JPS63199472A - Waveguide laser - Google Patents

Waveguide laser

Info

Publication number
JPS63199472A
JPS63199472A JP3263287A JP3263287A JPS63199472A JP S63199472 A JPS63199472 A JP S63199472A JP 3263287 A JP3263287 A JP 3263287A JP 3263287 A JP3263287 A JP 3263287A JP S63199472 A JPS63199472 A JP S63199472A
Authority
JP
Japan
Prior art keywords
waveguide
laser
glass
insulator
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3263287A
Other languages
Japanese (ja)
Inventor
Akishi Hongo
晃史 本郷
Mitsunobu Miyagi
光信 宮城
Toshihiko Azuma
我妻 寿彦
Shigeo Nishida
茂穂 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3263287A priority Critical patent/JPS63199472A/en
Publication of JPS63199472A publication Critical patent/JPS63199472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain high efficiency oscillation, by making a glass which contains metal oxide be used as an insulator which composes a hollow waveguide. CONSTITUTION:A hollow waveguide 4 is formed to be surrounded with the following parts: a pair of high-frequency excitation metallic electrodes which are disposed facing each other and coated with thin films 3 having small absorption loss at an oscillation wavelength band, and a pair of insulators 2 which are disposed facing each other on the sides of the high-frequency excitation metallic electrodes 1. A gas for laser is sealed with a prescribed pressure in the hollow waveguide 4. Said insulators 2 in such waveguide laser are formed of a glass which contains metal oxide. For example, a surface of each metallic electrode 1 made of copper is coated with a thin film 3 of Ge, ZnSe, and the like, and a lead glass formed by containing a large amount of lead in a silicate glass is used as each insulator 2 to insulate the metallic electrode 1 coated with the thin film 3. Further, RF discharge is performed transversally by connecting the metallic electrode 1 with an RF power source through a matching circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ発振効率の向上を図った薄膜コート金属
電極を有する導波路型レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a waveguide laser having a thin film-coated metal electrode that improves laser oscillation efficiency.

〔従来の技術〕[Conventional technology]

従来の導波路型レーザとして、例えば、米国特許第4,
169,251号明細書あるいは同第4゜352、18
8号明細書に示されるものがある。この導波路型レーザ
は対向する一対の金属電極とこの金属電極の両側に位置
するガラス、アルミナ等の一対の絶縁体とで囲まれた矩
形の中空導波路を構成し、その中に気体レーザ材料が封
入されている。この構成において、対向する一対の金属
電極に所定の高周波の電力を供給すると横方向に高周波
放電が励起されてレーザ発振が生じる。
As a conventional waveguide laser, for example, US Pat.
Specification No. 169,251 or No. 4゜352, 18
There is one shown in Specification No. 8. This waveguide laser consists of a rectangular hollow waveguide surrounded by a pair of metal electrodes facing each other and a pair of insulators such as glass or alumina located on both sides of the metal electrodes. is included. In this configuration, when a predetermined high-frequency power is supplied to a pair of opposing metal electrodes, a high-frequency discharge is excited in the lateral direction and laser oscillation occurs.

この導波路型レーザによると、縦方向に直流放電を励起
する導波路型レーザに比較すると以下の利点を有する。
This waveguide laser has the following advantages compared to a waveguide laser that excites DC discharge in the vertical direction.

fl)小型である。fl) It is small.

(2)発振波長同調範囲が広い。(2) Wide oscillation wavelength tuning range.

(3)高効率である(正抵抗放電で安定抵抗を必要とし
ない)。
(3) High efficiency (positive resistance discharge, no stabilizing resistance required).

(4)高電圧を必要としない。(4) Does not require high voltage.

(5)封止長寿命化が期待される。(5) Longer sealing life is expected.

