JPS6262576A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6262576A
JPS6262576A JP20153485A JP20153485A JPS6262576A JP S6262576 A JPS6262576 A JP S6262576A JP 20153485 A JP20153485 A JP 20153485A JP 20153485 A JP20153485 A JP 20153485A JP S6262576 A JPS6262576 A JP S6262576A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type
semiconductor
photoabsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20153485A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Ken Yamaguchi
憲 山口
Saneyo Kanai
金井 実代
Takeshi Uda
毅 宇田
Yoshimasa Murayama
村山 良昌
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20153485A priority Critical patent/JPS6262576A/en
Publication of JPS6262576A publication Critical patent/JPS6262576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control lateral mode of low threshold value and high efficiency by providing a photoabsorbing layer necessary for photoconduction near an active layer, and forming a current narrowing layer at father position to eliminate a thyristor effect. CONSTITUTION:A P-type GaAs current narrowing layer 2, and an N-type GaAs photoabsorbing layer 3 are sequentially grown by an MOCVD method on an N-type GaAs substrate 1, and a groove 8 is then formed by etching. Thereafter, a flat N-type Ga0.55Al0.45As clad layer 4, an undoped GaAs0.86Al0.14As active layer 5, an N-type Ga0.55Al0.45As clad layer 6, a P-type GaAs cap layer 7-1 are sequentially grown by a liquid-phase growing method, and then an N-type electrode 11 and a P-type electrode 12 are formed. The roles of photoabsorbing and current narrowing are separately shared for the photoabsorbing layer and the current narrowing layer, the photoabsorbing layer is provided near the active layer and the narrowing layer is formed at further side, thereby eliminating a thyristor effect. Thus, a semiconductor laser which has high yield, low threshold value and high efficiency can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、低しきい直、高効率で発振する横モード制御
された半導本レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a transverse mode controlled semiconductor laser that oscillates with low threshold and high efficiency.

〔発明の背景〕[Background of the invention]

CS P (Cbannelled 5ubstrat
e Planar)型レーザは選択Zn拡散により電流
狭窄しているが、電流が活性層に到達するまでに広がっ
てしまうという問題点があった。またVSIS(V−g
rooved 5ubstrate Inner 5t
ripe )型レーザ(山本他、アプライド・フィジッ
クス・レター第40巻、第372頁、1982年(S 
、 Yama−moto et  al、  、 Ap
pl、  Phys、 Lett、  Vol。
CS P (Cbanneled 5ubstrat
e Planar type lasers have current confinement due to selective Zn diffusion, but there is a problem in that the current spreads by the time it reaches the active layer. Also, VSIS (V-g
rooved 5ubstrate Inner 5t
type laser (Yamamoto et al., Applied Physics Letters Vol. 40, p. 372, 1982 (S
, Yama-moto et al., , Ap.
pl, Phys, Lett, Vol.

140,372(1982))は電流狭窄層をn型窩ド
ープ膚にしなければサイリスタ効果により電流狭窄がで
きなくなるといった制約があった。
140, 372 (1982)) had the limitation that current confinement could not be achieved due to the thyristor effect unless the current confinement layer was doped with an n-type cavity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は低しきい値高効率の横モード制御された
半導体レーザを提供することにある。
An object of the present invention is to provide a transverse mode controlled semiconductor laser with a low threshold and high efficiency.

〔発明の概要〕[Summary of the invention]

従来の内部電流狭窄型レーザでは、光吸収と電流狭窄を
1つの層で行っていたため、光吸収によるサイリスタ効
果で電流狭窄ができなくなるといった問題があった。そ
こで、本発明においては光導波をこ必要な光吸収層を活
性層に近い場所に設け、遠い所に電流狭窄層を設ければ
、光はほとんど電流狭窄層まで到達しないのでサイリス
タ効果が生じることがなくなるようにした。
In conventional internal current confinement type lasers, light absorption and current confinement are performed in one layer, so there is a problem that current confinement cannot be achieved due to the thyristor effect caused by light absorption. Therefore, in the present invention, if a light absorption layer that requires optical waveguide is provided near the active layer and a current confinement layer is provided far away, almost no light will reach the current confinement layer, resulting in a thyristor effect. I made it disappear.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1.第1図は本発明の半導体レーザの断面模式図
である。まず本半導体レーザの作製方法について述べる
。n−GaAs基板1上にp−G a A s電流狭窄
層(0,3am)2.n−GaAs光吸収層(0,3μ
m)3 を有機金属熱分解気相成長法(MOCVD法)
により順次成長する。次にりん酸系のエツチング液を用
いて、深さ0.8μm幅3μmの溝8を形成する。 そ
の後、n  G a o、s sAgo、45Asクラ
ッド層4%アンドープGa o、s 6A e 、14
As活性層5、p  G a o、s sA g 0.
45A3クラッド層6、p−GaAsキャップ層7−1
を液相成長法(LPE法)を用いてJ@次成長する。そ
の際、nクラッド層4が平坦になるようにする。最後に
、蒸着法を用いてn電極11、p電極12を設けること
によって本実施例の半導体レーザの製造が完了する。
Example 1. FIG. 1 is a schematic cross-sectional view of the semiconductor laser of the present invention. First, the manufacturing method of this semiconductor laser will be described. A p-GaAs current confinement layer (0.3 am) 2. on the n-GaAs substrate 1; n-GaAs light absorption layer (0.3μ
m) 3 by metal organic pyrolysis vapor deposition method (MOCVD method)
It grows sequentially. Next, a groove 8 having a depth of 0.8 μm and a width of 3 μm is formed using a phosphoric acid-based etching solution. After that, n Ga o, s s A go, 45As cladding layer 4% undoped Ga o, s 6 A e , 14
As active layer 5, p Ga o, s sA g 0.
45A3 cladding layer 6, p-GaAs cap layer 7-1
is grown using the liquid phase epitaxy (LPE method). At this time, the n-cladding layer 4 is made flat. Finally, the n-electrode 11 and the p-electrode 12 are provided using a vapor deposition method, thereby completing the manufacture of the semiconductor laser of this example.

