JPS626363B2 - - Google Patents

Info

Publication number
JPS626363B2
JPS626363B2 JP53042700A JP4270078A JPS626363B2 JP S626363 B2 JPS626363 B2 JP S626363B2 JP 53042700 A JP53042700 A JP 53042700A JP 4270078 A JP4270078 A JP 4270078A JP S626363 B2 JPS626363 B2 JP S626363B2
Authority
JP
Japan
Prior art keywords
transistor
resistor
collector
voltage
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53042700A
Other languages
Japanese (ja)
Other versions
JPS54136158A (en
Inventor
Shigeo Fujimori
Kenichi Torii
Shoichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4270078A priority Critical patent/JPS54136158A/en
Publication of JPS54136158A publication Critical patent/JPS54136158A/en
Publication of JPS626363B2 publication Critical patent/JPS626363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers

Landscapes

  • Control Of Amplification And Gain Control (AREA)

Description

【発明の詳細な説明】 この発明は利得制御増幅器に関する。[Detailed description of the invention] This invention relates to gain control amplifiers.

従来、利得制御増幅器としては、エミツタ接地
あるいはベース接地トランジスタのコレクタ電流
を変えて行なうものや、差動アンプを組合せて行
なうもの等があつた。このうち前者は、デイスク
リート回路としては一般的であるがバイアス条件
が変化するため直流的に結合され、後者がIC化
されたAGC回路として広く使われている。しか
し前者に比して雑音指数NFが劣化するという欠
点を持つているので低雑音を要求する回路には適
していなかつた。前者の回路ではアンプの負荷を
抵抗にした時、コレクタ電流を変えて利得を変え
ているため出力の電位が変化し、次段の回路と直
流的に接続されるIC回路では次段のバイアス条
件を変えてしまうことになる。例えば第1図に示
すように、エミツタ接地のトランジスタからなる
アンプ1が直接次段の差動アンプ2に継がれる場
合には、利得を変化することによつて差動アンプ
2のベース電位が変化する。もし差動アンプ2を
為すトランジスタ3および4のベース間に交流的
に高インピーダンス、直流的に低インピーダンス
のフイルター等を接続して両ベース電位を同電位
となるようにしておけば差動アンプは動作し、利
得が得られるが混変調、飽和特性についてはバイ
アス条件の変化によつて劣化することがある。
Conventionally, gain control amplifiers include those in which the collector current of a grounded emitter or common base transistor is varied, and those in which a differential amplifier is used in combination. The former is commonly used as a discrete circuit, but because the bias conditions change, it is coupled using direct current, and the latter is widely used as an IC-based AGC circuit. However, it has the disadvantage that the noise figure NF is worse than the former, so it is not suitable for circuits that require low noise. In the former circuit, when the load of the amplifier is a resistor, the collector current is changed to change the gain, so the output potential changes, and in the case of an IC circuit connected directly to the next stage circuit, the bias condition of the next stage changes. This will change the . For example, as shown in Figure 1, when an amplifier 1 consisting of a common-emitter transistor is directly connected to the next stage differential amplifier 2, the base potential of the differential amplifier 2 changes by changing the gain. do. If a filter, etc. with high impedance for AC and low impedance for DC is connected between the bases of transistors 3 and 4 that make up differential amplifier 2, and the potentials of both bases are made to be the same, the differential amplifier becomes The device operates and gains can be obtained, but cross-modulation and saturation characteristics may deteriorate due to changes in bias conditions.

第1図のようにアンプ1と次段の差動アンプ2
とが同一電源で駆動される場合は、トランジスタ
1のコレクタ電流を減らすことにより利得を下げ
ると負荷抵抗5の電圧降下が少なくなるので差動
アンプ2のベース電位は電源電圧に近づく。この
とき差動アンプ2の負荷6,6が抵抗負荷の場合
にはトランジスタ3,4のコレクタ・ベース電圧
は低くなりある条件下では順バイアスになること
もある。また差動アンプの負荷が直流電位の変化
しないリアクタンス負荷でもコレクタ・ベース電
圧は低くなりOVに近づく。このようなバイアス
条件では差動アンプ2の飽和特性はもちろんのこ
と、混変調特性も劣化し、アンプ特性としては好
ましくない。第2図に差動アンプのコレクタ・ベ
ース電圧を変えた時の混変調特性及び飽和特性の
一例を示す。
As shown in Figure 1, amplifier 1 and the next stage differential amplifier 2
When both are driven by the same power supply, if the gain is lowered by reducing the collector current of transistor 1, the voltage drop across load resistor 5 will be reduced, and the base potential of differential amplifier 2 will approach the power supply voltage. At this time, if the loads 6, 6 of the differential amplifier 2 are resistive loads, the collector-base voltages of the transistors 3, 4 become low and may become forward biased under certain conditions. Furthermore, even if the load of the differential amplifier is a reactive load where the DC potential does not change, the collector-base voltage will be low and approach OV. Under such bias conditions, not only the saturation characteristics of the differential amplifier 2 but also the cross-modulation characteristics deteriorate, which is not preferable as amplifier characteristics. FIG. 2 shows an example of cross-modulation characteristics and saturation characteristics when the collector-base voltage of the differential amplifier is changed.

