JPS61274377A - Waveguide type laser device - Google Patents

Waveguide type laser device

Info

Publication number
JPS61274377A
JPS61274377A JP11583785A JP11583785A JPS61274377A JP S61274377 A JPS61274377 A JP S61274377A JP 11583785 A JP11583785 A JP 11583785A JP 11583785 A JP11583785 A JP 11583785A JP S61274377 A JPS61274377 A JP S61274377A
Authority
JP
Japan
Prior art keywords
waveguide
metal
passage
electrodes
metal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11583785A
Other languages
Japanese (ja)
Inventor
Shigeo Nishida
茂穂 西田
Mitsunobu Miyagi
光信 宮城
Toshihiko Azuma
我妻 寿彦
Akishi Hongo
晃史 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11583785A priority Critical patent/JPS61274377A/en
Priority to US06/837,120 priority patent/US4875218A/en
Publication of JPS61274377A publication Critical patent/JPS61274377A/en
Priority to US07/392,800 priority patent/US4972421A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers

Abstract

PURPOSE:To reduce a waveguide loss even if a space between facing electrodes is narrow and facilitate an oscillation of high efficiency by forming thin film layers which show little absorption near an operating wavelength on the surfaces of the facing metal electrodes. CONSTITUTION:Al2O3, which is not toxic and whose thermal conductivity is not so low, is employed as a material for dielectrics 1 and Cu, whose heterorefractive index is not so large, is employed as a material for metal electrodes 2. Thin films 4 are composed of ZnSe and formed by a method such as sputtering, vacuum evaporation or CVD. A waveguide passage 3, which is a passage for a laser discharge, is surrounded by the dielectrics 1 and the metal electrodes 2 coated with the thin films 4 and has a square shape and its dimensions are about 2X2X200mm. The waveguide passage 3 can generate a single-mode oscillation and, as an output intensity distribution is close to a theta circular distribution, can be connected to an external waveguide passage easily. A mixture gas of He, CO2 and N2 or He, CO2, N2 and Xe is enclosed in the waveguide passage 3 with a gas pressure of about 100tor.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、溶接、切断などを行うレーザ加工分野や、コ
ヒーレント光応用システム、大気汚染物質の検出、衛星
間光通信などの分野に有用なレーザ光源、特に小型高効
率の導波路型気体レーザ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is useful in fields such as laser processing for welding and cutting, coherent light application systems, detection of atmospheric pollutants, and inter-satellite optical communications. The present invention relates to a laser light source, particularly a small and highly efficient waveguide type gas laser device.

[従来の技術] 溶接、切断などのレーザ加工を主目的としたkW級の大
出力気体レーザが開発され、レーザ光を熱エネルギーと
して生産に利用する試みが実用化されている。
[Prior Art] A kW class high output gas laser has been developed mainly for laser processing such as welding and cutting, and attempts have been put into practical use to utilize laser light as thermal energy for production.

一方、これらの大出力気体レーザとは別に小型で高効率
の導波路型レーザがレーザ加工分野における利用ばかり
でなく、コヒーレント光通信などの光源としても広く検
討されている。
On the other hand, apart from these high-output gas lasers, small and highly efficient waveguide lasers are being widely studied not only for use in the field of laser processing but also as light sources for coherent optical communications and the like.

一般に、気体レーザにおいては、レーザ管径を細径化す
るとレーザ利1qは増加する。このため、導波路型レー
ザは従来の共振モードが共振用反射鏡で決定されるレー
ザと比較して次のような特長がある。
Generally, in a gas laser, when the laser tube diameter is made smaller, the laser profit 1q increases. Therefore, waveguide lasers have the following features compared to conventional lasers in which the resonance mode is determined by a resonance reflector.

(1)レーザ管径を細くできるので小型高出力である。(1) The diameter of the laser tube can be made thinner, resulting in small size and high output.

(2)封入ガス圧が高いので発振波長同調範囲が広くな
る。
(2) Since the pressure of the filled gas is high, the oscillation wavelength tuning range becomes wide.