この導波路型レーザは金属電極が導波路の一部を構成し
ているため、導波路幅が小さい程、あるいは導波路路長
が大きい程導波損失が無視できなくなる。前述した構成
において、金属電極の間隔および絶縁体の間隔が極端に
異ならない限り、発振時の光の電界方向は金属面に対し
て平行、絶縁体面に対して垂直となる。即ち、このよう
な導波路型レーザによれば、導波損失は絶縁体のスラブ
導波路のTMモードの損失で評価され、絶縁体の複素屈
折率をn −jkとすれば導波損失は に比例する。但しここでReは複素数の実数部を表わす
。このように導波損失は絶縁体の複素屈折率n−jkの
実数部nに比例すること乙こなり、その減少に限界が生
じる。
In this waveguide type laser, the metal electrode constitutes a part of the waveguide, so the smaller the waveguide width or the longer the waveguide length, the more the waveguide loss becomes impossible to ignore. In the above configuration, unless the spacing between the metal electrodes and the spacing between the insulators are extremely different, the direction of the electric field of light during oscillation is parallel to the metal surface and perpendicular to the insulator surface. In other words, in such a waveguide laser, the waveguide loss is evaluated by the TM mode loss of the insulator slab waveguide, and if the complex refractive index of the insulator is n - jk, the waveguide loss is Proportional. However, Re here represents the real part of a complex number. As described above, the waveguide loss is proportional to the real part n of the complex refractive index n-jk of the insulator, and there is a limit to its reduction.

このような導波損失を更に減少させる導波路型レーザと
して、例えば、特願昭60−115837号および同6
0−262270号によって提案されたものがある。こ
の導波路型レーザは発振波長帯で吸収損失が小さい薄膜
で金属電極をコートしたものであり、発振時の光の電界
方向はa膜コート金属電極面に対して垂直になり、絶縁
体面に対しては平行となる。即ぢ、このような薄膜内装
導波路型レーザによれば、導波損失は絶縁体のスラブ導
波路のTEモードの損失で評価され に比例する。従って、レーザ発振効率を高めるためには
、絶縁体材料としてレーザの発振波長帯においてその複
素屈折率の絶対値が大きいか、あるいは複素屈折率の実
数部が虚数部に比して十分小さい材料を選んだ方が有利
であることが判明した。
As a waveguide type laser that further reduces such waveguide loss, for example, Japanese Patent Application No. 115837/1983 and Japanese Patent Application No. 60-115837
There is one proposed by No. 0-262270. This waveguide laser has a metal electrode coated with a thin film that has low absorption loss in the oscillation wavelength band, and the electric field direction of the light during oscillation is perpendicular to the surface of the a-film coated metal electrode, and is parallel to the insulator surface. are parallel. In other words, in such a thin film internal waveguide type laser, the waveguide loss is estimated by the TE mode loss of the insulator slab waveguide and is proportional to the TE mode loss. Therefore, in order to increase laser oscillation efficiency, it is necessary to use a material as an insulator material whose complex refractive index has a large absolute value in the oscillation wavelength band of the laser, or whose real part of the complex refractive index is sufficiently small compared to the imaginary part. The choice turned out to be more advantageous.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の薄波路型レーザによれば、絶縁体として
石英ガラスを用いると、その複素屈折率が、例えば、1
0μmの発振波長帯においてn −jk= 1.1  
jo、8であるため、その導波損失は に比例することになり、高効率発振を得るための条件と
してはまだ十分なものではない。
However, according to conventional thin wave path lasers, when silica glass is used as an insulator, its complex refractive index is, for example, 1.
n - jk = 1.1 in the 0 μm oscillation wavelength band
Since jo, 8, the waveguide loss is proportional to , which is still not a sufficient condition for obtaining high efficiency oscillation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、絶縁体の複
素屈折率によって定まるn /(n2−に2)の値を十分小さくして高効率発振が得
られるようにするため、中空導波路を構成する絶縁体と
して金属酸化物を含有するガラスを用いるようにした薄
膜コート金属電極を有する導波路型レーザを提供するも
のである。
The present invention was made in view of the above, and in order to sufficiently reduce the value of n/(n2-2) determined by the complex refractive index of the insulator and obtain high efficiency oscillation, a hollow waveguide is used. The present invention provides a waveguide type laser having a thin film coated metal electrode using glass containing a metal oxide as an insulator constituting the laser.

