JPS6262213A - Encoder apparatus - Google Patents
Encoder apparatusInfo
- Publication number
- JPS6262213A JPS6262213A JP60201617A JP20161785A JPS6262213A JP S6262213 A JPS6262213 A JP S6262213A JP 60201617 A JP60201617 A JP 60201617A JP 20161785 A JP20161785 A JP 20161785A JP S6262213 A JPS6262213 A JP S6262213A
- Authority
- JP
- Japan
- Prior art keywords
- magnetization
- pattern
- track
- signal
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はエンコーダ装置、特に磁気抵抗効果素子(以下
MR素子という)を用いたエンコーダ装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an encoder device, and particularly to an encoder device using a magnetoresistive element (hereinafter referred to as an MR element).
[従来の技術]
最近のプリンタ或いは磁気ディスク装置などのオフィス
用機器の普及は目ざましく、これに伴い回転制御、位置
検出などに用いられるロータリーエンコーダ装置の需要
が急増している。現在ロータリーエンコーダ装置は光学
式がほとんどを占めているが、分解能の向上、応答速度
の向上、ゴミや結露に対する信頼性向上、或いは低価格
化のために磁気式ロータリーエンコーダが増えつつある
。[Prior Art] Recently, office equipment such as printers and magnetic disk drives have become widespread, and with this, demand for rotary encoder devices used for rotation control, position detection, etc. is rapidly increasing. Currently, most rotary encoders are optical, but magnetic rotary encoders are increasingly being used to improve resolution, response speed, reliability against dust and condensation, or to lower prices.
特に被検出体が停止している際、被検出体の絶対的な位
置を複数ビットのアドレスとして直接検出できる、いわ
ゆるアブソリュートタイプのエンコーダは製造が困難で
あるとされていたが、最近では第4図に示すようなロー
タリーエンコーダが提案されている。It was said that it was difficult to manufacture so-called absolute type encoders that can directly detect the absolute position of the detected object as a multi-bit address, especially when the detected object is stopped, but recently A rotary encoder as shown in the figure has been proposed.
第4図において符号1は回転制御をうけるモータで、こ
のモータ1の軸には円周面が磁性体で形成された磁気ド
ラム2が直結されている。磁気ドラム2に設けられた複
数のトラック3は磁化領域と、消去領域により所定のグ
レーコードのパターンを成しており、このパターンをド
ラム2に沿って配置されたMRセンサ4により検出し、
これにより得た電気信号によってモータlの回転を検出
する。In FIG. 4, reference numeral 1 denotes a motor whose rotation is controlled, and a magnetic drum 2 whose circumferential surface is made of a magnetic material is directly connected to the shaft of this motor 1. A plurality of tracks 3 provided on the magnetic drum 2 form a predetermined gray code pattern by magnetized areas and erased areas, and this pattern is detected by an MR sensor 4 arranged along the drum 2.
The rotation of the motor 1 is detected by the electric signal thus obtained.
第5図(A)は第4図の磁気ドラム2に記録する4ビツ
トのグレーコードの一例を示しており、このグレーコー
ドを磁気ドラム2に記録すると、磁気ドラム2の表面の
展開図は第5図(B)のようになる。第5図(B)にお
ける斜線部分は成る周波数で繰り返し反転磁化されたパ
ターンが記録されている領域で、白地部分は未着a1(
或いは消去)状態の領域である。FIG. 5(A) shows an example of a 4-bit gray code recorded on the magnetic drum 2 in FIG. 4. When this gray code is recorded on the magnetic drum 2, the developed view of the surface of the magnetic drum 2 becomes The result will be as shown in Figure 5 (B). The shaded area in FIG. 5(B) is an area where a pattern of repeatedly reversed magnetization at a certain frequency is recorded, and the white area is an area where a1(
(or erased) state.
一方、MRセンサ4の基板に設けられるMR素子5は、
前記の磁化パターンのピッチPの(n=整数)のピッチ
pで折り返されたn木のMR素子から構成されている。On the other hand, the MR element 5 provided on the substrate of the MR sensor 4 is
It is composed of n MR elements folded back at a pitch P of the magnetization pattern (n=an integer).