本実施例のレーザの光出力−電流特性を測定したところ
、し赤い電流は50 m A s効率は0.30mW/
mAであった。また、波長は0.78μmであり、光出
力30mWまで基本横モードで発振した0 実施例2゜ 第2図は本発明の素子の断面模式図である。実施例1と
の違いは、p−GaAs キャップ層7−1の代わりに
n−GaAsキャップ層7−2とし、そのn−GaAs
キャップN17−2の表面からp−Ga o55A g
 o、45Asクラッド層6に達するまで選択的lこZ
nを拡散したことである。本実施例では電子電流、正孔
電流ともに狭窄されるため第1の実施例に比べさらに低
しきい値、高効率になる。実際、素子特性を測定した結
果、しきい電流は25mA。
When we measured the optical output-current characteristics of the laser of this example, the red current was 50 mA s, and the efficiency was 0.30 mW/
It was mA. The wavelength was 0.78 μm, and the light output was oscillated in the fundamental transverse mode up to 30 mW.Example 2 FIG. 2 is a schematic cross-sectional view of the device of the present invention. The difference from Example 1 is that an n-GaAs cap layer 7-2 is used instead of the p-GaAs cap layer 7-1, and the n-GaAs
p-Ga o55A g from the surface of cap N17-2
o, 45As cladding layer 6 selectively
This is because n is diffused. In this embodiment, since both the electron current and the hole current are constricted, the threshold value is lower and the efficiency is higher than in the first embodiment. In fact, as a result of measuring the device characteristics, the threshold current was 25mA.

効率0.45 m W / m Aであった。また波長
は0.78μmであり、光出力40mWまで基本横モー
ドで発振した。
The efficiency was 0.45 mW/mA. The wavelength was 0.78 μm, and the light output oscillated in the fundamental transverse mode up to 40 mW.

本発明はGaAJAs系以外の半導体レーザ材料、例え
ばInGaAsP系、InGaP系の化合物半導体を用
いた半導体レーザ一般lこ対しても同様に適用できる。
The present invention can be similarly applied to general semiconductor lasers using semiconductor laser materials other than GaAJAs-based, such as InGaAsP-based and InGaP-based compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来1つの層で行っていた光吸収と電
流狭窄の役割を光吸収層と電流狭窄層別別に分担するこ
とにし、光吸収層を活性層に近い側、電流狭窄層を遠い
側に設けたためサイリスタ効果が生じなくなる。従って
本発明によれば歩留りよく低しきい値高効率の半導体レ
ーザが得られる効果がある。
According to the present invention, the roles of light absorption and current confinement, which were conventionally performed in one layer, are divided into the light absorption layer and the current confinement layer. Since it is provided on the far side, the thyristor effect will not occur. Therefore, according to the present invention, a semiconductor laser with a low threshold value and high efficiency can be obtained with good yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例である素子の断面図、第
2図は本発明の第2の実施例である素子の断面図である
。 1−n  GaA3基板、2−p−GaAs電流狭窄層
、3− n −G a A s光吸収層1.4−Gao
、55Ajo4.Asクラッド層、5・・・アンドープ
GaO,86” 0.14As活性層、6 ”’ p 
−Gao55A#、、5Asクラッド層、7−1−p−
GaAsキャップ層、 7−2−・・n−GaAsキャ
ップ層、 8・・・溝、9−n電極、10・・・p電極
、11・・・Zn拡散領域。
FIG. 1 is a sectional view of an element according to a first embodiment of the invention, and FIG. 2 is a sectional view of an element according to a second embodiment of the invention. 1-n GaA3 substrate, 2-p-GaAs current confinement layer, 3-n-GaAs light absorption layer 1.4-Gao
, 55Ajo4. As cladding layer, 5... undoped GaO, 86" 0.14As active layer, 6"'p
-Gao55A#, 5As cladding layer, 7-1-p-
GaAs cap layer, 7-2-... n-GaAs cap layer, 8... groove, 9- n electrode, 10... p electrode, 11... Zn diffusion region.

