダりケミカル瀟補「Dowex」
むオン亀換暹脂酢酞型10mlを通過させ、付着
した北化氎玠を陀いた埌、凍結也燥し粉末を埗
た。これを、ゲル濟過甚暹脂LH−20のカラムク
ロマトググラフむヌ×160cm溶媒モル酢
酞にお粟補し目的物−−アルギニル−−
プロリル−−プニルアラニル−−ヒスチゞ
ル−−ロむシル−−ロむシル−−バリル−
−チロシル−アミノ−−メチルクマリン
酢酞塩、氎和物60mg収率30を埗た。 この化合物に含たれおいるアミノ酞の比率をア
ミノ酞分析機により定量した。
The present invention relates to novel peptide derivatives that can be used as fluorescent substrates for measuring renin activity. It is known that the enzyme renin in the kidney plays an important role in regulating blood pressure and metabolizing water and electrolytes, and quantifying this enzyme makes it possible to diagnose diseases related to this enzyme. Become. Currently, renin activity uses the proteinaceous substrate angiotensinogen as a substrate, and produces angiotensin (angiotensin).
) is measured by radioimmunoassay method.
However, methods using peptide substrates containing β-naphthylamine are also known. However, none of these methods satisfy all of the requirements of measurement sensitivity, safety, and simplicity. The present inventors conducted research to develop a measurement method that satisfies all of measurement sensitivity, safety, and simplicity, and the structural formula: We succeeded in synthesizing a new peptide derivative shown in
We discovered that this new compound serves as a fluorescent substrate that enables simple and highly sensitive measurement of renin activity.
The present invention has now been completed. The peptide derivatives of the invention include acid addition salt forms. To obtain the target compound of the present invention, for example, N.O.
-Protection-N-protecting group of 7-(N.O-protected-tyrosyl)-amino-4-methylcoumarin produced by dehydration condensation reaction of tyrosine and 7-amino-4-methylcoumarin (AMC) After 7-
(N-protected-leucyl-leucyl-valyl-0-
Protected-tyrosyl)-amino-4-methylcoumarin is obtained. Next, the N-protecting group is removed by a method commonly used in peptide synthesis, and then N-N G -protected-arginyl-brolyl-phenylalanyl-
By reacting histidine-azide, 7
-(N〓・N G -protected-arginyl-prolyl-phenylalanyl-histidyl-leucyl-leucyl-valyl-O-protected-tyrosyl)-amino-4
- Obtain methylcoumarin. The protecting group can then be removed by reacting in anhydrous hydrogen fluoride at 0°C for 40 minutes. As mentioned above, the protecting group for N–·N G and the hydroxyl group can be selected from the protecting groups commonly used in peptide synthesis. To measure the renin activity contained in a liquid using the peptide derivative of the present invention, a renin-containing liquid and the general formula 7-(leucyl-valyl-tyrosyl)-amino-4-methylcoumarin is then brought into contact with the peptide derivative represented by the formula, and then AMC is generated by acting on the peptide derivative such as aminopeptidase M, etc. The renin activity in the liquid can be measured with high sensitivity by quantifying the amount of free AMC produced after contacting with the enzyme. Hereinafter, the present invention will be explained in detail with reference to Reference Examples and Examples. Reference example 1 N-t-butyloxycarbonyl-0-2.6
22 g (50 mmol) of -dichlorobenzyl-L-tyrosine was dissolved in 200 ml of tetrahydrofuran, and while stirring under cooling, 5.2 g (25 mmol) of dicyclohexylcarbodiimide was added. After 1 hour, the precipitated dicyclohexylurea was removed by filtration, and the filtrate was stirred while cooling to give 4.4 g of AMC.
(25 mm) of dimethylformamide (DMF) 15
ml solution was added dropwise. After stirring for 1 day at 20°C, the solvent was distilled off, the residue was dissolved with 100 ml of ethyl acetate, and washed by shaking with 100 ml of 1N hydrochloric acid. The organic layer was washed with 100 ml each of 5% deuterated water and then water, dried over anhydrous magnesium sulfate, and then ethyl acetate was distilled off. The residue was recrystallized from 100 ml of methyl alcohol to give 7-(N-
9.8 g (yield: 65.3%) of t-butyloxycarbonyl-0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 234-235°C (decomposition). [α] 27 D = +57.7゜ (C = 2.13, DMF) Elemental analysis: Measured values C62.23%, H5.01%, N4.54% Calculated values as C 31 H 30 N 2 O 6 Cl 2 ,
C62.31%, H5.06%, N4.69% Reference example 2 7-(Nt-butyloxycarbonyl-0-
2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin 1.79 g (3 mmol)
Add 10 ml of trifluoroacetic acid to the solution and stir at 20℃ for 20 minutes, then distill off the trifluoroacetic acid and add ether to the residue.
100 ml was added to form a solution. 7-(0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methyl coumarin trifluoroacetate was collected by filtration. Dissolve this in 10 ml of DMF and give 1.13 g (3.6 mmol) of N-t-butyloxycarbonyl-L-valine-N-hydroxysuccinimide ester.
was added, triethylamine was added to adjust the pH to 7, and the mixture was stirred overnight at room temperature. Distill the solvent, dissolve in 100 ml of chloroform and 5 ml of methanol, add 100 ml of 0.5N hydrochloric acid, and then 100 ml of water.