第6図のようなMR素子を第4図のトラック3にそれぞ
れ約0.1 mmのクリアランスを介して配置する。MR elements as shown in FIG. 6 are arranged in tracks 3 in FIG. 4 with a clearance of about 0.1 mm between them.
第6図のMR素子は複数条のMR素子をFe−Ni、N
1−Goなどの磁気抵抗効果を有する合金と0.03p
m〜0.1pmの厚みに真空蒸着やスパッタなどのいわ
ゆる薄膜形成法により堆積させ、しかるのちにエツチン
グを行なって一体形成したのものである。このパターン
の形成時に各素子の長手方向に一軸異方性を有するよう
に薄膜形成及びエツチングを行なう。The MR element shown in Fig. 6 has multiple MR elements made of Fe-Ni, N
Alloys with magnetoresistive effects such as 1-Go and 0.03p
The film is deposited to a thickness of 0.1 pm to 0.1 pm by a so-called thin film forming method such as vacuum evaporation or sputtering, and then etched to form an integral structure. When forming this pattern, a thin film is formed and etched so that each element has uniaxial anisotropy in the longitudinal direction.
以上のように構成されたMRセンサにより磁気ドラム2
の各トラックの磁界を検出すると、第7図に示すような
検出波形が得られる。第7図において符号71〜74は
第6図のMR素子5の各条がそれぞれ出力する波形で、
これらの合成出力は磁化領域において符号76のように
なる。The magnetic drum 2 is controlled by the MR sensor configured as described above.
When the magnetic field of each track is detected, a detected waveform as shown in FIG. 7 is obtained. In FIG. 7, numerals 71 to 74 are waveforms output by each strip of the MR element 5 in FIG.
These combined outputs look like 76 in the magnetized region.
この出力信号をコンパレータなどを用いた波形処理回路
を通して整形すれば、トラック3の磁化領域のどの部分
においてもONの出力、未着磁領域においてはOFFの
出力を得ることができ、それぞれのトラックの検出信号
のON、OFFの組み合わせにより、グレーコードに対
応した絶対番地の検出が可能になる、磁化領域における
磁化ピッチ、またMR素子のMRセンサのパターンの本
数はモータlの回転数、必要とされる分解能、或いは磁
化ドラムとMRセンサの距離などにより最適な値を定め
ることができる。By shaping this output signal through a waveform processing circuit using a comparator or the like, it is possible to obtain an ON output in any part of the magnetized region of track 3 and an OFF output in the non-magnetized region. The combination of ON and OFF of the detection signal makes it possible to detect the absolute address corresponding to the gray code. The optimum value can be determined based on the resolution or the distance between the magnetized drum and the MR sensor.
[発明が解決しようとする問題点]
ところが、上述の従来例においては、第8図(A)に示
すように磁化領域7と未着磁領域8が設けられている。[Problems to be Solved by the Invention] However, in the conventional example described above, a magnetized region 7 and an unmagnetized region 8 are provided as shown in FIG. 8(A).
従ってこれらの領域の境界において、磁化領域端部の磁
束の分布が符号11で示すように連続して磁化された部
分の磁束の分布10よりも大きく広がっている。従って
第8図(A)のトラック図の左から右に走査した場合、
検出波形は第8図(B)のようになる。この波形をコン
パレータなどを用いて所定のしきい値とそのtvとを比
較することにより波形整形を行なうと、第8図(C)に
示すような検出出力が得られる。すなわち第8図に見る
ように実際にMRセンサの前を境界9が通過する時点に
対して検出信号にΔTの検出誤差が生じている。この誤
差は磁気ドラムの回転方向が逆でも同様に生じる。従つ
て、従来構成では良好な検出精度を得るのが困難である
。Therefore, at the boundary between these regions, the magnetic flux distribution at the end of the magnetized region is wider than the magnetic flux distribution 10 at the continuously magnetized portion, as indicated by reference numeral 11. Therefore, when scanning from left to right on the track diagram in Figure 8(A),
The detected waveform is as shown in FIG. 8(B). When this waveform is shaped by comparing its tv with a predetermined threshold value using a comparator or the like, a detection output as shown in FIG. 8(C) is obtained. That is, as shown in FIG. 8, a detection error of ΔT occurs in the detection signal with respect to the point in time when the boundary 9 actually passes in front of the MR sensor. This error similarly occurs even if the direction of rotation of the magnetic drum is reversed. Therefore, it is difficult to obtain good detection accuracy with the conventional configuration.