Claims (1)

【特許請求の範囲】 1、第1導電型の第1半導体層上に、少なくとも第2導
電型の第2半導体層、第1導電型の第3半導体層を順次
設けた後、上記第2、第3半導体層を貫き抜けるまで食
刻することで溝ストライプを形成し、次に上記溝ストラ
イプを有する上記第1、第2、第3半導体層の上に少な
くとも、第1導電型の第4半導体層、該第4半導体層よ
りも屈折率が大きく且禁制帯幅が小さくかつ上記第3半
導体層よりも禁制帯幅の大きな第5半導体層、該第5半
導体層よりも屈折率が小さく且禁制帯幅の大きな第2導
電型の第6半導体層を設けてなることを特徴とする半導
体レーザ装置。 2、特許請求の範囲第1項記載の半導体レーザにおいて
上記第6半導体層の上に第1導電型の第7半導体層を設
けたのち、溝ストライプ上方において第2導電型の不純
物を上記第7半導体層の表面から上記第6半導体層に達
するまで導入してなることを特徴とする半導体レーザ装
置。 3、特許請求の範囲第1項あるいは第2項記載の半導体
レーザにおいて上記第1、第2、第3の半導体層がGa
Asであることを特徴とする半導体レーザ装置。 4、特許請求の範囲第3項記載の半導体レーザにおいて
上記第1半導体層の導電型がn型であることを特徴とす
る半導体レーザ装置。
[Claims] 1. After sequentially providing at least a second semiconductor layer of the second conductivity type and a third semiconductor layer of the first conductivity type on the first semiconductor layer of the first conductivity type, A groove stripe is formed by etching the third semiconductor layer until it penetrates through the third semiconductor layer, and then at least a fourth semiconductor of the first conductivity type is formed on the first, second, and third semiconductor layers having the groove stripe. a fifth semiconductor layer having a larger refractive index and a smaller forbidden band width than the fourth semiconductor layer and a larger forbidden band width than the third semiconductor layer; a fifth semiconductor layer having a smaller refractive index than the fifth semiconductor layer and a forbidden band width; A semiconductor laser device comprising a sixth semiconductor layer of a second conductivity type having a large band width. 2. In the semiconductor laser according to claim 1, after providing a seventh semiconductor layer of a first conductivity type on the sixth semiconductor layer, impurities of a second conductivity type are added to the seventh semiconductor layer above the groove stripes. A semiconductor laser device characterized in that the semiconductor laser is introduced from the surface of the semiconductor layer until it reaches the sixth semiconductor layer. 3. In the semiconductor laser according to claim 1 or 2, the first, second, and third semiconductor layers are made of Ga.
A semiconductor laser device characterized by being made of As. 4. A semiconductor laser device according to claim 3, wherein the first semiconductor layer has an n-type conductivity.
JP20153485A 1985-09-13 1985-09-13 Semiconductor laser Pending JPS6262576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20153485A JPS6262576A (en) 1985-09-13 1985-09-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20153485A JPS6262576A (en) 1985-09-13 1985-09-13 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6262576A true JPS6262576A (en) 1987-03-19

Family

ID=16442640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20153485A Pending JPS6262576A (en) 1985-09-13 1985-09-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6262576A (en)

Similar Documents

Publication Publication Date Title
US4667332A (en) Semiconductor laser element suitable for production by a MO-CVD method
JPH07162086A (en) Manufacture of semiconductor laser
US5420066A (en) Method for producing semiconductor laser device using etch stop layer
CN219086444U (en) Semiconductor laser
US4977568A (en) Semiconductor laser device
JP2001057459A (en) Semiconductor laser
JPH08250801A (en) Semiconductor laser device and its manufacture
JPH05211372A (en) Manufacture of semiconductor laser
JPS6262576A (en) Semiconductor laser
JPS61253882A (en) Semiconductor laser device
JP3202985B2 (en) Semiconductor laser device
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH05226774A (en) Semiconductor laser element and its production
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JPH0766492A (en) Semiconductor laser device and its manufacture
JPH01166592A (en) Semiconductor laser element
JPH02240988A (en) Semiconductor laser
JP2001077466A (en) Semiconductor laser
JPH01162397A (en) Semiconductor laser element
JPS6262577A (en) Semiconductor laser
KR20010085186A (en) Semiconductor laser device and method for manufacturing thereof
JPH088482A (en) Semiconductor laser and manufacture thereof
JPH02237190A (en) Semiconductor laser
JPH05160509A (en) Quantum well structure buried semiconductor laser