(3)レーザ管全体を熱伝導率の高い材料で構成できる
ので、空冷動作が可能である。
(3) Since the entire laser tube can be made of a material with high thermal conductivity, air cooling operation is possible.

(4)保守が容易で低価格である。(4) Easy maintenance and low cost.

第3図にこれまでに検討されているCOz導波路型レー
ザ装置の一例を示す(信学技報OQ E 77−12 
(1977) )。
Figure 3 shows an example of a COz waveguide laser device that has been studied so far (IEICE Technical Report OQ E 77-12
(1977)).

31は誘電体、32は全反射鏡、33は部分透過鏡、3
4は陽極、35は陰極、36は導波路である。
31 is a dielectric, 32 is a total reflection mirror, 33 is a partial transmission mirror, 3
4 is an anode, 35 is a cathode, and 36 is a waveguide.

比較的低損失で熱伝導率の高いAf’zCh板を誘電体
31として使用し、これを4枚組合わせて矩形の導波路
36が構成される。このような縦方向DC放電励起方式
は導波路を全て低損失な材料で容易に構成できるため、
導波損失は比較的小さいが高い放電電圧を必要とする。
An Af'zCh plate with relatively low loss and high thermal conductivity is used as the dielectric 31, and a rectangular waveguide 36 is constructed by combining four sheets. In this vertical DC discharge excitation method, the waveguide can be easily constructed entirely of low-loss materials, so
Although the waveguide loss is relatively small, it requires a high discharge voltage.

そこで、縦方向DC放電励起方式とは別に横方向RF放
電方式の検討もなされている。
Therefore, apart from the vertical DC discharge excitation method, a horizontal RF discharge method is also being studied.

横方向R[放電励起方式の導波路型レーザは、(1)低
電圧で均一なグロー放電が得られること、(2)正抵抗
放電であるため安定抵抗が不要となり、高効率動作が期
待できること、 (3)高圧力下での放電が比較的容易であること、など
多くの特長がある。
Lateral R [Discharge excitation type waveguide lasers are: (1) uniform glow discharge can be obtained at low voltage, (2) positive resistance discharge eliminates the need for a stabilizing resistor, and high efficiency operation can be expected. , (3) It has many features such as relatively easy discharge under high pressure.

信学技報OQ E 83−52 (19B3>で)ホベ
ているように、導波路を全てAfflzChなどの比較
的低損失で熱伝導率の高い誘電体で構成し、電極と放電
活性ガスとを非接触にしてもRF放電は可能であるが、
より低電圧で安定な放電を行うためには、八1)t) 
l 、 PhVS、 1.e!tt、 43(8)P7
2B(1983)で述べられているように、第2図に示
したような電極が導波路壁の一部を構成するようにした
ほうがよい。
As mentioned in IEICE Technical Report OQ E 83-52 (19B3>), the waveguide is entirely composed of a dielectric material with relatively low loss and high thermal conductivity, such as AfflzCh, and the electrodes and discharge active gas are Although RF discharge is possible even without contact,
In order to perform stable discharge at lower voltage, 81) t)
l, PhVS, 1. e! tt, 43(8)P7
2B (1983), it is preferable for the electrodes as shown in FIG. 2 to form part of the waveguide wall.

第2図において、21はAJlz03などからなる誘電
体、22は金属電極、23は導波路、24はRF電源、
25は整合用インダクタンス、26は整合用コンデンサ
である。
In FIG. 2, 21 is a dielectric material such as AJlz03, 22 is a metal electrode, 23 is a waveguide, 24 is an RF power source,
25 is a matching inductance, and 26 is a matching capacitor.

ΔJlzO3は比較的熱伝導が良好な誘電体であるが、
AJlやCLJなとの金属ではざらに熱伝導率が高く、
電極となる金属が導波路の一部を構成する方式では低電
圧安定放電というだけでなく、冷却効果という点でも有
利である。
ΔJlzO3 is a dielectric material with relatively good thermal conductivity, but
Metals such as AJl and CLJ have extremely high thermal conductivity,
The method in which the metal serving as the electrode constitutes part of the waveguide is advantageous not only in terms of low-voltage stable discharge but also in terms of cooling effect.