また第5図(B)に示すように、グレーコードを形成す
るためには隣接するトラックに未着磁領域と磁化領域を
並べなければならない場合もあり、このときの磁界の干
渉を避けるため各トラックの間隔を一定以上開けねばな
らず、磁気ドラムの小型化は困難であった。Furthermore, as shown in Fig. 5(B), in order to form a gray code, it is sometimes necessary to line up unmagnetized areas and magnetized areas on adjacent tracks, and in order to avoid magnetic field interference at this time, each It was difficult to miniaturize the magnetic drum because the tracks had to be spaced at a certain distance or more.
[問題点を解決するための手段]
以上の問題点を解決するため、本発明においては磁気抵
抗効果素子を含む検出手段と、被検出体よりなるエンコ
ーダ装置にあって、第1の磁化パターンと、該第1の磁
化パターンとは磁化方向が所定角度具なる第2の磁化パ
ターンとを前記検出手段と前記被検出体との相対的な移
動方向について配列してなるトラックを前記被検出体が
有する構成を採用した。[Means for Solving the Problems] In order to solve the above problems, the present invention provides an encoder device comprising a detection means including a magnetoresistive element and an object to be detected, in which the first magnetization pattern and , the first magnetization pattern is a second magnetization pattern whose magnetization direction is at a predetermined angle, and the track formed by arranging the first magnetization pattern and the second magnetization pattern in a direction of relative movement between the detection means and the detection object, when the detection object We adopted a configuration with
[作 用]
以上のような構成によれば、第1の磁化パターンにより
各MR素子に対し位相のずれた磁界の変化が印加される
ので、この領域ではMR素子の出力は0となる。そして
この第1の磁化パターンと第2の磁化パターンとの境界
部では第2の磁化パターン部より発生される磁束の広が
りが小さくなり、立ち上がり(下がり)の鋭い検出信号
を得ることができ、検出精度を著しく向上させることが
できる。[Function] According to the above configuration, since the first magnetization pattern applies a change in the magnetic field with a phase shift to each MR element, the output of the MR element becomes 0 in this region. At the boundary between the first magnetization pattern and the second magnetization pattern, the spread of the magnetic flux generated from the second magnetization pattern becomes smaller, making it possible to obtain a detection signal with a sharp rise (fall). Accuracy can be significantly improved.
[実施例]
以下図面に示す実施例に基づき本発明の詳細な説明する
。[Examples] The present invention will be described in detail below based on examples shown in the drawings.
本発明によるエンコーダ装置の構成は、第4図に示した
従来例とほぼ同様の磁気ドラム2及びMRセンサ4から
成るものとする。但しトラック3には第1図(A)、(
B)に示すような方法で磁化パターンを形成する。The configuration of the encoder device according to the present invention includes a magnetic drum 2 and an MR sensor 4, which are almost the same as the conventional example shown in FIG. However, for track 3, there are
A magnetization pattern is formed by the method shown in B).
第1図(A)は磁気ドラム2の2本のトラック3を示し
ている。まずトラック3に対して角度θのアジマス角度
をもって図示するような傾斜した磁化パターンを磁気ド
ラム2の全周にわたって形成する。傾斜角度θは次の式
により決定する。FIG. 1A shows two tracks 3 on a magnetic drum 2. FIG. First, an inclined magnetization pattern as shown in the figure with an azimuth angle of θ with respect to the track 3 is formed over the entire circumference of the magnetic drum 2. The inclination angle θ is determined by the following formula.