そこで差動アンプのコレクタ・ベース電圧が一
定の電位より下がらないようにするためには第1
図における負荷抵抗5に換えて、点線で示す負荷
抵抗5′を設けて端子7′からアンプ1に電源を供
給する2電源方式にすることも考えられる。この
場合アンプ1の電源電圧を差動アンプ2の電源電
圧により低くしておけばよいが、これはエミツタ
接地アンプ1のコレクタ・エミツタ電圧が十分に
とれないという不都合が生じる。また2電源化も
IC内部で行なうには回路が複雑化すること、外
部より供給する場合にはパツケージの端子数が増
加すること等の欠点がある。
Therefore, in order to prevent the collector-base voltage of the differential amplifier from falling below a certain level, the first step is to
It is also conceivable to provide a load resistor 5' shown by a dotted line in place of the load resistor 5 shown in the figure to provide a two-power supply system in which power is supplied to the amplifier 1 from the terminal 7'. In this case, the power supply voltage of the amplifier 1 may be made lower than the power supply voltage of the differential amplifier 2, but this causes the inconvenience that the collector-emitter voltage of the common-emitter amplifier 1 cannot be obtained sufficiently. Also, dual power supply
There are drawbacks such as the complexity of the circuit if it is carried out inside the IC, and the number of terminals on the package increases if it is supplied externally.

この発明の目的は上記事情に鑑みて為されたも
のであり、次段のバイアス条件に大きな変化を与
えないIC化を考えたエミツタ接地の利得制御増
幅器を提供することにある。特にこの利得制御増
幅器を構成する抵抗の値を特定の値に設定するこ
とで、AGC電圧を変化させても次段への出力電
圧がほぼ一定となるようにすることにある。
The object of the present invention has been made in view of the above circumstances, and is to provide a gain control amplifier with a grounded emitter that can be implemented as an IC without causing a large change in the bias conditions of the next stage. In particular, by setting the value of the resistor constituting this gain control amplifier to a specific value, the output voltage to the next stage is kept approximately constant even if the AGC voltage is changed.

第3図はこの発明の一実施例を示す図である。
同図において、10は利得制御増幅器であり、エ
ミツタ接地された増幅用のトランジスタ11、バ
イアス用のトランジスタ12,13および抵抗
R14〜R19からなる。尚、説明上各位置の電圧を図
示の如くVO,VB、矢印方向の電流をI11,I12
I13,I17とおく。トランジスタ11のベースには
抵抗R19を介してA点より利得制御電圧VAが加え
られる。入力IN(VIN)はトランジスタ11の
ベースへ直接加えられる。一方A点からの利得制
御電圧VAは抵抗R18を介してトランジスタ12の
ベースにも加えられる。このトランジスタ12に
はトランジスタ11と対応したコレクタ電流が流
れる。
FIG. 3 is a diagram showing an embodiment of the present invention.
In the figure, 10 is a gain control amplifier, which includes an amplification transistor 11 whose emitter is grounded, bias transistors 12 and 13, and a resistor.
Consists of R14 to R19 . For the sake of explanation, the voltage at each position is V O , V B as shown in the figure, and the current in the direction of the arrow is I 11 , I 12 ,
Let's say I 13 and I 17 . A gain control voltage V A is applied to the base of the transistor 11 from a point A via a resistor R 19 . Input IN (V IN ) is applied directly to the base of transistor 11. On the other hand, the gain control voltage V A from point A is also applied to the base of transistor 12 via resistor R 18 . A collector current corresponding to that of the transistor 11 flows through the transistor 12 .

