JPS6262459B2 - - Google Patents

Info

Publication number
JPS6262459B2
JPS6262459B2 JP54109952A JP10995279A JPS6262459B2 JP S6262459 B2 JPS6262459 B2 JP S6262459B2 JP 54109952 A JP54109952 A JP 54109952A JP 10995279 A JP10995279 A JP 10995279A JP S6262459 B2 JPS6262459 B2 JP S6262459B2
Authority
JP
Japan
Prior art keywords
charge
value
thickness
semiconductor wafer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109952A
Other languages
Japanese (ja)
Other versions
JPS5633842A (en
Inventor
Masataka Hisamichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10995279A priority Critical patent/JPS5633842A/en
Publication of JPS5633842A publication Critical patent/JPS5633842A/en
Publication of JPS6262459B2 publication Critical patent/JPS6262459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Description

【発明の詳細な説明】 この発明は、半導体装置の製造方法に係り、特
に半導体の陽極酸化可能な膜を陽極酸化する際に
その酸化膜の膜厚を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for controlling the thickness of an oxide film when anodizing a semiconductor film that can be anodized.

ここでは、半導体の陽極酸化工程の1つである
化成工程を用いて以下説明をする。従来、半導体
の化成工程では化成膜の膜厚制御は時間で行なつ
ていた。この膜厚制御方法は、1回に処理する半
導体ウエハの枚数が少ない時はそれほど問題とな
らない。ところが、1回に処理する半導体ウエハ
の枚数が多くなつたり、半導体ウエハの径が大き
くなると大きな問題となつて来る。それは、各半
導体ウエハの陽極電極の接触具合や化成液との接
触程度により、それぞれの化成膜の膜厚が異なつ
ており、それだけ1回に処理した半導体ウエハ間
で、化成膜の膜厚に大きなバラツキを生じるから
である。又、上記の理由により、化成膜の正確な
膜厚制御は困難であつた。
Here, the following description will be made using a chemical conversion process which is one of the anodic oxidation processes for semiconductors. Conventionally, in semiconductor chemical formation processes, the thickness of chemically formed films has been controlled by time. This film thickness control method does not pose much of a problem when the number of semiconductor wafers processed at one time is small. However, this becomes a serious problem as the number of semiconductor wafers processed at one time increases or as the diameter of the semiconductor wafers increases. The thickness of each chemically formed film differs depending on the degree of contact between the anode electrode of each semiconductor wafer and the degree of contact with the chemical solution. This is because large variations occur. Furthermore, for the above reasons, it has been difficult to accurately control the thickness of the chemically formed film.

本発明は、化成膜の正確な膜厚制御が可能な方
法を提供することにある。本発明の特徴は、化成
可能な膜に流れた電荷量に、化成膜の膜厚は比例
することを用い、電荷量によつて化成膜の膜厚を
制御する方法にある。
An object of the present invention is to provide a method capable of accurately controlling the thickness of a chemically formed film. A feature of the present invention is a method of controlling the thickness of a chemically formed film based on the amount of charge, using the fact that the thickness of the chemically formed film is proportional to the amount of charge flowing through the chemically formable film.

本発明の製造方法にかかる装置は、半導体ウエ
ハ上に形成された陽極酸化される膜に流す電流を
所定の時間間隔で計測する手段と、計測された
各々の電流を累積する手段と、累積された電流の
値が所定値になると陽極酸化を停止する手段とを
備えている。
The apparatus according to the manufacturing method of the present invention includes means for measuring, at predetermined time intervals, a current flowing through a film to be anodized formed on a semiconductor wafer, a means for accumulating each of the measured currents, and a means for accumulating each measured current. and means for stopping the anodic oxidation when the value of the current reaches a predetermined value.