AJl203 、Af’、Cuの熱伝導率はそれぞれ0
、06cal/cIItsec℃、0.487Cal/
cm sec’c、0、923Cal/n sec’c
である。BeOは熱伝導率が0.5Cal/cm se
c’Cと高く、Af7zO3のかわりに導波路を構成す
るには最良の誘電体材料であるが、有毒物質であること
がらレーザ製作上問題であり、導波路型レーザ装置の材
料としては敬遠されている。
The thermal conductivity of AJl203, Af', and Cu is 0, respectively.
, 06 cal/cIItsec℃, 0.487 Cal/
cm sec'c, 0,923 Cal/n sec'c
It is. BeO has a thermal conductivity of 0.5 Cal/cm se
It has a high c'C and is the best dielectric material to construct a waveguide instead of Af7zO3, but it is a toxic substance and poses a problem in laser production, so it is avoided as a material for waveguide-type laser devices. ing.

[発明が解決しようとする問題点] ところで、金属電極が導波路の一部を構成する場合では
、金属による導波路損失が無視できなくなる。そのため
、第2図のような従来報告されている構造の導波路型レ
ーザ装置では期待してしたような高効率のレーザ発振を
実現できない。
[Problems to be Solved by the Invention] By the way, when a metal electrode forms part of a waveguide, waveguide loss due to the metal cannot be ignored. Therefore, the waveguide type laser device having the conventionally reported structure as shown in FIG. 2 cannot realize highly efficient laser oscillation as expected.

金属による導波損失を小さくすべく対向する電極間隔を
放して偏平の導波路を構成し、電極は導波特性に寄与し
ない構造とする試みもなされているが、低電圧安定放電
という点では不利であり、また長辺方向に多モード発振
をしたり、出射ビームが楕円になるという問題が生じる
In order to reduce the waveguide loss due to metal, attempts have been made to construct a flat waveguide by widening the distance between opposing electrodes, and to create a structure in which the electrodes do not contribute to the waveguide characteristics, but in terms of low voltage stable discharge, This is disadvantageous, and also causes problems such as multimode oscillation in the long side direction and an elliptical output beam.

本発明は以上述べた従来技術の問題点を解決すべく創案
されたもので、効率の高い導波路型レーザ装置の提供を
目的とするものである。
The present invention was devised to solve the problems of the prior art described above, and its purpose is to provide a highly efficient waveguide laser device.

[問題点を解決するための手段] 本発明では、対向する金属電極の表面に使用波長帯で吸
収の小ざい@膜層を形成し、対向する電極間隔が狭くと
も導波損失を小さくでき、高効率発振を実現できるよう
にした。
[Means for Solving the Problems] In the present invention, a film layer with low absorption in the used wavelength band is formed on the surface of the opposing metal electrodes, so that even if the spacing between the opposing electrodes is narrow, the waveguide loss can be reduced. This enabled high-efficiency oscillation to be achieved.

金属電極の表面に形成する薄膜は使用波長帯において複
素誘電率の虚数部が実数部に比較して十分無視できるよ
うな材料であり、例えば波長10.6μ7Hにおいては
KCJl、Na(J?、KR3−5、CdTe、3 i
 、(3e、 Zn5e、zns、PbFzなどのイ也
、カルコゲナイドガラスなどがあげられる。これらの材
料では屈折率がFΣに近い材料はど効果が顕著である。
The thin film formed on the surface of the metal electrode is a material in which the imaginary part of the complex dielectric constant can be ignored compared to the real part in the wavelength band used. For example, at a wavelength of 10.6μ7H, KCJl, Na(J?, KR3) -5, CdTe, 3i
, (3e, Zn5e, Zns, PbFz, etc.), chalcogenide glass, etc. Among these materials, the material whose refractive index is close to FΣ has a remarkable effect.