このコレクタ電流とバイアス抵抗R16,R17によ
つてトランジスタ13のベース電圧VBが定ま
り、これに対応したコレクタ電流I13がトランジ
スタ13を流れる。トランジスタ13のコレクタ
はトランジスタ11のコレクタに直流的に接続さ
れ、トランジスタ11のコレクタは負荷抵抗R15
を介して電源端子E20に接続されている。又、
トランジスタ13のコレクタ電流I13はI13=VB
R14と表わせる。一方21は次段の差動アンプで
あり、一対のトランジスタ23,24及び負荷2
5,26によつて構成されている。
A base voltage V B of the transistor 13 is determined by this collector current and bias resistors R 16 and R 17 , and a collector current I 13 corresponding to the base voltage V B flows through the transistor 13 . The collector of the transistor 13 is connected to the collector of the transistor 11 in a direct current manner, and the collector of the transistor 11 is connected to the load resistor R15 .
It is connected to the power supply terminal E20 via. or,
The collector current I 13 of the transistor 13 is I 13 =V B /
It can be expressed as R 14 . On the other hand, 21 is the next stage differential amplifier, which includes a pair of transistors 23 and 24 and a load 2.
5 and 26.

したがつて、トランジスタ11のコレクタ電圧
すなわち次段の差動アンプ21のベース電圧VO
は、トランジスタ11及びトランジスタ13のコ
レクタ電流の和と負荷抵抗R15の値によつて決定
される(VO=E−(I11+I13)R15)。従つてこれ
らのコレクタ電流の和が一定であれば差動アンプ
21のベース電圧VOも一定に保たれる。いま、
A点の電位VAを下げ、トランジスタ11に流れ
るコレクタ電流I11を減らすと、同時にトランジ
スタ12のコレクタ電流I12も減る。このため抵
抗R16による電圧降下が小さくなり、トランジス
タ13のベース電圧VBが高くなり、トランジス
タ13のコレクタ電流が増加する。このとき、抵
抗R14,R16及びR17が次の関係にあるとき、トラ
ンジスタ11及び13のコレクタ電流の和(I11
+I13)はほぼ一定となる。
Therefore, the collector voltage of the transistor 11, that is, the base voltage V O of the next stage differential amplifier 21
is determined by the sum of the collector currents of transistors 11 and 13 and the value of load resistance R 15 (V O =E−(I 11 +I 13 )R 15 ). Therefore, if the sum of these collector currents is constant, the base voltage V O of the differential amplifier 21 is also kept constant. now,
When the potential V A at point A is lowered and the collector current I 11 flowing through the transistor 11 is reduced, the collector current I 12 of the transistor 12 is also reduced at the same time. Therefore, the voltage drop caused by the resistor R 16 becomes smaller, the base voltage V B of the transistor 13 becomes higher, and the collector current of the transistor 13 increases. At this time, when the resistors R 14 , R 16 and R 17 have the following relationship, the sum of the collector currents of transistors 11 and 13 (I 11
+I 13 ) remains almost constant.

() トランジスタ11と12のエミツタ面積が
等しい場合 R16・R17(β−1) =R14(R16+R17)(β+1) ここでβ=I13/Ib:電流増幅率 () トランジスタ11と12のエミツタ面積が
異なり、同じベース電圧に対するエミツタ電流
の比が1:nの場合 nR18=R19 R16・R17(nβ−1) =R14(R16+R17)(β+1) 以上のような関係がほぼ満たされた場合、差動
アンプ21のベース電圧は前段の利得制御増幅器
10によつて利得制御してもほぼ一定値に保たれ
る。
() When the emitter areas of transistors 11 and 12 are equal, R 16・R 17 (β-1) = R 14 (R 16 + R 17 ) (β+1) where β=I 13 /I b : Current amplification factor () Transistor When the emitter areas of 11 and 12 are different and the ratio of emitter current to the same base voltage is 1:n, nR 18 = R 19 R 16・R 17 (nβ-1) = R 14 (R 16 + R 17 ) (β+1) When the above relationship is substantially satisfied, the base voltage of the differential amplifier 21 is maintained at a substantially constant value even if the gain is controlled by the gain control amplifier 10 in the previous stage.

以下に、第3図の利得制御増幅器10を()
の場合で解析した結果を順を追つて示す。上記に
説明した値を用いて、 VO=E−(I11+I13)R15 ……… βIb=I13 ……… VB=R17・I17 ……… VB=E−R16(Ib+I12+I17) ……… と表わされる。又トランジスタ12及び13のベ
ース・エミツタ間電圧をVBE12及びVBE13とおく
と、 V−VBE12/R18β=I12≒I11 ……… VB−VBE13=R14・I13・1+β/β ……… という関係が導かれる。そこでまず式より VB=E−R16{I13/β+I12+V/R17} これと式より この式を変形して 式と式を式に代入して この式の第2項(VAの項)が零となる条件
は、 R16R17(β−1) =R14・(R16+R17)(β+1) これを満足するとき、式の第3項(VBE12
項)も零となり、式の第1項、第4項が次式で
書ける。つまり、 ∴V0≒E(1−R15/R16) +VBE13・R15/R14(β≫1) このように、利得制御回路10の解析結果から
も明らかなように本構成が、上記のごとくR14
値がR16とR17を並列接続した時の値に略等しくな
るように構成されるとき、AGC電圧を変化させ
ても、次段の差動アンプ21への出力電圧がほぼ
一定となるのである。
Below, the gain control amplifier 10 of FIG.
We will show the results of the analysis in the following cases. Using the values explained above, V O = E-(I 11 + I 13 ) R 15 ...... βI b = I 13 ...... V B = R 17・I 17 ...... V B = E-R 16(Ib + I 12 + I 17 ) ...... It is expressed as. Also, if the base-emitter voltages of transistors 12 and 13 are set as V BE12 and V BE13 , then V A - V BE12 /R 18 β=I 12 ≒ I 11 ...... V B - V BE13 = R 14・I 13・The following relationship is derived: 1+β/β... So first, from the formula: V B =E−R 16 {I 13 /β+I 12 +V B /R 17 } From this and the formula Transform this formula to By substituting the expression and the expression into the expression The condition for the second term (V A term) of this equation to be zero is: R 16 R 17 (β-1) = R 14・(R 16 +R 17 )(β+1) When this is satisfied, the second term of the equation The third term (V BE12 term) also becomes zero, and the first and fourth terms of the equation can be written as the following equation. In other words, ∴V 0 ≒E (1-R 15 /R 16 ) +V BE13・R 15 /R 14 (β≫1) In this way, as is clear from the analysis results of the gain control circuit 10, this configuration As mentioned above, when the value of R14 is configured to be approximately equal to the value when R16 and R17 are connected in parallel, even if the AGC voltage is changed, the output voltage to the next stage differential amplifier 21 is becomes almost constant.

次に第4図は上記()の場合の参考例でトラ
ンジスタ11と12のエミツタ電流比が1:1/
6、R14=1KΩ、R16=23KΩ、R17=10KΩ、β
=50、R18=6KΩ、R19=1KΩな設定した場合の
トランジスタ11のエミツタ電流とコレクタ電圧
の関係の一例を示す。同図からエミツタ電流によ
らずコレクタ電圧がほぼ一定になることが示され
ている。この例のように抵抗値を適当に選ぶこと
により出力電圧の変化は0.1V以下にも押えるこ
とができる。
Next, Figure 4 is a reference example for the case () above, where the emitter current ratio of transistors 11 and 12 is 1:1/
6, R 14 = 1KΩ, R 16 = 23KΩ, R 17 = 10KΩ, β
An example of the relationship between the emitter current and the collector voltage of the transistor 11 when the settings are 50, R 18 = 6KΩ, and R 19 =1KΩ is shown. The figure shows that the collector voltage remains almost constant regardless of the emitter current. By appropriately selecting the resistance value as in this example, the change in output voltage can be suppressed to 0.1V or less.

以上のように、この発明によれば利得制御を行
つても次段の差動アンプのバイアス条件が大きく
変化することがないため、混変調特性等の劣化は
生じない。また次段の差動アンプと電源を共用す
ることができ、更にIC化も容易である。特に上
述の関係式はβが大きければ抵抗の比だけで条件
が満足されるので、抵抗比をコントロールしやす
いICにおいては最適である。
As described above, according to the present invention, even if gain control is performed, the bias conditions of the next-stage differential amplifier do not change significantly, so that deterioration of cross-modulation characteristics, etc. does not occur. In addition, the power supply can be shared with the next-stage differential amplifier, and it can also be easily integrated into an IC. In particular, the above relational expression is optimal for ICs where the resistance ratio can be easily controlled, since the condition is satisfied only by the resistance ratio if β is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を示す図、第2図は第1図に
示す回路の特性図、第3図はこの発明の一実施例
を示す図、第4図はエミツタ電流比が異なる場合
の参考例の特性を示す図である。 10……利得制御増幅器、11……増幅用トラ
ンジスタ、12,13……バイアス用トランジス
タ、15……負荷抵抗。
Fig. 1 is a diagram showing the prior art, Fig. 2 is a characteristic diagram of the circuit shown in Fig. 1, Fig. 3 is a diagram showing an embodiment of the present invention, and Fig. 4 is a reference when the emitter current ratio is different. FIG. 3 is a diagram showing characteristics of an example. 10... Gain control amplifier, 11... Amplifying transistor, 12, 13... Bias transistor, 15... Load resistor.

Claims (1)

【特許請求の範囲】 1 エミツタが接地されかつコレクタが負荷抵抗
を介して電源に接続された第1のトランジスタ
と、 このトランジスタと前記負荷抵抗との接続点に
コレクタが直流的に接続されかつエミツタが第1
の抵抗を介して接地された第2のトランジスタ
と、 前記電源と接地点との間に直列接続された第2
及び第3の抵抗と、 この第2及び第3の抵抗の接続点及び前記第2
のトランジスタのベースとにコレクタが接続さ
れ、かつエミツタが接地された第3のトランジス
タと、 前記第1及び第3のトランジスタの各ベースに
それぞれ接続され利得制御電圧が加えられる第4
及び第5の抵抗とを具備し、 前記第2及び第3の抵抗の並列接続した時の抵
抗値と前記第1の抵抗の抵抗値とが等しいように
設定することを特徴とする利得制御増幅器。
[Scope of Claims] 1. A first transistor whose emitter is grounded and whose collector is connected to a power supply via a load resistor; and a first transistor whose collector is DC connected to a connection point between this transistor and the load resistor and whose emitter is grounded and whose collector is connected to a power supply via a load resistor. is the first
a second transistor grounded through a resistor; and a second transistor connected in series between the power supply and the ground point.
and a third resistor, a connection point between the second and third resistors, and the second resistor.
a third transistor whose collector is connected to the base of the transistor and whose emitter is grounded; and a fourth transistor which is connected to the bases of the first and third transistors and to which a gain control voltage is applied.
and a fifth resistor, wherein the resistance value of the second and third resistors when connected in parallel is set to be equal to the resistance value of the first resistor. .
JP4270078A 1978-04-13 1978-04-13 Gain control amplifier Granted JPS54136158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270078A JPS54136158A (en) 1978-04-13 1978-04-13 Gain control amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270078A JPS54136158A (en) 1978-04-13 1978-04-13 Gain control amplifier

Publications (2)

Publication Number Publication Date
JPS54136158A JPS54136158A (en) 1979-10-23
JPS626363B2 true JPS626363B2 (en) 1987-02-10

Family

ID=12643320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270078A Granted JPS54136158A (en) 1978-04-13 1978-04-13 Gain control amplifier

Country Status (1)

Country Link
JP (1) JPS54136158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144243B1 (en) 2014-05-14 2021-03-24 Tokyo Light Industry Co. Ltd. Cap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing

Also Published As

Publication number Publication date
JPS54136158A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
JP3088262B2 (en) Low distortion differential amplifier circuit
JPS648923B2 (en)
JP2588368B2 (en) Differential amplifier circuit
US4088963A (en) Gain control circuit
JPS626363B2 (en)
US5327097A (en) Gain control circuit
US4112387A (en) Bias circuit
JPS6228087Y2 (en)
JP2614272B2 (en) Filter circuit
JPH0145766B2 (en)
JPH0133046B2 (en)
JP3360911B2 (en) Differential amplifier circuit
JPH0628325B2 (en) Automatic gain control amplifier
JPS625488B2 (en)
KR830001979B1 (en) Power amplification circuit
JP3342345B2 (en) Gain control circuit
JPH04343506A (en) Amplifier circuit
JPS6113403B2 (en)
JP3085203B2 (en) Preamplifier
JPS625489B2 (en)
JP2693861B2 (en) Amplifier circuit
JP2716560B2 (en) Semiconductor integrated circuit
JP3784910B2 (en) Output circuit
JPS6121857Y2 (en)
JPH0326670Y2 (en)