以下、本発明の導波路型レーザを詳細に説明する。Hereinafter, the waveguide laser of the present invention will be explained in detail.

ここで、本発明の詳細な説明する前に材料の複素屈折率
について簡単に説明する。CO2レーザの発振波長であ
る10μm帯において、一般に金属はその複素屈折率の
絶対値が大きい。しかしながら、金属材料をそのままP
F絶縁体として用いることはできない。ケイ酸塩ガラス
、ホウ酸塩ガラス等の酸化物を主体とするガラスにPb
O、MgQ 、八hoz 、Fe2O2、Ag2O、等
の金属酸化物を含有させたガラスは高周波に対しても絶
縁性が高く、しかも10μm帯において金属酸化物を含
有していない石英ガラスよりも複素屈折率の絶対値が大
きいと推測される。特に、pboを多量に含有する鉛ガ
ラスは広い組成範囲でガラス化条件を満足し、高周波に
対しても絶縁性が高い。しかも、PbOを20〜30%
含有する鉛ガラスはクリスタルガラスとして一般に広く
供せられている。実際に波長IOμm帯における石英ガ
ラスと鉛ガラスの複素屈折率を測定すると、石英ガラス
では、前述したように、n −jk= 1.1−jo、
8であるのに対し、鉛ガラスではn −jk= 3.3
  j2.9となっており、鉛ガラスの方がnもkも共
に大きくなっていることが確かめられた。このように金
属酸化物を含有するガラスは赤外波長帯で複素屈折率の
実数部、虚数部が共に大きいものがある。
Here, before explaining the present invention in detail, the complex refractive index of the material will be briefly explained. In the 10 μm band, which is the oscillation wavelength of a CO2 laser, metals generally have a large absolute value of their complex refractive index. However, it is possible to use metal materials as they are.
It cannot be used as an F insulator. Pb is added to oxide-based glasses such as silicate glass and borate glass.
Glass containing metal oxides such as O, MgQ, 8hoz, Fe2O2, Ag2O, etc. has high insulating properties against high frequencies, and has a higher complex refraction in the 10 μm band than silica glass that does not contain metal oxides. It is assumed that the absolute value of the ratio is large. In particular, lead glass containing a large amount of pbo satisfies the vitrification conditions over a wide composition range and has high insulation properties even against high frequencies. Moreover, PbO is 20-30%
The lead glass contained therein is generally widely available as crystal glass. When we actually measure the complex refractive index of silica glass and lead glass in the IO μm wavelength band, we find that in silica glass, as mentioned above, n −jk = 1.1−jo,
8, whereas for lead glass n - jk = 3.3
j was 2.9, and it was confirmed that both n and k were larger in lead glass. As described above, some glasses containing metal oxides have both a large real part and an imaginary part of their complex refractive index in the infrared wavelength band.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、金属電極1は整合回
路を介してRF電源と接続され横方向にRF放電を行う
。金属電極1は、例えば、熱伝導率が良好な銅が用いら
れる。この金属電極1の表面には薄膜3がコートされて
いる。この薄膜3は赤外波長帯において吸収損失の小さ
いゲルマニウム(Ge)やセレン化亜鉛(ZnSe)等
を用いてスパッタリングや真空蒸着によって形成される
。あるいは、ゲルマニウムを用いるときはメッキによっ
ても容易に形成することができる。この薄膜3をコート
した金属電極1を絶縁するため絶縁体2が設けられてお
り、ケイ酸塩ガラスに多量の鉛を含ませた鉛ガラスを用
いた。前述したように、鉛ガラスは高周波に対して絶縁
性が高く、赤外波長帯においてその複素屈折率の実数部
、虚数部が比較的大きい。前述の値n−jk= 3.3
−j2.9によると、n / (n2−に2)  =0
.178となる。このようにして、レーザ放電路として
の中空導波路4が構成される。この中空導波路4は薄膜
3がコートされた金属電極1と絶縁体2によって囲まれ
、出力強度分布を円形に近づけるために断面がほぼ正方
形状になっている。中空導波路4内には、例えば、ガス
圧約100〜200TorrのHes Coz 、Nz
、などの混合ガスが封入される。中空導波路4の両端に
は全反射鏡と部分透過鏡がとりつけられ、レーザ光は部
分透過鏡を通して出力される。
FIG. 1 shows an embodiment of the present invention, in which a metal electrode 1 is connected to an RF power source through a matching circuit to perform RF discharge in the lateral direction. The metal electrode 1 is made of, for example, copper, which has good thermal conductivity. The surface of this metal electrode 1 is coated with a thin film 3. This thin film 3 is formed by sputtering or vacuum evaporation using germanium (Ge), zinc selenide (ZnSe), etc., which have small absorption loss in the infrared wavelength band. Alternatively, when germanium is used, it can be easily formed by plating. An insulator 2 is provided to insulate the metal electrode 1 coated with the thin film 3, and a lead glass made of silicate glass containing a large amount of lead is used. As described above, lead glass has high insulating properties against high frequencies, and the real and imaginary parts of its complex refractive index are relatively large in the infrared wavelength band. The aforementioned value n-jk=3.3
According to −j2.9, n / (2 to n2−) = 0
.. It becomes 178. In this way, the hollow waveguide 4 as a laser discharge path is constructed. This hollow waveguide 4 is surrounded by a metal electrode 1 coated with a thin film 3 and an insulator 2, and has a substantially square cross section in order to make the output intensity distribution close to a circle. Inside the hollow waveguide 4, for example, Hes Coz, Nz with a gas pressure of about 100 to 200 Torr.
A mixed gas such as , etc. is sealed. A total reflection mirror and a partial transmission mirror are attached to both ends of the hollow waveguide 4, and the laser beam is outputted through the partial transmission mirror.