After washing with 1.9 g (yield: 91%) of -valyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 214-215°C (decomposition). [α] 27 D = +33.7゜ (C = 1.07, DMF) Elemental analysis: Actual value C61.79%, H5.55%, N5.88% Calculated value as C 36 H 39 N 3 O 7 Cl 2
C62.07%, H5.64%, N6.03% Reference example 3 7-(t-Butyloxycarbonyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin Add 10 ml of dichloromethane and 5 ml of acetic acid to 1.4 g (2 mmol) and dissolve to give 1.15 g (6 mmol) of toluenesulfonic acid monohydrate.
mmol) was added, and dichloromethane was distilled off at 20°C. After stirring for 1 hour at 20℃, ether
Add 100ml of 7-(L-valyl-0-2.6)
-dichlorobenzyl-L-tyrosyl)-amino-
The precipitate of 4-methylcoumarin toluenesulfonate was collected by filtration. Dissolve this in 10ml of DMF and add triethylamine.
After adjusting the pH to 7, 788 mg (2.4 mmol) of N-t-butyloxycarbonyl-L-leucine-N-hydroxysuccinimide ester was added and stirred overnight at room temperature. The solvent was distilled off, 50 ml of water was added, the resulting precipitate was collected by filtration, dissolved in 5 ml of methyl alcohol and 50 ml of chloroform, and insoluble matter was removed by filtration. Ether was added to the filtrate and recrystallized to obtain 7-(t
-Butyloxycarbonyl-L-leucyl-L-
700 mg (yield: 43%) of valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Melting point 240-241℃ (decomposition). [α] 27 D = +25.9゜ (C = 1.85, DMF) Elemental analysis: Actual value C62.28%, H6.13%, N6.78% Calculated value as C 42 H 50 N 4 O 8 Cl 2
C62.29%, H6.22%, N6.92% Reference example 4 7-(t-Butyloxycarbonyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino- Add and dissolve 10 ml of dichloromethane and 3 ml of acetic acid to 647 mg (0.8 mmol) of 4-methylcoumarin, add 458 mg (2.4 mmol) of toluenesulfonic acid monohydrate, distill off dichloromethane at 20°C, and then stir at 20°C for 1 hour. Stirred. Then, 100 ml of ether was added to the resulting 7-(L-
The precipitate of leucyl-L-valyl-0-2.6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin toluenesulfonate was collected by filtration. Dissolve this in 5ml of DMF and PH with triethylamine.
After adjusting the pH to 7, 328 mg (1 mmol) of N-t-butyloxycarbonyl-L-leucine-N-hydroxysuccinimide ester was added and stirred overnight at room temperature. Then, distill off the solvent and add 50ml of water.
was added, the resulting precipitate was collected by filtration, and methyl alcohol 5
ml and 30 ml of chloroform, filtered off the insoluble materials, and recrystallized by adding ether.
(N-t-butyloxycarbonyl-L-leucyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosine)-amino-4-
560 mg (yield 76%) of methylcoumarin was obtained. Melting point 245-247°C (decomposition). [α] 27 D = +1.4 (C = 1.60, DMF) Elemental analysis: Actual value C62.63%, H6.51%, N7.55% Calculated value as C 48 H 61 N 5 O 9 Cl 2
C62.46%, H6.66%, N7.59% Reference example 5 N-t-amyloxycarbonyl-N G -tosyl-L-arginine-66.6g (0.15 mol) and L
-Proline benzyl ester hydrochloride 40.2g
(0.165 mol) in 500 ml of dichloromethane,
25.4 g (0.164 mol) of N.N-dimethylaminopropyl-N'-ethylcarbodiimide was added dropwise. After stirring overnight at room temperature, the solvent was distilled off, the residue was dissolved in 500 ml of ethyl acetate, and the residue was dissolved in 500 ml of 1N hydrochloric acid.
It was washed by shaking it together. Next, 500 water
After washing by shaking sequentially with 500 ml of 5% heavy sour water and 500 ml of water, the organic layer was dried with magnesium sulfate, the solvent was distilled off, the residue was dissolved in methyl alcohol, and recrystallized by adding ether. −
Amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline benzyl ester 52g
(yield 55%). Melting point 166℃167.5℃ [α] 23D -34.5゜ (C=1.0, DMF) Elemental analysis: Actual value C58.58%, H6.94%, N11.26% C 31 H 43 O 7 N 5 S Calculated value as
C59.12%, H6.88%, N11.12% Reference example 6 N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline 40 g (64 mmol) of benzyl ester in 1 part of ethyl alcohol Comb, add 5% palladium on carbon catalyst,
After the reduction reaction was carried out for 9 hours by passing hydrogen gas under stirring at room temperature and normal pressure, the catalyst was filtered off and the solvent was distilled off. The residue was solidified by adding ether and n-hexane and collected by filtration to give N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-
34 g (yield 99%) of L-proline was obtained. This material was used in the next experiment without being purified. Reference example 7 N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-proline 5.4 g (10
mmol) and trifluoroacetic acid-P-nitrophenyl ester (4.7 g (20 mmol)) were dissolved in 50 ml of dry pyridine, stirred at 50°C for 3 hours, then added with 1 ml of water and concentrated to dryness to obtain N-t-amyloxy- Carbonyl-N G -tosyl-L-arginyl-
An oil containing L-proline-P-nitrophenyl ester was obtained. Meanwhile, 4.5 g of N-carbobenzoxy-L-phenylalanyl-L-histidine methyl ester
(10 mmol) was added with 20 ml of 25% hydrogen bromide acetic acid solution, stirred at room temperature for 1 hour, and then 500 ml of ether was added.
The resulting precipitate was obtained by decantation. Dissolve this in 50 ml of DMF, adjust the pH to 7 with triethylamine, and add the above N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-
An oil containing proline-P-nitrophenyl ester was added and stirred overnight at room temperature, and then the solvent was distilled off. Dissolve the residue in 100 ml of ethyl acetate and add 0.5
It was washed by shaking with 100 ml of normal hydrochloric acid. followed by water
After shaking and washing with 100 ml, the organic layer was dried with magnesium sulfate. The solvent was distilled off and the residue was solidified by adding 100 ml of ether to obtain Nt-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine methyl ester. Yield: 6.8g (yield: 81%). This material contained a by-product thought to be P-nitrophenol in silica gel thin layer chromatography using a solvent system of chloroform:methanol:acetic acid = 85:10:5, but it was not purified further and was used in the reaction. Reference example 8 N-t-amyloxycarbonyl-N-tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine methyl ester
2.5 g (3 mmol) was dissolved in 50 ml of methyl alcohol, 5.6 ml (approximately 90 mmol) of hydrazine monohydrate was added, and after stirring at room temperature for one day, the solvent was distilled off. Add 10 ml of water to the residue to remove soluble materials, then add a small amount of methanol and 100 ml of ether to solidify N-t-amyloxycarbonyl-N.
G -tosyl-L-arginyl-L-prolyl-L
-Phenylalanyl-L-histidine hydrazide was obtained. Yield: 1.35g (yield 54%). This substance is used for silica gel thin layer chromatography solvent system chloroform:methanol:acetic acid = 85:
Small amounts of two by-products were observed at 15:5, but these were used in the next reaction without further purification. Reference example 9 N-t-amyloxycarbonyl-NG-tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine hydrazide 269 mg
(0.3 mmol) was dissolved in 4 ml of DMF, a 5.4 N hydrogen chloride dioxane solution was added, and 0.1 ml of isoamyl nitrite was added while stirring at -30°C. The mixture was stirred at -10°C for 30 minutes to obtain a Nt-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L-histidine azide solution []. On the other hand, 7-(Nt-butyloxycarbonyl-L-leucyl-L-leucyl-L-valyl-0
-2,6-dichlorobenzyl-L-tyrosyl)-
Add 5 ml of dichloromethane and 1 ml of acetic acid to 184.4 mg (0.2 mmol) of amino-4-methylcoumarin to obtain 191 mg (1 mmol) of toluenesulfonic acid monohydrate.
was added and dichloromethane was distilled off under reduced pressure at 20°C, followed by stirring at 20°C for 3 hours. Next, 50 ml of ether was added, and the resulting precipitate was collected by filtration and washed with ether to obtain 7-(L-leucyl-L-leucyl-
L-valyl-0-2,6 dichlorobenzyl-L-
Tyrosyl)-amino-4-methylcoumarin toluenesulfonate was obtained. Dissolve this in 5 ml of DMF and adjust the pH to 7 with triethylamine. Cool the above [] to -50°C, add 0.76 ml of triethylamine, and add []. After stirring for one day at 0°C to 2°C, the solvent was distilled off, 10ml of water was added to the residue, and the resulting precipitate was collected by filtration. Combine this with 1 ml of methyl alcohol and 10 ml of ethyl acetate.
After stirring and filtering off the insoluble matter, 20 ml of ether was added for reprecipitation and purification to give 7-(N-t-amyloxycarbonyl-N G -tosyl-L-arginyl-L-prolyl-L-phenylalanyl-L). -Histidyl-L-leucyl-L-valyl-0-2.
250 mg (yield 77%) of 6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin was obtained. Although 3 to 4 by-products and unreacted substances were observed in this substance using silica gel thin layer chromatography using a solvent system of chloroform:methanol:acetic acid=85:15:5, no further purification was performed. Example 7-(N〓-t-amyloxycarbonyl- NG
-tosyl-L-arginyl-L-prolyl-L-
Add 1 ml of anisole to 244 mg (0.15 mmol) of phenylalanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-0-2,6-dichlorobenzyl-L-tyrosyl)-amino-4-methylcoumarin and anhydrous fluorination. After reacting with 3 ml of hydrogen at 0°C for 40 minutes to remove the protective group, hydrogen fluoride was distilled off, and 20 ml of 1 molar acetic acid and 50 ml of ether were added to the residue for extraction. The water layer was prepared using “Dowex”1 manufactured by Dow Chemical Company.
After passing through 10 ml of ion exchange resin (acetic acid type) to remove attached hydrogen fluoride, the mixture was freeze-dried to obtain a powder. This was purified by column chromatography using gel filtration resin LH-20 (5 x 160 cm) using 1 mol acetic acid as a solvent to obtain the desired product 7-(L-arginyl-L-
Prolyl-L-phenylalanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-
L-tyrosyl)-amino-4-methylcoumarin
60 mg (yield 30%) of diacetate monohydrate was obtained. The ratio of amino acids contained in this compound was determined using an amino acid analyzer.

【衚】 元玠分析倀 実枬倀 C59.17、H7.04、N14.95 C68H84D11N14・2CH3COOH・H2Oずしおの蚈算
倀 C59.17、H7.07、N14.64 〔α〕 −42.4℃0.77 20CH3COOH セルロヌス薄局クロマトグラフむヌ 溶媒系 −ブタノヌル酢酞氎
Rf0.66 −ブタノヌル酢酞氎ピリゞン
151210 Rf0.82 に、坂口詊薬、パりリ詊薬、ニンヒドリン詊薬萜
及び螢光にお単䞀なスポツトを䞎えた。 本発明のペプチド誘導䜓がレニン掻性枬定甚の
螢光基質ずなるこずを瀺す実隓を行぀た。 −−アルギニル−−プロリル−−フ
゚ニル−アラニル−−ヒスチゞル−−ロむシ
ル−−ロむシル−−バリル−−チロシル
−アミノ−−メチルクマリン 酢酞塩・氎
和物のDMF溶液Όmolesml25入ず0.05Mピ
ロリド酞緩衝液PH5.6250入䞭に玔粋レニン
0.6〜2.6ÎŒPHを37℃で60分間反応せしめた埌、
分間100℃に加熱しお酵玠を倱掻させた。これに
10入のアミノペプチダヌれaminopepti−
dase5Uml氎を加えお37℃で60分間反
応せしめ埗られた反応液に぀いお、けい光スペク
トルのEm440nEX380nで励起の波長を
甚いおけい光匷床を枬定した。各濃床の玔粋レニ
ンに぀いおの結果を次に瀺す。
[Table] Elemental analysis values Actual values C59.17%, H7.04%, N14.95% C 68 H 84 D 11 N 14・2CH 3 COOH・H 2 O Calculated values C59.17%, H7.07 %, N14.64% [α] 22 D = -42.4°C (C = 0.77 20% CH 3 COOH) Cellulose thin layer chromatography solvent system n-butanol:acetic acid:water = 4:1:5
Rf=0.66 n-butanol:acetic acid:water:pyridine=
A single spot was given at 15:3:12:10 Rf=0.82 using Sakaguchi reagent, Pauli reagent, ninhydrin reagent drop and fluorescence. Experiments were conducted to demonstrate that the peptide derivatives of the present invention serve as fluorescent substrates for measuring renin activity. 7-(L-arginyl-L-prolyl-L-phenyl-alanyl-L-histidyl-L-leucyl-L-leucyl-L-valyl-L-tyrosyl)
-Amino-4-methylcoumarin Diacetate monohydrate in 25 DMF solutions (ÎŒmoles/ml) and 250 volumes of 0.05M pyrrolidate buffer (PH5.6) were mixed with pure renin.
After reacting 0.6 to 2.6ÎŒPH at 37℃ for 60 minutes,
The enzyme was inactivated by heating to 100°C for minutes. to this
10 pieces of aminopeptidase (aminopepti-
dase) M (5 U/ml water) was added and reacted at 37°C for 60 minutes, and the fluorescence intensity of the resulting reaction solution was measured using a wavelength of Em 440 nm (excited at EX 380 nm) of the fluorescence spectrum. The results for each concentration of pure renin are shown below.

【衚】 以䞊の結果から、本基質はレニン濃床に比䟋し
おAMCを生成せしめるこずがわかる。䞀方、本
基質は反応時間に比䟋しおAMCを生成せしめる
こずも確かめた。 埓぀お詊料溶液に本基質を䞊蚘の方法に準じお
䜜甚せしめお生成するAMC量を枬定し暙準曲線
ず比范すれば、詊料溶液䞭のレニン掻性量を正確
に枬定でき、前述の病気蚺断に圹立぀こずがわか
る。
[Table] From the above results, it can be seen that this substrate produces AMC in proportion to the renin concentration. On the other hand, it was also confirmed that this substrate produced AMC in proportion to the reaction time. Therefore, by applying this substrate to a sample solution according to the method described above, measuring the amount of AMC produced and comparing it with the standard curve, the amount of renin activity in the sample solution can be accurately measured, which is useful in the diagnosis of the aforementioned diseases. I understand that.

Claims (1)

【特蚱請求の範囲】  構造匏 で瀺されるペプチド誘導䜓。[Claims] 1 Structural formula: A peptide derivative represented by
JP8419578A 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity Granted JPS5511535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8419578A JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8419578A JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Publications (2)

Publication Number Publication Date
JPS5511535A JPS5511535A (en) 1980-01-26
JPS626560B2 true JPS626560B2 (en) 1987-02-12

Family

ID=13823680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8419578A Granted JPS5511535A (en) 1978-07-11 1978-07-11 Peptide derivative and determination of renin activity

Country Status (1)

Country Link
JP (1) JPS5511535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945260A (en) * 1982-09-06 1984-03-14 泉陜機工株匏䌚瀟 Vehicle conveyor
US4522128A (en) * 1983-01-10 1985-06-11 Regents Of The University Of Minnesota Switch mechanism

Also Published As

Publication number Publication date
JPS5511535A (en) 1980-01-26

Similar Documents

Publication Publication Date Title
JPS6126558B2 (en)
JPS6134440B2 (en)
US4147692A (en) Novel dipeptide derivatives, and method of measuring enzymatic activity
JP4138331B2 (en) Fluorescent sensor for phosphate ion and phosphorylated peptide
JPH0873422A (en) New amino acid ester and method for detecting leukocyte, esterase or protease
JPS626560B2 (en)
CN109776379A (en) It is a kind of to can be used for responding the near infrared fluorescent probe and preparation method thereof that in living cells and pH changes in chronic wounds development process
JP4279065B2 (en) Zinc fluorescent probe
JPS6121640B2 (en)
US4257939A (en) Peptide derivative
JP2023550371A (en) Synthesis of prostate specific membrane antigen (PSMA) ligand
US4191809A (en) Method of measuring enzymatic activity using novel peptide derivatives
JPS6332348B2 (en)
CN114853743B (en) Cytosine-based cyanine probe and preparation method and application thereof
JPS6027675B2 (en) 7-Arginylamino-4-methylcoumarin
JPH1129500A (en) Fluorescent photodissociating protective group
JPS6130559B2 (en)
JPS5842862B2 (en) peptide derivative
JPH0321034B2 (en)
JPS6328075B2 (en)
JP2023550412A (en) Synthesis of prostate specific membrane antigen (PSMA) ligand
JPS6342637B2 (en)
JPH0666725A (en) Indicator dye, its precursor, synthesizing method therefor and detecting method for methane phetamine using the dye
JP2660864B2 (en) Aminoacetophenone derivatives and methods for measuring enzyme activity using the same
CN115536652A (en) Frequency up-conversion xanthene fluorescent probe, preparation method thereof and application thereof in mercaptan detection