(n−1)
θ= j a n ’ −p
ここでWはトラック3の幅、nはMR素子の条数、pは
MR素子のピッチである。このような磁化パターンの形
成された領域をここではアジマス領域(13)と呼ぶ。(n-1) θ=j a n ′ −p Here, W is the width of the track 3, n is the number of MR elements, and p is the pitch of the MR elements. The region in which such a magnetization pattern is formed is herein referred to as an azimuth region (13).
しかるのちに、各トラック上にアジマス領域13に重ね
て第1図(B)に示すように従来例の磁化領域7と同様
の所定のグレーコードに対応した磁化領域を形成する。Thereafter, a magnetized region corresponding to a predetermined gray code, similar to the magnetized region 7 of the conventional example, is formed on each track so as to overlap the azimuth region 13, as shown in FIG. 1(B).
この磁化領域は従来の磁化領域7と区別するため、以下
では信号領域14と呼ぶ。In order to distinguish this magnetized region from the conventional magnetized region 7, this magnetized region will be referred to as a signal region 14 below.
以上のような構成によれば、第2図(A)に示すように
信号領域14とアジマス領域13の境界9において第8
図の従来例に比べて磁束15の広がりが小さくなり、境
界領域以外の信号領域14とほぼ同様の広がりとなる。According to the above configuration, as shown in FIG. 2(A), the eighth
The spread of the magnetic flux 15 is smaller than that of the conventional example shown in the figure, and the spread is almost the same as that of the signal region 14 other than the boundary region.
従ってMR素子から出力される信号は第2図(B)のよ
うにほぼ境界9の区分の通過に対応して立ち上がり、コ
ンパレータなどを用いて波形成形した出力は第2図(C
)のように境界9の位置に正確に対応した立ち上がりと
なる。従って従来のように検出誤差が生じることがない
。またアジマス領域13においてはMRセンサに入力さ
れる磁界の位相がずれているため、1本のMR素子の両
端部で磁界がちょうど打ち消され、磁界の検出信号とし
て出力されない。Therefore, the signal output from the MR element rises approximately corresponding to the passage of the boundary 9 as shown in FIG. 2(B), and the output waveform-shaped using a comparator etc.
), the rise accurately corresponds to the position of the boundary 9. Therefore, detection errors do not occur as in the conventional case. Further, in the azimuth region 13, since the phase of the magnetic field input to the MR sensor is shifted, the magnetic field is exactly canceled at both ends of one MR element, and is not output as a magnetic field detection signal.
さらにアジマス領域の設置により境界9の部分の隣接ト
ラック方向への磁界の広がりも従来より小さくなるので
、隣接するトラ・アク間の距離を近づけることができ、
従って装置全体の小型化が可能になる。Furthermore, by installing the azimuth region, the spread of the magnetic field in the direction of adjacent tracks at the boundary 9 becomes smaller than before, so the distance between adjacent tracks and tracks can be reduced.
Therefore, it is possible to downsize the entire device.
以上の実施例では、アジマス領域の磁化方向を隣接する
トラック同士で同一としたが、第3図(A)に示すよう
に隣接するトラックの磁化方向を信号領域の磁化方向に
対して対称になるようにアジマス領域を形成し、しかる
のちに第3図(B)のように、上述と同様に信号領域1
4を形成する構成とすれば、さらにトラ・アク間の干渉
を小さくすることができる。従ってトラ・アク間の距離
をより小さくでき、装置の小型化を達成できる。In the above embodiment, the magnetization direction of the azimuth region is the same between adjacent tracks, but as shown in FIG. 3(A), the magnetization direction of the adjacent tracks is made symmetrical with respect to the magnetization direction of the signal region. Then, as shown in FIG. 3(B), the signal region 1 is formed in the same manner as described above.
If the configuration is such that 4 is formed, the interference between the traverse and the ac can be further reduced. Therefore, it is possible to further reduce the distance between the tractors and the axes, thereby achieving miniaturization of the device.