本発明の実施例ではpboとSiO□を主成分とする鉛
ガラスを絶縁体として用いたが、この他、ゲイ酸塩、ホ
ウ酸塩、リン酸塩等のガラスにPbO1Mg01八13
02 、FezO3、ag2o、等の金属酸化物を含ま
せたガラスも金属電極1を絶縁する絶縁体2として用い
ることができる。
In the embodiments of the present invention, lead glass containing pbo and SiO
Glass containing metal oxides such as 02, FezO3, and ag2o can also be used as the insulator 2 for insulating the metal electrode 1.

第2図は約0.5μm厚のゲルマニウム薄膜3を銅電極
1にコートした導波路断面が2×2  (+m)の導波
路型レーザにおいて、RF絶縁体として鉛ガラスを用い
た場合と、石英ガラスを用いた場合の発振出力の測定値
を示したものである。このように石英ガラスを用いた従
来の薄膜コートa波路型レーザと比べると、本発明の鉛
ガラスを用いた薄膜コー)ffl波路型レーザは、その
発振出力が全てのガス圧(〜80Torr)とRF入力
電力(IOW 、20W、40W 、85誓)に対して
15〜20%上昇していることが判る。
Figure 2 shows a waveguide laser with a waveguide cross section of 2 x 2 (+m) in which a copper electrode 1 is coated with a germanium thin film 3 with a thickness of about 0.5 μm, and when lead glass is used as the RF insulator and when quartz is used as the RF insulator. This figure shows the measured value of oscillation output when glass is used. In this way, compared to the conventional thin-film coated waveguide laser using silica glass, the thin-film coated waveguide laser using lead glass of the present invention has an oscillation output that is equal to all gas pressures (~80 Torr). It can be seen that the RF input power (IOW, 20W, 40W, 85V) increases by 15-20%.