下記に、本発明の実施例を用いて具体的に説明
する。第1図は、化成機構を表わしたものであ
り、半導体ウエハ2aは陽極電極1aに吸着さ
れ、下から化成液3aが半導体ウエハ2a面上に
均一にあたり、化成が行なわれる。尚、陰極板4
aは噴水ヘツド6aの取り付けてある噴水槽5a
の中に固定してある。第2図は、本発明の実施例
の原理を表わしたグラフである。グラフの横軸は
時間(分)、縦軸は、半導体ウエハを流れる電流
値(mA)である。本発明の制御要素である電荷
量は第2図の斜線部分の面積であり、この面積と
化成膜の膜厚は比例している。この電荷量を求め
る為に、ある走査間隔時間ごとに電流値を検出
し、その電流値と、走査間隔時間の積を累計して
ゆく。その累計値があらかじめ設定した電荷量に
一致するか又は設定値より大きくなつたら、化成
電源を切り、化成を停止させる。尚、本実施例で
の走査間隔時間は6(秒)である。又電荷量の単
位は(mA・分)である。
The present invention will be specifically explained below using examples. FIG. 1 shows a chemical formation mechanism. A semiconductor wafer 2a is attracted to an anode electrode 1a, and a chemical liquid 3a uniformly hits the surface of the semiconductor wafer 2a from below to perform chemical formation. In addition, the cathode plate 4
a is a fountain tank 5a to which a fountain head 6a is attached;
It is fixed inside. FIG. 2 is a graph representing the principle of an embodiment of the present invention. The horizontal axis of the graph is time (minutes), and the vertical axis is the current value (mA) flowing through the semiconductor wafer. The amount of charge, which is a control element of the present invention, is the area of the shaded area in FIG. 2, and this area is proportional to the thickness of the chemically formed film. In order to determine the amount of charge, a current value is detected at each scanning interval time, and the product of the current value and the scanning interval time is accumulated. When the cumulative value matches the preset amount of charge or becomes larger than the set value, the formation power source is turned off and the formation is stopped. Note that the scanning interval time in this embodiment is 6 (seconds). The unit of charge amount is (mA/min).

第3図は、本発明に基く化成停止制御電気回路
の一ブロツク図である。ウエハ2aを流れている
電流値を電流検出部3bで検出し、その電流値を
用いて、電荷量計算部4bで電荷量を求め累計す
る。その累計値と、電荷量設定部6bからの値と
を照合部5bで比較照合する。その結果を停止制
御部7bへ送り、そこで化成を停止させるか否か
を判断して、化成継続の場合には化成及電荷量計
算を継続する。化成停止の場合には、安定化電源
1bを切つて化成を停止する。
FIG. 3 is a block diagram of a formation stop control electrical circuit according to the present invention. The current value flowing through the wafer 2a is detected by the current detection section 3b, and using the detected current value, the amount of charge is determined and accumulated by the charge amount calculation section 4b. The cumulative value and the value from the charge amount setting section 6b are compared and verified by the matching section 5b. The result is sent to the stop control unit 7b, where it is determined whether or not to stop the chemical formation, and if the chemical formation is to be continued, the chemical formation and charge amount calculation are continued. In the case of stopping the chemical formation, the stabilized power supply 1b is turned off to stop the chemical formation.

電荷量の求め方は、上記の方法のみとは限ら
ず、電流曲線の方程式を求め、それを用いて必要
な電荷量から、正確な化成停止時間を求めて、膜
厚の制御を行なうことも可能である。
The method for determining the amount of charge is not limited to the method described above; it is also possible to determine the equation of the current curve and use it to determine the accurate chemical formation stop time from the required amount of charge to control the film thickness. It is possible.

本発明の電荷量で膜厚制御を行なうことにより
次のような効果がある。半導体ウエハと陽極電極
との接触状態及噴水ヘツドから出る化成液と半導
体ウエハとの接触状態のいかんにかかわらず、化
成膜の膜厚は、正確に制御される。これにより細
かい半導体のパターンが形成可能である。又各半
導体ウエハの膜厚制御を行なうことにより、1回
に処理する枚数の多少にかかわらず、そのバツチ
内での化成膜厚のバラツキを少なくすることが可
能となる。
By controlling the film thickness using the amount of charge according to the present invention, the following effects can be obtained. Regardless of the contact state between the semiconductor wafer and the anode electrode and the contact state between the chemical solution discharged from the fountain head and the semiconductor wafer, the thickness of the chemically formed film can be accurately controlled. This allows formation of fine semiconductor patterns. Furthermore, by controlling the film thickness of each semiconductor wafer, it is possible to reduce variations in the chemically formed film thickness within a batch, regardless of the number of wafers processed at one time.

これらの効果は、他の陽極酸化工程において
も、同様の効果が得られる。
Similar effects can be obtained in other anodizing processes as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の化成機構を示す側
面図であり、図中1a……陽極電極、2a……半
導体ウエハ、3a……化成液、4a……噴水槽、
5a……陰極電極、6a……噴水ヘツドである。 第2図は本発明の実施例の原理を表わした特性
図であり、縦軸は電流で単位はmAであり、横軸
は時間で単位は“秒”である。第3図は本発明の
実施例の化成停止制御電気回路のブロツク図であ
り、図中、1b……安定化電源、2a……半導体
ウエハ、3b……電流検出部、4b……電荷量計
算部、5b……照合部、6b……電荷量設定部、
7b……停止制御部である。
FIG. 1 is a side view showing the chemical conversion mechanism of the embodiment of the present invention, in which 1a...anode electrode, 2a...semiconductor wafer, 3a...chemical solution, 4a...fountain tank,
5a... cathode electrode, 6a... fountain head. FIG. 2 is a characteristic diagram showing the principle of the embodiment of the present invention, in which the vertical axis is current in mA, and the horizontal axis is time in seconds. FIG. 3 is a block diagram of a chemical formation stop control electric circuit according to an embodiment of the present invention, in which 1b... stabilized power supply, 2a... semiconductor wafer, 3b... current detection section, 4b... charge amount calculation section, 5b... verification section, 6b... charge amount setting section,
7b...This is a stop control section.

Claims (1)

【特許請求の範囲】[Claims] 1 一回の陽極酸化によつて複数枚の半導体ウエ
ハに夫々酸化膜を形成する半導体装置の製造方法
において、各半導体ウエハ毎にウエハに流れる陽
極酸化時の電流値を所定の時間間隔で測定してそ
の累積値を求め、該累積値が予め定められた値を
越えると化成を停止することを特徴とする半導体
装置の製造方法。
1. In a method for manufacturing a semiconductor device in which oxide films are formed on multiple semiconductor wafers by one-time anodic oxidation, the value of the current flowing through each semiconductor wafer during anodization is measured at predetermined time intervals. A method for manufacturing a semiconductor device, characterized in that a cumulative value of the cumulative value is determined, and when the cumulative value exceeds a predetermined value, chemical formation is stopped.
JP10995279A 1979-08-28 1979-08-28 Manufacture of semiconductor device Granted JPS5633842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10995279A JPS5633842A (en) 1979-08-28 1979-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10995279A JPS5633842A (en) 1979-08-28 1979-08-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5633842A JPS5633842A (en) 1981-04-04
JPS6262459B2 true JPS6262459B2 (en) 1987-12-26

Family

ID=14523281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10995279A Granted JPS5633842A (en) 1979-08-28 1979-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5633842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492658U (en) * 1990-12-29 1992-08-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916393A (en) * 1972-03-29 1974-02-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916393A (en) * 1972-03-29 1974-02-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492658U (en) * 1990-12-29 1992-08-12

Also Published As

Publication number Publication date
JPS5633842A (en) 1981-04-04

Similar Documents

Publication Publication Date Title
EP0171195B1 (en) Method for detecting endpoint of development
US4629539A (en) Metal layer patterning method
US2913383A (en) Jet-electrolytic method of configuring bodies
US4338157A (en) Method for forming electrical connecting lines by monitoring the etch rate during wet etching
US3010885A (en) Method for electrolytically etching and thereafter anodically oxidizing an essentially monocrystalline semiconductor body having a p-n junction
JPS6262459B2 (en)
US3079536A (en) Film-forming metal capacitors
US3755092A (en) Method of introducing impurities into a layer of bandgap material in a thin-film solid state device
JP3508547B2 (en) Si wafer etching method
JPH0273634A (en) Etching method for semiconductor substrate
US3388047A (en) Controlled electrolytic treatment of materials
US4441967A (en) Method of passivating mercury cadmium telluride using modulated DC anodization
JPS6326537B2 (en)
US3563862A (en) High precision anodizing of thin films
JPS6284536A (en) Manufacture of semiconductor device
JP3947317B2 (en) Anodizing control method and anodizing apparatus
JP2657888B2 (en) Anodizing method and apparatus
JPS6142921A (en) Oxdizing method for electrode and device therefor
KR950000848B1 (en) Forming method of barrier metal
JPH0144014B2 (en)
JP3206360B2 (en) Semiconductor substrate etching method and etching apparatus
JP3531519B2 (en) Silicon wafer etching method
JP2005011566A (en) Positive electrode oxidation device, manufacturing method of oxidation layer, field emission type electron source, and manufacturing method of field emission type electron source
JP3237125B2 (en) Anodizing method for conductive film
JP2000091307A (en) Etching method for semiconductor