以上の実施例では、信号領域14の磁化方向をMRセン
サの移行方向に対し傾斜させずに形成しているが、信号
領域も磁気ドラムの回転軸に対し傾斜して設けてもよい
、このとき隣接するトラック同士で磁化方向を変化させ
れば、信号領域における隣接するトラックとのクロスト
ークを減少させ、トラック間隔をより小さくすることが
できる。In the above embodiment, the magnetization direction of the signal region 14 is formed without being inclined with respect to the transfer direction of the MR sensor, but the signal region may also be provided with an inclination with respect to the rotation axis of the magnetic drum. By changing the magnetization direction between adjacent tracks, crosstalk between adjacent tracks in the signal region can be reduced and the track spacing can be made smaller.
[効 果]
以上の説明から明らかなように、本発明によれば、磁気
抵抗効果素子を含む検出手段と、被検出体よりなるエン
コーダ装置にあって第1の磁化パターンと、該第1の磁
化パターンとは磁化方向が所定角度異なる第2の磁化パ
ターンとを、前記検出手段と前記被検出体との相対的な
移動方向に配列してなるトラックを前記被検出体に設け
た構成を採用しているので、構成を複雑にすることなく
検出精度を大幅に向上し、装置全体をより小型に形成で
きる優れた効果がある。[Effects] As is clear from the above description, according to the present invention, in an encoder device including a detection means including a magnetoresistive element and a detected object, a first magnetization pattern and a first magnetization pattern are provided. A configuration is adopted in which the detected object is provided with a track in which a second magnetized pattern whose magnetization direction differs by a predetermined angle from the magnetization pattern is arranged in a direction of relative movement between the detection means and the detected object. As a result, detection accuracy can be greatly improved without complicating the configuration, and the entire device can be made smaller.
第1図〜第3図は本発明を説明するもので、第1図(A
)、(B)は本発明における磁化パターンの構成を示し
た説明図、第2図(A)〜(C)はエンコーダの磁化パ
ターンによる磁束の広がりとMR素子の出力信号及び波
形整形後の出方信号をそれぞれ示した説明図、第3図(
A)、(B)は本発明による他の磁化パターンの構成を
示した説明図、第4図は従来のロータリーエンコーダの
構成を示した斜視図、第5図(A)、(B)はそれぞれ
磁気ドラムに記録するグレーコード及びそれに対応した
磁気記録パターンの説明図、第6図はMR素子の構成を
示した説明図、第7図はMR素子の出力を示した波形図
、出8図は従来装置における磁束の広がり、MR素子の
出方及び波形整形後の検出出力をそれぞれ示した説明図
である。
3・・・トラック 13・・・アジマス領域14
・・・信号領域
特許出願人 キャノン電子株式会社
(A)
トク、1.り上の不在イL々有域の富tRm不在東の広
がりと出力ヱ形の訛日月口
M2図
■ンコーダ装置の徐Sl視回
第4図
←外→]
(A)
グし一コードの脱Bn園
第5図
MR素子の酋、明園
第6図
MR蚤子の出1)Σボす”、lY/肥
第7ffl
MR素子。
D出力1示す説明口
第8図
Cn−Figures 1 to 3 are for explaining the present invention, and Figure 1 (A
) and (B) are explanatory diagrams showing the configuration of the magnetization pattern in the present invention, and Figures 2 (A) to (C) are the spread of magnetic flux due to the magnetization pattern of the encoder, the output signal of the MR element, and the output after waveform shaping. An explanatory diagram showing each direction signal, Fig. 3 (
A) and (B) are explanatory diagrams showing the configuration of other magnetization patterns according to the present invention, FIG. 4 is a perspective view showing the configuration of a conventional rotary encoder, and FIGS. 5 (A) and (B) are respectively An explanatory diagram of the gray code recorded on the magnetic drum and the corresponding magnetic recording pattern, Fig. 6 is an explanatory diagram showing the configuration of the MR element, Fig. 7 is a waveform diagram showing the output of the MR element, and Fig. 8 is an explanatory diagram showing the configuration of the MR element. FIG. 3 is an explanatory diagram showing the spread of magnetic flux, the direction of the MR element, and the detected output after waveform shaping in a conventional device. 3... Track 13... Azimuth area 14
...Signal area patent applicant Canon Electronics Co., Ltd. (A) Toku, 1. Absence of wealth tRm Absence of wealth tRm Absence of east spread and output 〉 form of deformation M2 Diagram De-Bn Garden Figure 5 MR Element Control, Mei Garden Figure 6 MR Flea Output 1) ΣBoss'', lY/Fast 7ffl MR element. Explanation port showing D output 1 Figure 8 Cn-