しかし、薄膜をコートしていない導波路型レーザにおい
て、電極を絶縁する絶縁体として、石英ガラスのかわり
に鉛ガラスを用いるとかえって導波損失が大きくなり逆
効果であることが確認された。
However, in a waveguide laser without a thin film coating, it has been confirmed that using lead glass instead of quartz glass as an insulator for insulating the electrodes increases waveguide loss and has the opposite effect.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の導波路型レーザによれば、
中空導波路を構成する絶縁体として金属酸化物を含有す
るガラスを用いたため、その複素屈折率によって定まる
n / (n”−に2)の値を十分小さくすることがで
き、高効率発振を得ることができる。
As explained above, according to the waveguide laser of the present invention,
Since glass containing metal oxide is used as the insulator constituting the hollow waveguide, the value of n/(n''-2) determined by its complex refractive index can be made sufficiently small, resulting in highly efficient oscillation. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の横断面図。第2図はレーザ
ガス圧および入力RFパワーに対する導波路型レーザの
出力パワーの測定結果である。 符号の説明 1−−一一一・・金属電極 2−・・・−絶縁体 3−・−薄膜 4−・−中空導波路
FIG. 1 is a cross-sectional view of one embodiment of the present invention. FIG. 2 shows the measurement results of the output power of the waveguide laser with respect to the laser gas pressure and input RF power. Explanation of symbols 1--111...Metal electrode 2--Insulator 3--Thin film 4--Hollow waveguide

Claims (1)

【特許請求の範囲】[Claims] (1)発振波長帯で吸収損失が小さい薄膜がコートされ
た対向する一対の高周波励起用金属電極と前記高周波励
起用金属電極の側方に位置する対向する一対の絶縁体と
で囲まれた中空導波路を有し、前記中空導波路内にレー
ザ用ガスを所定の圧力で封入した導波路型レーザにおい
て、 前記絶縁体が金属酸化物を含有するガラス より構成されることを特徴とする導波路型レーザ。
(1) A hollow space surrounded by a pair of opposing metal electrodes for high-frequency excitation coated with a thin film with low absorption loss in the oscillation wavelength band and a pair of opposing insulators located on the sides of the metal electrodes for high-frequency excitation. A waveguide laser having a waveguide and a laser gas sealed in the hollow waveguide at a predetermined pressure, wherein the insulator is made of glass containing a metal oxide. type laser.
JP3263287A 1987-02-16 1987-02-16 Waveguide laser Pending JPS63199472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3263287A JPS63199472A (en) 1987-02-16 1987-02-16 Waveguide laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3263287A JPS63199472A (en) 1987-02-16 1987-02-16 Waveguide laser

Publications (1)

Publication Number Publication Date
JPS63199472A true JPS63199472A (en) 1988-08-17

Family

ID=12364229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3263287A Pending JPS63199472A (en) 1987-02-16 1987-02-16 Waveguide laser

Country Status (1)

Country Link
JP (1) JPS63199472A (en)

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US4688009A (en) Triple-pane waveguide window
US4797896A (en) Solid state optical ring resonator and laser using same
US4972421A (en) Thin-film coated waveguide laser
US5491708A (en) Integrated optic laser
US4685110A (en) Optical component of a laser
US3947089A (en) Lead-bismuth glasses for acoustooptic and magnetooptic devices
US3179899A (en) Optical maser component
JPS63199472A (en) Waveguide laser
CA1151757A (en) Laser apparatus
US6590694B2 (en) Faraday rotator
US6785037B2 (en) Faraday rotator
Sato et al. Fabrication techniques and characteristics of Al-SiO/sub 2/laminated optical polarizers
Kubodera et al. A slab waveguide laser formed of glass‐clad LiNdP4O12
Lotspeich A perturbation analysis of modes in diffused optical waveguides with Gaussian index profile
JPH03119773A (en) Waveguide-type gas laser
Millar et al. Manufacturing tolerances for silver-sodium ion-exchange planar optical waveguides
JPS6265488A (en) Waveguide type laser device
EP0178815B1 (en) Improvements relating to optical waveguides
JPH0445588A (en) Waveguide path type gas laser
JPS61274377A (en) Waveguide type laser device
JPH0461181A (en) Etalon
Duffy et al. Guided-wave acousto-optic interaction on proton-exchanged lithium tantalate
JPH06105806B2 (en) Waveguide laser
JP3704733B2 (en) Nonlinear optical crystal element