光波帯では電磁波の重要な伝送媒体となりうろこのよう
な物質は全て誘電体としてふるまうが、金属表面に形成
してもRF放電励起であるため安定に放電がなされる。
In the light wave band, substances such as scales act as important transmission media for electromagnetic waves and all behave as dielectric materials, but even if they are formed on a metal surface, a stable discharge is generated due to RF discharge excitation.

一方、金属電極として用いる材料は複素屈折率の大きさ
が大きい材料か又は複素屈折率の虚数部が実数部よりも
十分大きい材料であり、例えばCu、ACJ、Au、A
fなどがめげられる。
On the other hand, the material used for the metal electrode is a material with a large complex refractive index or a material in which the imaginary part of the complex refractive index is sufficiently larger than the real part, such as Cu, ACJ, Au, and A.
F etc. are failed.

波長10.6μmにおけるこれらの各材料の複素屈折率
は、Cu:14.1−j64.5、Aq:13.5−j
75.2、Au:17.2−j 56.O,Af : 
20.5−j 58.6である。
The complex refractive index of each of these materials at a wavelength of 10.6 μm is Cu: 14.1-j64.5, Aq: 13.5-j
75.2, Au:17.2-j 56. O, Af:
20.5-j 58.6.

これらの材料は熱伝導率も高く、大きな冷却効果をあげ
ることができる。
These materials also have high thermal conductivity and can provide a large cooling effect.

このように、金属電極が吸収の小さい薄膜でコーティン
グされることにより、単に電極の役目だけでなく、低損
失な導波路壁が構成され、さらに高い冷却効果をもたせ
ることが容易であり、より小型高効率で低電圧安定放電
を可能にできる。
In this way, by coating the metal electrode with a thin film with low absorption, it functions not only as an electrode, but also as a waveguide wall with low loss, making it easy to provide a higher cooling effect, and making it more compact. It enables high efficiency and low voltage stable discharge.

[作 用] 一般に金属平行平板型中空導波路では、電界が金属平板
に平行なTEモードについては低損失であるが、磁界が
金属平板に平行なTEモードについては極めて高損失と
なる。そのため、第2図に示すような構造では必然的に
発振モードの電界の方向は金属電極に対し平行になって
いる。従ってこのような電界方向をもつモードの伝送損
失は、誘電体平行平板型導波路のTMモードの伝送損失
で主に評価される。
[Function] Generally, in a metal parallel plate type hollow waveguide, the loss is low in the TE mode where the electric field is parallel to the metal plate, but the loss is extremely high in the TE mode where the magnetic field is parallel to the metal plate. Therefore, in the structure shown in FIG. 2, the direction of the electric field in the oscillation mode is necessarily parallel to the metal electrode. Therefore, the transmission loss of a mode having such an electric field direction is mainly evaluated by the transmission loss of the TM mode of the dielectric parallel plate waveguide.

しかるに、金属の表面に適当な膜厚をもつ吸収の小さい
薄膜が形成された金属平行平板型導波路では、TEモー
ドとTMモードとの伝送損失が逆転したり、あるいはと
もに誘電体平行平板型導波路のT[、TMモードよりも
低損失になることが示される。
However, in a metal parallel plate waveguide in which a thin film with a suitable thickness and low absorption is formed on the metal surface, the transmission loss of the TE mode and TM mode may be reversed, or both may be caused by dielectric parallel plate waveguides. It is shown that the loss of the wavepath is lower than that of T[, TM mode.

吸収の小さい薄膜を形成した金属電極を有する本発明の
導波路型レーザ装置では、発振モードの電界が誘電体板
に対し平行になるように発振させることが可能である。
In the waveguide laser device of the present invention having a metal electrode formed with a thin film with low absorption, it is possible to oscillate the laser so that the electric field in the oscillation mode is parallel to the dielectric plate.

従って、本発明における導波路型レーザの導波損失は誘
電体平行平板型導波路のTEモードの伝送損失で評価さ
れ、伝搬モードの電界が誘電体平行平板に対して大きな
垂直成分をもつ従来の導波路型レーザに比して高効率発
振が可能になる。
Therefore, the waveguide loss of the waveguide laser in the present invention is evaluated by the transmission loss of the TE mode of the dielectric parallel plate waveguide. Highly efficient oscillation is possible compared to waveguide lasers.

「実施例コ 第1図は本発明の一実施例の説明図であり、導波路型レ
ーザ装置の放電路断面と励起回路の概略を示したもので
あ゛る。
Embodiment FIG. 1 is an explanatory diagram of an embodiment of the present invention, and shows a cross section of a discharge path of a waveguide type laser device and an outline of an excitation circuit.

1は誘電体、2は金属電極、3は導波路、4は金属電極
2の導波路3壁にコーティングされた薄膜、5は水冷用
空洞、6はR「電源、7は整合用インダクタンス、8は
整合用コンデンサでおる。
1 is a dielectric, 2 is a metal electrode, 3 is a waveguide, 4 is a thin film coated on the wall of the waveguide 3 of the metal electrode 2, 5 is a water cooling cavity, 6 is an R power source, 7 is a matching inductance, 8 is covered by a matching capacitor.

誘電体1の材料としては毒性がなく、熱伝導率もそれほ
ど低くない八1203が用いられ、金属電極2の材料と
しては複素屈折率の大きさが大きいCuが用いられる。
As the material for the dielectric 1, HA1203, which is not toxic and whose thermal conductivity is not so low, is used, and as the material for the metal electrode 2, Cu, which has a large complex refractive index, is used.

1ffliI4は例えばZn5eが用いられ、スパッタ
リングや真空蒸着により容易に形成でき、おるいはCV
D法などによっても形成可能である。また、SiやGe
を用いる場合にはめっきによっても容易に形成できる。
For example, Zn5e is used for 1ffliI4, and it can be easily formed by sputtering or vacuum deposition, or by CV
It can also be formed by the D method. In addition, Si and Ge
When using , it can also be easily formed by plating.

レーザ放電路としての導波路3は、誘電体1と薄膜4が
コーティングされた金属電極2に囲まれて 。
A waveguide 3 as a laser discharge path is surrounded by a dielectric 1 and a metal electrode 2 coated with a thin film 4.

断面が正方形状をしており、寸法(横x、lx長さ)は
2X2X200s程度であり、単一モード発振が可能で
、出力強度分布も円形分布に近いため外部導波路との結
合が容易となる。
The cross section is square, the dimensions (width Become.

導波路3内にはガス圧約100torのHe、CO2、
Nz 、あるいはlle、CO2、Nz、Xeの混合ガ
スが封入される。
Inside the waveguide 3, there are He, CO2, and gases with a gas pressure of about 100 torr.
A mixed gas of Nz, lle, CO2, Nz, and Xe is sealed.

導波路3の両端は平板の全反射鏡と部分透過鏡がとりつ
けられ、レーザ光は部分透過鏡を通して出力される。
A flat totally reflecting mirror and a partially transmitting mirror are attached to both ends of the waveguide 3, and the laser beam is outputted through the partially transmitting mirror.

金属電極内には水冷用空洞5が設けられることにより冷
却効果が高められる。
The cooling effect is enhanced by providing a water cooling cavity 5 within the metal electrode.

金属電極2は整合用インダクタンス7および整合用コン
デンサ8かうなる整合回路を介してR「電源6と接続さ
れる。
The metal electrode 2 is connected to a power source 6 via a matching circuit consisting of a matching inductance 7 and a matching capacitor 8.

本発明における効果は、金属電極2を構成する金属が複
素屈折率の大きさが大きいほど又は複索屈折率の虚数部
が実数部よりも大きいほど顕著でおる。その意味ではC
UよりもAqを用いた方が有利である。しかし、AQを
用いて電極全体を構成することは経済的でない。従って
、Actを用いる場合にはCu電極2と薄膜4との間に
Act薄膜(1μm程麻0厚さ)を介在させることが経
済的である。
The effects of the present invention are more pronounced as the metal constituting the metal electrode 2 has a larger complex refractive index or the imaginary part of the complex refractive index is larger than the real part. In that sense, C
It is more advantageous to use Aq than U. However, it is not economical to construct the entire electrode using AQ. Therefore, when using Act, it is economical to interpose an Act thin film (about 1 μm thick) between the Cu electrode 2 and the thin film 4.

また、薄膜4を形成する材料は屈折率がFΣに近いもの
ほど効−果が大である。その意味では(3eよりZn5
e、Zn5eよりKCfが適している。
Furthermore, the closer the refractive index of the material for forming the thin film 4 is to FΣ, the greater the effect. In that sense (Zn5 than 3e
KCf is more suitable than Zn5e and Zn5e.

しかし、KCfflは潮解性があるなど外部雰囲気にさ
らすことは好ましくない。従って、K(4>薄膜上に外
部雰囲気に強く吸収の小さい薄膜を積層させてもよい。
However, KCffl has deliquescent properties, so it is not preferable to expose it to an external atmosphere. Therefore, a thin film that is strong against the external atmosphere and has low absorption may be laminated on the K(4> thin film).

更に、屈折率の異なる2種類以上の薄膜を交互に積層さ
せることによっても本発明の効果をより高めることがで
きる。
Furthermore, the effects of the present invention can be further enhanced by alternately laminating two or more types of thin films having different refractive indexes.

第1図の実施例においては導波路壁を形成する電極面は
平行平板型であるが、電極面を凹面にすればビームの集
光性が向上し、出力強度分布を円形に近づけることが可
能となる。
In the embodiment shown in Figure 1, the electrode surfaces that form the waveguide wall are of a parallel plate type, but if the electrode surfaces are made concave, the beam focusing ability can be improved and the output intensity distribution can be made closer to a circular shape. becomes.

[発明の効果] 以上説明してきた本発明によれば次ような顕著な作用効
果が発揮される。
[Effects of the Invention] According to the present invention described above, the following remarkable effects are exhibited.

(1)金属電極の間隔が小さくとも導波損失を小さくで
き、高効率発振が可能である。
(1) Even if the spacing between metal electrodes is small, waveguide loss can be reduced and highly efficient oscillation is possible.

(2)金属電極の間隔を小さくできるので、小型でかつ
低電圧安定RF放電が可能でおる。
(2) Since the spacing between the metal electrodes can be reduced, a small size and stable low voltage RF discharge are possible.

(3)熱伝導率の高い金属で導波路壁を構成するため、
冷却効果を大きくできる。
(3) Since the waveguide wall is made of metal with high thermal conductivity,
The cooling effect can be increased.

(4)金属電極間隔と対向する誘電体の間隔とが同程度
にできるので、はぼ円形の強度分布をもつ単一モードの
直線偏波が1qられる。
(4) Since the spacing between the metal electrodes and the spacing between the opposing dielectrics can be made to be approximately the same, 1q of single mode linearly polarized waves with a nearly circular intensity distribution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の横断面説明図、第2図は従
来の横方向RF放電励起方式の導波路型COzレーザ装
置の横断面説明図、第3図は従来の縦方向DC放電励起
方式の導波路型CO2レーザ装置の縦断面説明図である
。 1:誘電体、 2:金属電極、 3:導波路、 4:薄膜。
FIG. 1 is a cross-sectional explanatory diagram of an embodiment of the present invention, FIG. 2 is a cross-sectional explanatory diagram of a waveguide-type COz laser device using a conventional horizontal RF discharge excitation method, and FIG. 3 is a conventional vertical DC FIG. 2 is an explanatory longitudinal cross-sectional view of a discharge excitation type waveguide type CO2 laser device. 1: dielectric, 2: metal electrode, 3: waveguide, 4: thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)横方向に高周波放電を励起するための電極と、比
較的熱伝導率の高い誘電体とで囲まれた中空導波路を有
する導波路型気体レーザにおいて、前記電極材料に使用
波長での複素屈折率の大きさが十分大きいか又は複素屈
折率の虚数部が実数部よりも大きい金属を用い、この中
空導波路型壁を構成する金属電極の表面に吸収損失の小
さな薄膜を設けて構成したことを特徴とする導波路型レ
ーザ装置。
(1) In a waveguide gas laser that has a hollow waveguide surrounded by electrodes for laterally exciting high-frequency discharge and a dielectric material with relatively high thermal conductivity, the electrode material has a A metal with a sufficiently large complex refractive index or an imaginary part of the complex refractive index larger than the real part is used, and a thin film with small absorption loss is provided on the surface of the metal electrode constituting the hollow waveguide wall. A waveguide type laser device characterized by:
JP11583785A 1985-05-29 1985-05-29 Waveguide type laser device Pending JPS61274377A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11583785A JPS61274377A (en) 1985-05-29 1985-05-29 Waveguide type laser device
US06/837,120 US4875218A (en) 1985-05-29 1986-03-07 Thin-film coated waveguide laser
US07/392,800 US4972421A (en) 1985-05-29 1989-08-11 Thin-film coated waveguide laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583785A JPS61274377A (en) 1985-05-29 1985-05-29 Waveguide type laser device

Publications (1)

Publication Number Publication Date
JPS61274377A true JPS61274377A (en) 1986-12-04

Family

ID=14672342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583785A Pending JPS61274377A (en) 1985-05-29 1985-05-29 Waveguide type laser device

Country Status (1)

Country Link
JP (1) JPS61274377A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116680A (en) * 1980-02-20 1981-09-12 Sumitomo Electric Ind Ltd Waveguide type gas laser
JPS58216481A (en) * 1982-06-09 1983-12-16 Nippon Sekigaisen Kogyo Kk High frequency discharge sealing type gas laser
JPS59121005A (en) * 1982-12-28 1984-07-12 Asahi Glass Co Ltd Infrared ray guide tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116680A (en) * 1980-02-20 1981-09-12 Sumitomo Electric Ind Ltd Waveguide type gas laser
JPS58216481A (en) * 1982-06-09 1983-12-16 Nippon Sekigaisen Kogyo Kk High frequency discharge sealing type gas laser
JPS59121005A (en) * 1982-12-28 1984-07-12 Asahi Glass Co Ltd Infrared ray guide tube

Similar Documents

Publication Publication Date Title
EP0275023B1 (en) Carbon dioxide slab laser
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US3772611A (en) Waveguide gas laser devices
US5412681A (en) Slab-waveguide CO2 laser
US4972421A (en) Thin-film coated waveguide laser
US3466565A (en) Laser mode selection
Danielewicz et al. Hybrid output mirror for optically pumped far infrared lasers
Takenaka et al. High power and high focusing CWCO/sub 2/laser using an unstable resonator with a phase-unifying output coupler
US4884282A (en) Coupled waveguide laser array
JPS61274377A (en) Waveguide type laser device
CN111416263A (en) Terahertz source based on phosphorus germanium zinc crystal non-collinear phase matching difference frequency
CN109346910B (en) Polarization and mode selection techniques for lasers
CA1151757A (en) Laser apparatus
JPH08512429A (en) Laser equipment
US4367554A (en) High pressure, high power, compact laser
JPS6265488A (en) Waveguide type laser device
US3435371A (en) Laser mode selection apparatus
US4023119A (en) Laser output coupler
US3478279A (en) Optical maser
Hall et al. A compact sealed waveguide CO2 laser
JPH03119773A (en) Waveguide-type gas laser
JPH06105806B2 (en) Waveguide laser
CN212182754U (en) Terahertz source based on phosphorus germanium zinc crystal non-collinear phase matching difference frequency
US3327232A (en) Reflectionless input resonant laser amplifier
Miyagi et al. Output power characteristics of thin film-coated waveguide CO2 lasers