Claims (1)
なるエンコーダ装置であって、第1の磁化パターンと、
該第1の磁化パターンとは磁化方向が所定角度異なる第
2の磁化パターンとを、前記検出手段と前記被検出体と
の相対的な移動方向について配列してなるトラックを前
記被検出体が有することを特徴とするエンコーダ装置。 2)前記検出手段は夫々前記トラックの幅方向に延在す
るよう、配され直列接続された複数条の磁気抵抗効果素
子を含むことを特徴とする特許請求の範囲第1項に記載
のエンコーダ装置。 3)前記トラック幅をW、前記複数条の磁気抵抗効果素
子の配列ピッチ、配置条数を夫々p、nとしたとき、前
記第1の磁化パターンの磁化方向に対する前記第2の磁
化パターンの磁化方向の傾斜角θを θ=tan^−^1[(n−1)/W]p とすることを特徴とする特許請求の範囲第2項に記載の
エンコーダ装置。 4)前記被検出体は前記トラックを並列して複数本有し
、互いに隣接するトラックに於いて前記第2の磁化パタ
ーンの磁化方向を一致させると共に、該第2の磁化パタ
ーンの磁化方向に対する前記第1の磁化パターンの磁化
方向の傾斜角は互いに逆向きとすることを特徴とする特
許請求の範囲第2項または第3項に記載のエンコーダ装
置。 5)前記第2の磁化パターンの磁化方向を前記相対的な
移動方向に対し所定の角度傾斜させたことを特徴とする
特許請求の範囲第1項から第4項までのいずれか1項に
記載のエンコーダ装置。[Claims] 1) An encoder device comprising a detection means including a magnetoresistive element and a detected object, the encoder device comprising a first magnetization pattern;
The object to be detected has a track in which a second magnetization pattern whose magnetization direction differs by a predetermined angle from the first magnetization pattern is arranged in a direction of relative movement between the detection means and the object to be detected. An encoder device characterized by: 2) The encoder device according to claim 1, wherein the detection means includes a plurality of magnetoresistive elements arranged and connected in series so as to each extend in the width direction of the track. . 3) Magnetization of the second magnetization pattern with respect to the magnetization direction of the first magnetization pattern, where the track width is W, and the arrangement pitch and number of arrangement strips of the plurality of magnetoresistive elements are p and n, respectively. 3. The encoder device according to claim 2, wherein the inclination angle θ of the direction is θ=tan^-^1[(n-1)/W]p. 4) The object to be detected has a plurality of tracks arranged in parallel, and the magnetization direction of the second magnetization pattern is made to match in adjacent tracks, and the magnetization direction of the second magnetization pattern is made to match the magnetization direction of the second magnetization pattern. 4. The encoder device according to claim 2, wherein the inclination angles of the magnetization directions of the first magnetization patterns are opposite to each other. 5) According to any one of claims 1 to 4, the magnetization direction of the second magnetization pattern is inclined at a predetermined angle with respect to the relative movement direction. encoder device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201617A JPH0711430B2 (en) | 1985-09-13 | 1985-09-13 | Encoder device |
US06/893,215 US4785241A (en) | 1985-08-08 | 1986-08-05 | Encoder unit using magnetoresistance effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60201617A JPH0711430B2 (en) | 1985-09-13 | 1985-09-13 | Encoder device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6262213A true JPS6262213A (en) | 1987-03-18 |
JPH0711430B2 JPH0711430B2 (en) | 1995-02-08 |
Family
ID=16444026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60201617A Expired - Lifetime JPH0711430B2 (en) | 1985-08-08 | 1985-09-13 | Encoder device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0711430B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234621U (en) * | 1988-08-26 | 1990-03-06 | ||
JPH0431918U (en) * | 1990-07-11 | 1992-03-16 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220787A (en) * | 1990-01-26 | 1991-09-27 | Yazaki Corp | Flexible circuit body and manufacture thereof |
JPH06504139A (en) * | 1990-12-31 | 1994-05-12 | コピン・コーポレーシヨン | Single crystal silicon array element for display panels |
JPH1126733A (en) * | 1997-07-03 | 1999-01-29 | Seiko Epson Corp | Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display and electronic equipment |
JP2003258211A (en) * | 2001-12-28 | 2003-09-12 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003289136A (en) * | 2002-03-28 | 2003-10-10 | Toshiba Corp | Active matrix substrate and manufacturing method and display unit thereof |
JP2003323132A (en) * | 2002-04-30 | 2003-11-14 | Sony Corp | Method for manufacturing thin film device and semiconductor device |
WO2004043849A2 (en) * | 2002-11-08 | 2004-05-27 | Commissariat A L'energie Atomique | Method for production of a component with a micro-joint and component produced by said method |
-
1985
- 1985-09-13 JP JP60201617A patent/JPH0711430B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220787A (en) * | 1990-01-26 | 1991-09-27 | Yazaki Corp | Flexible circuit body and manufacture thereof |
JPH06504139A (en) * | 1990-12-31 | 1994-05-12 | コピン・コーポレーシヨン | Single crystal silicon array element for display panels |
JPH1126733A (en) * | 1997-07-03 | 1999-01-29 | Seiko Epson Corp | Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display and electronic equipment |
JP2003258211A (en) * | 2001-12-28 | 2003-09-12 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003289136A (en) * | 2002-03-28 | 2003-10-10 | Toshiba Corp | Active matrix substrate and manufacturing method and display unit thereof |
JP2003323132A (en) * | 2002-04-30 | 2003-11-14 | Sony Corp | Method for manufacturing thin film device and semiconductor device |
WO2004043849A2 (en) * | 2002-11-08 | 2004-05-27 | Commissariat A L'energie Atomique | Method for production of a component with a micro-joint and component produced by said method |
JP2006505418A (en) * | 2002-11-08 | 2006-02-16 | コミサリア、ア、レネルジ、アトミク | Manufacturing method of component with micro joint and component manufactured by the manufacturing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234621U (en) * | 1988-08-26 | 1990-03-06 | ||
JPH0431918U (en) * | 1990-07-11 | 1992-03-16 |
Also Published As
Publication number | Publication date |
---|---|
JPH0711430B2 (en) | 1995-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904937A (en) | Apparatus for magnetically detecting positions with minimum length magnetic information units recorded on a plurality of magnetic tracks | |
US4785241A (en) | Encoder unit using magnetoresistance effect element | |
EP0065625A2 (en) | A capacitive transducer for providing precise angular position information | |
EP0031500B1 (en) | Servo system for centering a transducer over a path | |
JP3037380B2 (en) | Magnetic encoder | |
JPS58154612A (en) | Detector of displacement quantity | |
US20060202681A1 (en) | Magnetic encoder and signal processing circuit for the magnetic encoder | |
US20040080855A1 (en) | Magnetic recording and reproducing apparatus and method and thin film magnetic head used therein | |
JPS6262213A (en) | Encoder apparatus | |
JPH02271216A (en) | Magnetic encoder | |
JPH0617800B2 (en) | Magnetic encoder | |
US6281675B1 (en) | Self calibrating embedded stripe based timing tracking servo system for helical recorders | |
JPS6262215A (en) | Encoder apparatus | |
JP2598782B2 (en) | Magnetic encoder device | |
KR0185185B1 (en) | Helical scan-type rotary head drum unit | |
JP2547334B2 (en) | Position detection device | |
JPH03210422A (en) | Rotary encoder | |
JPS6153644B2 (en) | ||
JP2957130B2 (en) | Rotational position detector | |
JPH01119715A (en) | Magnetic encoder | |
JPH01239413A (en) | Magnetic absolute encoder device | |
JPH0781880B2 (en) | Magnetic absolute encoder device | |
EP1193465A1 (en) | Angle detector | |
JPH0694475A (en) | Magnetic type absolute valve encoder | |
JPH049613A (en) | Magnetic encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |