JPS6265488A - Waveguide type laser device - Google Patents

Waveguide type laser device

Info

Publication number
JPS6265488A
JPS6265488A JP20590985A JP20590985A JPS6265488A JP S6265488 A JPS6265488 A JP S6265488A JP 20590985 A JP20590985 A JP 20590985A JP 20590985 A JP20590985 A JP 20590985A JP S6265488 A JPS6265488 A JP S6265488A
Authority
JP
Japan
Prior art keywords
waveguide
thin film
metal
hollow
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20590985A
Other languages
Japanese (ja)
Other versions
JPH0573071B2 (en
Inventor
Akishi Hongo
晃史 本郷
Tsuneo Shioda
塩田 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP20590985A priority Critical patent/JPS6265488A/en
Publication of JPS6265488A publication Critical patent/JPS6265488A/en
Publication of JPH0573071B2 publication Critical patent/JPH0573071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce a waveguide loss and facilitate high efficiency oscillation even if the space between facing waveguide walls is narrow by a method wherein, in a hollow waveguide defined by metal electrodes and dielectrics, metal thin film layers and dielectric thin film layers with small absorption are successively laminated on the sides of the hollow region of the facing dielectrics. CONSTITUTION:Material such as Cu which has sufficiently large complex refractive index or complex refractive index whose imaginary part is larger than the real part and high thermal conductivity is employed as the material for metal thin film layer 4 like the material for a metal electrode 1. As material for a thin film 5 with small absorption which is laminated on the metal thin film 4, for instance chemically stable ZnSe or the like is selected and the film 4 is formed by sputtering or vacuum evaporation. A hollow waveguide 3 as a laser discharge passage has a square cross section and dimensions of about 2X2X200mm and facilitate single-mode oscillation and, as its output intensity distribution is close to a circular distribution, the waveguide 3 can be coupled easily with an external waveguide. He, CO2, N2 or mixed gas of He, CO2, N2 and Xe is enclosed in the hollow waveguide 3. A flat total reflective mirror and a partial transmitting mirror are provided at both ends of the hollow waveguide 3 and the laser beam is outputted through the partial transmitting mirror.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶接、切断などを行うレーザ加工分野や、コ
ヒーレント光応用システム、大気汚染物質の検出、衛星
間光通信などの分野に有用なレーザ光源、特に小型高効
率の導波路型気体レーザ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is useful in the field of laser processing for welding, cutting, etc., coherent light application systems, detection of atmospheric pollutants, and inter-satellite optical communication. The present invention relates to a laser light source, particularly a small and highly efficient waveguide type gas laser device.

[従来の技術] 溶接、切断など°のレーザ加工を主目的としたkW級の
大出力気体レーザ装置が開発され、レーザ光を熱エネル
ギーとして生産に利用する試みがなされている。
[Prior Art] A kW-class high-output gas laser device, which is mainly intended for laser processing such as welding and cutting, has been developed, and attempts have been made to utilize laser light as thermal energy for production.

一方、これらの大出力気体レーザ装置とは別に小型で高
効率の導波路型レーザ装置が、レーザ加工分野における
利用ばかりでなく、コヒーレント光通信などの光源とし
ても広く検討されている。
On the other hand, apart from these high-output gas laser devices, small and highly efficient waveguide laser devices are being widely considered not only for use in the field of laser processing but also as light sources for coherent optical communications and the like.

一般に、導波路型の気体レーザ装置は従来の共振モード
が共振用反射鏡で決定されるレーザ装置と比較して次の
ような特長がある。
In general, waveguide type gas laser devices have the following features compared to conventional laser devices in which the resonance mode is determined by a resonance reflector.

■ レーザ管径を細くできるので小型高出力である。■ Small size and high output because the laser tube diameter can be made thinner.

■ 封入ガス圧が高いので発振波長同調範囲が広くなる
■ The oscillation wavelength tuning range is widened because the filled gas pressure is high.

■ レーザ管全体を熱伝導率の高い材料で構成できるの
で空冷動作が可能である。
■ Air-cooled operation is possible because the entire laser tube can be constructed from a material with high thermal conductivity.

■ 保守が容易で低価格である。■ Easy to maintain and low cost.

第2図に従来報告されている横方向RF放電方式の導波
路型レーザ装置を示す(Appl。
FIG. 2 shows a waveguide laser device using a lateral RF discharge method that has been previously reported (Appl.

Ph VS、 Le t t −43<8) P726
  (1983) )。
Ph VS, Let t -43<8) P726
(1983)).

第2図において、11は金属電極、12はAl2O3な
どからなる誘電体、13は中空導波路、14は整合用コ
イル、15は整合用コンデンサ、16はRF電源である
In FIG. 2, 11 is a metal electrode, 12 is a dielectric made of Al2O3, etc., 13 is a hollow waveguide, 14 is a matching coil, 15 is a matching capacitor, and 16 is an RF power source.

このような横方向RF放電方式の導波路型レーザ装雪は
、低電圧で均一な安定放電が得られ、また、電極となる
金属が導波路の一部を構成するので、冷却効果において
も有利である。
Waveguide-type laser snow deposition using such a lateral RF discharge method can obtain uniform and stable discharge at low voltage, and is also advantageous in terms of cooling effect because the metal that serves as the electrode forms part of the waveguide. It is.

[発明が解決しようとする問題点] ところで、一般に金属平行平板型中空導波路では、電界
が金属平板に平行なTEモードについては低損失である
が、磁界が金属平板に平行なTMモードについては極め
て高損失となる。
[Problems to be Solved by the Invention] Generally, metal parallel plate type hollow waveguides have low loss in the TE mode where the electric field is parallel to the metal plate, but the loss is low in the TM mode where the magnetic field is parallel to the metal plate. This results in extremely high losses.

そのため、第2図に示すような構造では、必然的に発掘
モードの電界の方向は金属電極に対し平行になっている
。このような電界方向を持つモードの伝送損失は、誘電
体平行平板型導波路のTMモードの伝送損失で主に決定
される。
Therefore, in the structure shown in FIG. 2, the direction of the electric field in the excavation mode is necessarily parallel to the metal electrode. The transmission loss of a mode having such an electric field direction is mainly determined by the transmission loss of the TM mode of the dielectric parallel plate waveguide.

第1表は、第3図および第4図に示すような平行平板型
導波路を形成する金属電極17を各種材料で構成した場
合におけるTEoモード(第3図)、TMoモード(第
4図)での伝送損失を示したものである。
Table 1 shows the TEo mode (Figure 3) and TMo mode (Figure 4) when the metal electrode 17 forming the parallel plate waveguide shown in Figures 3 and 4 is made of various materials. This shows the transmission loss at

第1表 (単位はdB/mである) 対向する電極間隔を離して偏平の導波路を構成すること
によって金属電極は導波損失に寄与しないようにし、誘
電体壁に対しより低損失なTEモードで発振させる試み
もなされているが、低電圧安定電源という点では不利で
あり、また、長辺方向に多モード発掘をしたり、出射ビ
ームが楕円になるという問題が生じる。
Table 1 (Units are dB/m) By configuring a flat waveguide with a distance between opposing electrodes, the metal electrodes do not contribute to waveguide loss, and the TE with lower loss than the dielectric wall Attempts have been made to oscillate in modes, but this is disadvantageous in terms of low-voltage stable power supply, and there are also problems in that multiple modes are excavated in the long side direction and the emitted beam becomes elliptical.

本発明は、以上述べた従来技術の問題点を解決すべく創
案されたもので、効率の高い導波路型レーザ装置の提供
を目的とするものである。
The present invention was devised to solve the problems of the prior art described above, and its purpose is to provide a highly efficient waveguide laser device.

[問題点を解決するための手段] 本発明では、金属電極と誘電体とで囲まれた中空導波路
において、対向する誘電体の中空領域側に金属薄膜層お
よび吸収の小さい誘電体薄膜層を順次積層し、対向する
導波路壁の間隔が狭くとも導波損失を小ざくでき、高効
率発振を実現できるようにした。
[Means for Solving the Problems] In the present invention, in a hollow waveguide surrounded by a metal electrode and a dielectric, a metal thin film layer and a dielectric thin film layer with low absorption are provided on the hollow region side of the opposing dielectric. By stacking them one after another, even if the distance between opposing waveguide walls is narrow, waveguide loss can be minimized and highly efficient oscillation can be achieved.

金属薄膜層を形成する材料は、複素屈折率の絶対値が十
分大きい材料か又は複素屈折率の虚数部が実数部よりも
大きい材料であり、例えば、Cu、AQ、Au、A I
などがあげられる。波長10.6μmにおけるこれらの
各材料の複素屈折率は、それぞれ、Cu:14.1−j
64.5、 AQ;13.5−j75.2、Au:17.2−j56
.O,At :20.5−j58.6である。
The material forming the metal thin film layer is a material with a sufficiently large absolute value of the complex refractive index, or a material in which the imaginary part of the complex refractive index is larger than the real part, such as Cu, AQ, Au, AI, etc.
etc. The complex refractive index of each of these materials at a wavelength of 10.6 μm is Cu: 14.1-j
64.5, AQ; 13.5-j75.2, Au: 17.2-j56
.. O, At: 20.5-j58.6.

一方、金属薄膜層の表面に形成する誘電体薄膜は、使用
波長帯において複素屈折率の虚数部が実数部に比較して
十分無視できるような材料からなり、例えば、波長10
.6μmにおいてはKCI。
On the other hand, the dielectric thin film formed on the surface of the metal thin film layer is made of a material whose imaginary part of the complex refractive index can be ignored compared to the real part in the used wavelength band.
.. KCI at 6 μm.

NaCl 、KR3−5、CdTe、3i、 Ge、Z
n5e、zns、PbFzなどのほか、カルコゲナイド
ガラスといったものがあげられる。
NaCl, KR3-5, CdTe, 3i, Ge, Z
Examples include n5e, zns, PbFz, and chalcogenide glass.

この薄膜の膜厚dは、いわゆる4分の1波長条件、d4
qλ/4(a2−1)1/2・・・(1)を満足するよ
うに設定する必要がある。ここで、Q−1,3,5,・
・・、λは使用波長、aは金属表面に形成する薄膜の屈
折率である。
The thickness d of this thin film is d4 under the so-called quarter wavelength condition.
It is necessary to set it so that qλ/4(a2-1)1/2...(1) is satisfied. Here, Q-1, 3, 5, ・
..., λ is the wavelength used, and a is the refractive index of the thin film formed on the metal surface.

また、上記材料では、屈折率がf2に近い材料はど本発
明の効果が顕著である。
Further, among the above-mentioned materials, the effect of the present invention is remarkable in materials whose refractive index is close to f2.

第2表は、第5図および第6図に示すような金属電極1
7の表面に吸収損失の小さい誘電体薄膜18を(1)式
を満足する厚さでコーティングした平行平板型導波路に
おいて、金属電極1゛7および誘電体薄膜18を各種材
料で構成した場合におけるTEoモード(第5図)、T
Moモード(第6図)での伝送損失を示したものである
Table 2 shows the metal electrode 1 as shown in FIGS. 5 and 6.
In a parallel plate waveguide in which the surface of the metal electrode 17 and the dielectric thin film 18 are coated with a thin dielectric film 18 having a small absorption loss at a thickness that satisfies equation (1), when the metal electrode 17 and the dielectric thin film 18 are made of various materials, TEo mode (Figure 5), T
It shows the transmission loss in Mo mode (Fig. 6).

第2表 (単位はdB/mである) 第1表および第2表かられかるように、本発明の導波路
型レーザでは金属のみの導波路壁に対してはTEモード
、金属に薄膜をコーティングした導波路に対しては7M
モードとなるように発振モードが定まり、伝搬モードの
電界が誘電体平行平板に対して大きな垂直成分を持つ従
来の導波路型レーザに比して高効率発振が可能となる。
Table 2 (Units are dB/m) As can be seen from Tables 1 and 2, in the waveguide laser of the present invention, the TE mode is used for the waveguide wall made of only metal, and the TE mode is used for the waveguide wall made of only metal. 7M for coated waveguides
The oscillation mode is determined so that the oscillation mode is the same as that of the dielectric parallel plate, and higher efficiency oscillation is possible than in conventional waveguide lasers in which the electric field in the propagation mode has a large component perpendicular to the dielectric parallel plate.

[実施例] 第1図は、本発明の一実施例の説明図であり、導波路型
レーザ装置の放電路断面と励起回路の概略を示したもの
である。
[Embodiment] FIG. 1 is an explanatory diagram of an embodiment of the present invention, showing a cross section of a discharge path of a waveguide laser device and an outline of an excitation circuit.

1は金属電極で、同時に導波路壁を構成している。1 is a metal electrode, which also constitutes a waveguide wall.

2は、電極間を絶縁するための誘電体で、例えば熱伝導
率の比較的大きなAl2O3又は平滑な面が得られやす
い石英ガラスが用いられる。3は中空導波路である。
2 is a dielectric material for insulating between the electrodes, and for example, Al2O3 having a relatively high thermal conductivity or quartz glass which easily provides a smooth surface is used. 3 is a hollow waveguide.

誘電体2上に金属薄膜層4および吸収の小さい誘電体か
らなる薄膜5がコーティングされている。
The dielectric 2 is coated with a metal thin film layer 4 and a thin film 5 made of a dielectric with low absorption.

金属薄膜層4の膜厚は、スキンデプスより十分厚ければ
良く、精密な膜厚制御を必要としない。
The thickness of the metal thin film layer 4 only needs to be sufficiently thicker than the skin depth, and precise thickness control is not required.

光は、金属壁で囲まれた領域に閉じこめられ、絶縁体2
は導波特性に直接関与しなくなる。金属薄膜層4の材料
は、金属電極1同様複素屈折率の大きさが十分大きいか
、複素屈折率の虚数部が実数部よりも大きく熱伝導率が
高いCuなどが用いられる。
The light is confined in the area surrounded by the metal wall and the insulator 2
is no longer directly involved in the waveguide characteristics. The material for the metal thin film layer 4 is Cu, which has a sufficiently large complex refractive index like the metal electrode 1, or whose imaginary part of the complex refractive index is larger than the real part and has high thermal conductivity.

一方、この金ra薄膜層4の上にざらに積層される吸収
の小さな薄膜5の材料としては、例えば化学的にも安定
なZn5eなどが選ばれ、式(1)を満足する様な膜厚
でスパッタリングや真空蒸着によって容易に形成可能で
ある。
On the other hand, the material of the thin film 5 with low absorption, which is roughly laminated on the gold RA thin film layer 4, is selected from, for example, chemically stable Zn5e, and the film thickness is set such that the formula (1) is satisfied. It can be easily formed by sputtering or vacuum deposition.

レーザ放電路としての中空導波路3は、金属電極1と薄
膜5がコーティングされた金属薄膜層4によって囲まれ
て断面が正方形状をしており、寸法(横X縦X長さ)は
2X2X200mm程度であり、単一モード発掘が可能
で、出力強度分布も円形分布に近いため外部導波路との
結合が容易となる。中空導波路3内には、He、Cog
 、Nzあるいは1−1e、COz 、Nz 、Xeの
混合ガスが封入される。
The hollow waveguide 3 as a laser discharge path has a square cross section surrounded by a metal thin film layer 4 coated with a metal electrode 1 and a thin film 5, and has dimensions (width x length x length) of approximately 2 x 2 x 200 mm. It is possible to detect a single mode, and the output intensity distribution is close to a circular distribution, making it easy to couple with an external waveguide. Inside the hollow waveguide 3, He, Cog
, Nz or a mixed gas of 1-1e, COz, Nz, and Xe is sealed.

中空導波路3の両端は平板の全反射鏡と部分透過鏡が取
り付けられ、レーザ光は部分透過鏡を通して出力される
A flat totally reflecting mirror and a partially transmitting mirror are attached to both ends of the hollow waveguide 3, and the laser beam is outputted through the partially transmitting mirror.

金属電極1は整合用コイル6および整合用コンデンサ7
からなる整合回路を介してRF電源8と接続される。
The metal electrode 1 is connected to a matching coil 6 and a matching capacitor 7.
The RF power source 8 is connected to the RF power source 8 through a matching circuit consisting of the following.

本発明においては、金属電極1を構成する材料は、熱伝
導率および経済性を考慮してCLJが一般に用いられる
が、より複素屈折率の絶対値が大きなAg薄膜や、外部
環境に安定なAu薄膜をCuの上にコーティングしても
良い。
In the present invention, as the material constituting the metal electrode 1, CLJ is generally used in consideration of thermal conductivity and economic efficiency, but Ag thin film with a larger absolute value of complex refractive index, or Au which is stable in the external environment is used. A thin film may be coated onto the Cu.

また、金属薄膜層4上に積層される薄膜5は、第1図の
場合のように一層のみとは限らず、QeとZn5eのよ
うな屈折率の異なる2種類以上の薄膜を交互に積層させ
ることによっても本発明の効果をより高めることができ
る。
Further, the thin film 5 laminated on the metal thin film layer 4 is not limited to a single layer as in the case of FIG. 1, but two or more types of thin films having different refractive indexes such as Qe and Zn5e are alternately laminated. The effects of the present invention can also be further enhanced by this.

第1図の実施例においては、中空導波路を構成する導波
路壁は平板であるが、導波路壁を凹面にすればビームの
集光性が向上し、出力強度分布をさらに円形に近付ける
ことができる。
In the embodiment shown in Fig. 1, the waveguide walls constituting the hollow waveguide are flat plates, but if the waveguide walls are made concave, the beam focusing ability will be improved and the output intensity distribution will be closer to a circular shape. Can be done.

[発明の効果] 以上説明してきた通り、本発明によれば次のような顕著
な作用効果が発揮される。
[Effects of the Invention] As explained above, according to the present invention, the following remarkable effects are exhibited.

(1)導波路間隔が小さくとも導波損失を小さくでき、
高効率発振が可能になる。
(1) Waveguide loss can be reduced even if the waveguide spacing is small,
Highly efficient oscillation becomes possible.

(2)金属電極の間隔を小さくできるので、小型でかつ
低電圧なRFtli電が可能である。
(2) Since the spacing between the metal electrodes can be reduced, small-sized and low-voltage RFtli electricity is possible.

(3)導波路横断面が略正方形にできるので、略円形の
強度分布を持つ単一モードの直線偏波が得られる。
(3) Since the cross section of the waveguide can be made substantially square, a single mode linearly polarized wave with a substantially circular intensity distribution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は従来例の
説明図、第3図〜第6図は平行平板型導波路の構成例の
説明図である。 1:金属電極、2:誘電体、3:中空導波路、4:金属
薄膜層、5:誘電体薄膜。 代理人  弁理士  佐 藤 不二雄 才 3 口 才す1η TEo て、−ド T’+l■ 才 6 ■ TM、モーF°゛
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a conventional example, and FIGS. 3 to 6 are explanatory diagrams of configuration examples of a parallel plate waveguide. 1: metal electrode, 2: dielectric, 3: hollow waveguide, 4: metal thin film layer, 5: dielectric thin film. Agent Patent Attorney Sato Fujio Sai 3 Mouthwitness 1η TEo Te, -do T'+l ■ Sai 6 ■ TM, MoF°゛

Claims (1)

【特許請求の範囲】[Claims] (1)横方向に高周波放電を励起するための金属電極と
誘電体とで囲まれた中空導波路を有する導波路型気体レ
ーザ装置において、前記誘電体の中空領域のほぼ全表面
に使用波長での複素屈折率の絶対値が十分大きいか又は
複素屈折率の虚数部が実数部よりも大きい金属からなる
薄膜層を設け、更に前記金属薄膜層の全表面を発振波長
において吸収の小さい誘電体からなる薄膜でコーティン
グして構成したことを特徴とする導波路型レーザ装置。
(1) In a waveguide type gas laser device having a hollow waveguide surrounded by a metal electrode and a dielectric material for exciting high-frequency discharge in the lateral direction, almost the entire surface of the hollow region of the dielectric material is covered with the wavelength used. A thin film layer made of a metal whose absolute value of the complex refractive index is sufficiently large or whose imaginary part of the complex refractive index is larger than the real part is provided, and the entire surface of the metal thin film layer is made of a dielectric material with low absorption at the oscillation wavelength. A waveguide type laser device characterized by being constructed by coating with a thin film.
JP20590985A 1985-09-18 1985-09-18 Waveguide type laser device Granted JPS6265488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20590985A JPS6265488A (en) 1985-09-18 1985-09-18 Waveguide type laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20590985A JPS6265488A (en) 1985-09-18 1985-09-18 Waveguide type laser device

Publications (2)

Publication Number Publication Date
JPS6265488A true JPS6265488A (en) 1987-03-24
JPH0573071B2 JPH0573071B2 (en) 1993-10-13

Family

ID=16514758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20590985A Granted JPS6265488A (en) 1985-09-18 1985-09-18 Waveguide type laser device

Country Status (1)

Country Link
JP (1) JPS6265488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411304A (en) * 1992-10-15 1995-05-02 Totetsu Koun Co., Ltd. Grab bucket of electrohydraulic pressure type with lifting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411304A (en) * 1992-10-15 1995-05-02 Totetsu Koun Co., Ltd. Grab bucket of electrohydraulic pressure type with lifting magnet

Also Published As

Publication number Publication date
JPH0573071B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
EP0275023B1 (en) Carbon dioxide slab laser
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US3772611A (en) Waveguide gas laser devices
US4875218A (en) Thin-film coated waveguide laser
Danielewicz et al. Hybrid output mirror for optically pumped far infrared lasers
US3466565A (en) Laser mode selection
Christensen et al. High efficiency microwave discharge XeCl laser
JPH0329317B2 (en)
CN212725948U (en) All-solid-state V-cavity Brillouin laser
JPH0523410B2 (en)
EP0707747B1 (en) Laser device
JPS6265488A (en) Waveguide type laser device
US3283262A (en) Optical maser operating in the tmon mode
US3435371A (en) Laser mode selection apparatus
JPS61274377A (en) Waveguide type laser device
JPH03119773A (en) Waveguide-type gas laser
US4023119A (en) Laser output coupler
US3327232A (en) Reflectionless input resonant laser amplifier
JPH0254923B2 (en)
JPH0451501Y2 (en)
JPS62122186A (en) Waveguide laser
Miyagi et al. Output power characteristics of thin film-coated waveguide CO2 lasers
KR100397599B1 (en) Non-linear single crystalline laser device
US8897332B2 (en) Circular optical cavity electronically switched between at least two distinct cavity modes
JPS63199472A (en) Waveguide laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees