JPS62620A - Subcombustion chamber for diesel engine - Google Patents

Subcombustion chamber for diesel engine

Info

Publication number
JPS62620A
JPS62620A JP13683485A JP13683485A JPS62620A JP S62620 A JPS62620 A JP S62620A JP 13683485 A JP13683485 A JP 13683485A JP 13683485 A JP13683485 A JP 13683485A JP S62620 A JPS62620 A JP S62620A
Authority
JP
Japan
Prior art keywords
heat
combustion chamber
thermal stress
slit
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13683485A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamoto
博 河本
Masaharu Miyano
宮野 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP13683485A priority Critical patent/JPS62620A/en
Publication of JPS62620A publication Critical patent/JPS62620A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To obtain the captioned apparatus which possesses the superior durability and in which generation of crack is prevented at high temperature, by diving or forming a slit onto a subcombustion chamber body made of heat-resisting alloy or ceramics and preventing the concentration of thermal stress by releasing the thermal stress. CONSTITUTION:A subcombustion chamber body 1 made of the heat-resisting material such as heat resisting alloy and ceramics is divided in the longitudinal direction into at least two parts by a cut surface 4 including an injection hole 2. Said two parts are jointed at a regular position by a proper adhesion means, and fastened by an insertion ring 3 which is made of heat-resisting material and forms the flange of the chamber body 1 and an integrally formed body is obtained. In other case, a slit which reaches the outer peripheral surface, including the injection port 2, is formed at one position, and the separated slit surfaces are butt-jointed, and similarly an integrally formed body is obtained. Then, the thermal stress due to the temperature difference at high temperature can be released, and the concentration of thermal stress is avoided, and the generation of crack can be prevented. Thus, the subcombustion chamber which is inexpensive and possesses the superior heat-resisting crackproofness and the superior durability can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディーゼルエンジン用副燃焼室チャンバーに関
し、詳しくは副燃焼室チャンバーの噴孔の周縁部の耐熱
亀裂性の向上を図ることにより耐久性の向上を図ったも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sub-combustion chamber for a diesel engine, and more specifically, durability is improved by improving the heat cracking resistance of the peripheral edge of the nozzle hole of the sub-combustion chamber. The aim is to

従来の技術と問題点 副燃焼室付きディーゼルエンジンにおいて、ピストンに
より圧縮された高温、高圧の空気が渦流室6に流入して
渦流を生じ、この渦流に噴射された燃料の大部分は副燃
焼室で急激に燃焼し、燃焼した高温ガスは噴孔2を通っ
て主燃焼室に噴射されると共に、着火遅れによる一部の
未燃焼燃料は噴孔2を通って、主燃焼室に噴射して完全
に燃焼され燃焼状態の改善が図られている。
Conventional Technology and Problems In a diesel engine with a sub-combustion chamber, high-temperature, high-pressure air compressed by a piston flows into the vortex chamber 6 to generate a vortex, and most of the fuel injected into this vortex flows into the sub-combustion chamber. The high-temperature gas is injected into the main combustion chamber through the nozzle hole 2, and some unburned fuel due to the ignition delay passes through the nozzle hole 2 and is injected into the main combustion chamber. It has been completely combusted and the combustion condition has been improved.

しかしながら、第8図に示すように副燃焼室チャンバー
本体1に噴孔2を形成すると、噴孔2と渦流室6の底面
7と、燃焼室チャンバー本体1の底面8との間に断面積
の小さい鋭角部9及び10が形成されてしまい、且つ噴
孔部は高温ガスが通過することから、かなりの高温に曝
されるため噴孔の鋭角部9及び10に、熱が蓄積されて
異常に加熱されてしまい、温度差による熱膨張係数の違
いで熱応力の集中が起こり、その熱応力集中に起因して
亀裂を生じる。亀裂が一旦生じると熱の伝播が遮断され
て、益々局部加熱されて亀裂が促進され、更に温度が上
昇してその一部が焼損、脱落を起す。このように噴孔部
の鋭角部に焼損や亀裂が発生してエンジンの耐久性が劣
るという問題があった。
However, when the nozzle holes 2 are formed in the main body 1 of the auxiliary combustion chamber as shown in FIG. Small acute angles 9 and 10 are formed, and since high temperature gas passes through the nozzle holes, they are exposed to quite high temperatures, so heat accumulates in the acute angles 9 and 10 of the nozzle holes, causing abnormal conditions. When heated, thermal stress concentration occurs due to the difference in thermal expansion coefficient due to temperature difference, and cracks occur due to the thermal stress concentration. Once a crack occurs, the propagation of heat is blocked, and the localized area is heated even more, promoting the crack, and the temperature further increases, causing part of it to burn out and fall off. As described above, there has been a problem in that burnout and cracks occur at the acute angles of the nozzle holes, resulting in poor engine durability.

更に最近エンジンの燃費低減や性能向上のため、熱効率
の向上が図られ副燃焼室の燃焼最高温度、燃焼最高圧力
が高くなり、エンジンの寿命を決定する副燃焼室チャン
バーとして要求される条件が益々過酷となってきており
、副燃焼室チャンバーには断熱性、耐熱性、耐熱亀裂性
、耐熱疲労性等が益々強く要求されている。
Furthermore, recently, efforts have been made to improve thermal efficiency in order to reduce engine fuel consumption and improve performance, and the maximum combustion temperature and maximum combustion pressure of the sub-combustion chamber have become higher, and the conditions required for the sub-combustion chamber, which determine the life of the engine, are becoming increasingly strict. These conditions have become increasingly harsh, and the sub-combustion chamber is increasingly required to have heat insulation, heat resistance, heat crack resistance, heat fatigue resistance, etc.

従来副燃焼室チャンバー材として、オーステナイト系で
 S(1,HI3.5UH310,5UH661、Ni
mocast80、フェライト系で5UH4,マルテン
サイト系で5tJH616゜5UH3などの耐熱鋼や耐
熱合金が用いられていたが、オーステナイト系は熱膨張
係数が太きいため熱疲労によって割れやすい、フェライ
ト系は高温強度がないため脱落や変形がおきる。マルテ
ンサイト系は熱膨張率が小さく高温強度はあるが、耐酸
化性がないため焼損する等耐熱疲労性、耐熱衝撃性が不
充分である等満足すべきものはなく、耐久性が充分とは
いえなくなってきた。
Traditionally, austenitic materials such as S (1, HI3.5UH310, 5UH661, Ni
Heat-resistant steels and heat-resistant alloys such as mocast80, 5UH4 for ferritic type, and 5tJH616゜5UH3 for martensitic type were used, but austenitic type has a large coefficient of thermal expansion and is prone to cracking due to thermal fatigue, while ferritic type has low high temperature strength. Otherwise, it may fall off or become deformed. Martensitic materials have a low coefficient of thermal expansion and high-temperature strength, but are unsatisfactory due to lack of oxidation resistance, resulting in burnout, insufficient thermal fatigue resistance, and thermal shock resistance, and although they have sufficient durability. It's gone.

又Nimocast80は高価な金属元素Co。In addition, Nimocast 80 is made of expensive metal element Co.

Ni等を多量に含有するため非常に高価であり経済的に
満足するものではない。
Since it contains a large amount of Ni etc., it is very expensive and is not economically satisfactory.

近年耐熱性、断熱性に優れているセラミックスが着目さ
れ、チャンバー材への適用について種々状みがなされて
いるが、熱効率を向上させるには特に断熱性に優れたセ
ラミックスであるジルコニア、コージェライト等が、焼
損防止には特に耐熱性ニ優れたセラミックスである窒化
珪素、炭化珪素等が適している等、熱効率の向上と耐久
性の向上との間に均衡上の問題があり満足のいくもので
はない。
In recent years, ceramics with excellent heat resistance and heat insulation properties have attracted attention, and various applications have been made for chamber materials.In order to improve thermal efficiency, ceramics with particularly excellent heat insulation properties such as zirconia and cordierite are used. However, ceramics with excellent heat resistance, such as silicon nitride and silicon carbide, are particularly suitable for preventing burnout, but this is not satisfactory due to the problem of balancing between improving thermal efficiency and improving durability. do not have.

問題点を解決するための手段 本発明は上述した副燃焼室チャンバーの特異性に着目し
、安価で耐熱亀裂性の優れた副燃焼室チャンバー本体の
材料について研究してきたが、上述の過酷な条件に耐え
る材料は益々高質化し高価なものとなり、更に加工性も
悪くなり充分に耐久性のある、単一の材料として性能的
な面や経済的な面からも限界に至っている。
Means for Solving the Problems The present invention has focused on the peculiarities of the auxiliary combustion chamber described above, and has researched materials for the auxiliary combustion chamber main body that are inexpensive and have excellent heat cracking resistance. Materials that can withstand these conditions have become increasingly high-quality and expensive, and their workability has also deteriorated, reaching the limits of performance and economics as a single, sufficiently durable material.

本発明者等は従来の発想を転換して亀裂発生の原因であ
る熱応力の集中に耐えることを考えるよりも、亀裂発生
の原因となる熱応力を逃して熱応力の集中をなくしてや
れば、亀裂の発生を防げるのではないかとの考えにたち
至り、研究を続けた結果本発明に至ったものである。
The inventors believe that rather than changing the conventional way of thinking and considering how to withstand the concentration of thermal stress that causes cracks, we can release the thermal stress that causes cracks and eliminate the concentration of thermal stress. We came up with the idea that it might be possible to prevent the occurrence of cracks, and as a result of continued research, we arrived at the present invention.

耐熱合金或いはセラミックス等の耐熱性素材からなる副
燃焼室チャンバー本体1を噴孔2を含む切断面4にて2
個以上に縦に分割して、夫々の分割された2個以上のブ
ロックを適宜の接着手段により、相互に正規の位置に合
体させて副燃焼室チャンバー本体1のフランジ3aを形
成する耐熱性素材のインサートリング3で締めつけて一
体型とする。或いは副燃焼室チャンバー本体1に、噴孔
2を含み縦に外周面に至るスリット5を一個所設けて、
切り離されたスリットの切り口面を適宜の接着手段によ
り、突き合わせて正規の真円の状態にして、副燃焼室チ
ャンバー本体1のフランジ3aを形成するインサートリ
ング3で締めつけて一体型とし、高温時における温度差
の熱膨張係数の差による熱応力を逃してやることにより
、熱応力の集中をなくし亀裂の発生を防止したものであ
り、安価な耐熱亀裂性に優れた耐久性のある副燃焼室チ
ャンバーを提供するものである。
A sub-combustion chamber main body 1 made of a heat-resistant material such as a heat-resistant alloy or ceramics is cut at a cut surface 4 including the nozzle holes 2.
A heat-resistant material that is vertically divided into two or more blocks, and the two or more divided blocks are joined together at a proper position using an appropriate adhesive means to form the flange 3a of the sub-combustion chamber main body 1. Tighten with insert ring 3 to make it into one piece. Alternatively, one slit 5 including the nozzle hole 2 and extending vertically to the outer circumferential surface is provided in the chamber body 1 of the sub-combustion chamber,
The cut surfaces of the separated slits are butted together using an appropriate bonding means to form a regular perfect circle, and then tightened with the insert ring 3 that forms the flange 3a of the auxiliary combustion chamber main body 1 to form an integrated structure. By dissipating the thermal stress caused by the difference in thermal expansion coefficient due to temperature difference, it eliminates the concentration of thermal stress and prevents the occurrence of cracks.It is an inexpensive, durable secondary combustion chamber with excellent heat crack resistance. This is what we provide.

チャンバー本体1をセラミックスにて、インサートリン
グ3は耐熱性合金で製作して一体型とすること等耐熱性
素材を適宜組み合わせることは勿論自在である。
It is of course possible to combine heat-resistant materials as appropriate, such as by making the chamber body 1 from ceramics and the insert ring 3 from a heat-resistant alloy to form an integrated structure.

実施例 以下本発明の実施例を図面に基づいて具体的しこ説明す
る。
EXAMPLES Hereinafter, examples of the present invention will be specifically explained based on the drawings.

第1図ないし第4図に、副燃焼室チャンノベ一本体1を
分割した場合の実施例を示す。
1 to 4 show an embodiment in which the auxiliary combustion chamber chamber body 1 is divided.

第1図と第2図に示すように耐熱合金の5UH310か
らなる副燃焼室チャンバー本体1を、噴孔2を含む噴孔
2に平行な中心線上の切断面4にて縦に2個に分割して
製作し、夫々の分割された2個のブロックを適宜の接着
手段により、相互に正規の突き合わせ位置に合体させた
後、副燃焼室チャンバー本体1のフランジ3aを形成す
る耐熱合金の5UH310からなるインサートリング3
内に焼きばめて一体型とした。
As shown in Figures 1 and 2, a sub-combustion chamber main body 1 made of heat-resistant alloy 5UH310 is vertically divided into two along a cut plane 4 on a center line parallel to the nozzle holes 2. After combining the two divided blocks at the proper abutting positions with appropriate adhesive means, the flange 3a of the auxiliary combustion chamber chamber body 1 is made of heat-resistant alloy 5UH310. Naru insert ring 3
It was baked in and made into an integrated piece.

第3図は副燃焼室チャンバー本体1を噴孔2を含む噴孔
2に直角方向の切断面4aにて縦に2個に分割した実施
例を示す。
FIG. 3 shows an embodiment in which the chamber main body 1 of the auxiliary combustion chamber is vertically divided into two pieces along a cut surface 4a perpendicular to the nozzle hole 2. As shown in FIG.

第4図は副燃焼室チャンバー本体1を噴孔2を含む噴孔
2に、平行方向1個所とある傾きを有する2個所の切断
面4bにて縦に3個に分割した実施例を示す。
FIG. 4 shows an embodiment in which the chamber main body 1 of the auxiliary combustion chamber is vertically divided into three parts including the nozzle holes 2 by cutting surfaces 4b at one place in a parallel direction and at two places having a certain inclination.

尚この他、副燃焼室チャンバー本体を分割する位置、数
は熱応力の発生状況や亀裂の発生状態を考慮して適宜選
定される。
In addition, the position and number of divisions of the main body of the auxiliary combustion chamber are appropriately selected in consideration of the occurrence of thermal stress and the occurrence of cracks.

第5図及び第6図に副燃焼室チャンバー本体1にスリッ
ト5を入れた場合の実施例を示す。
FIGS. 5 and 6 show an embodiment in which a slit 5 is provided in the chamber main body 1 of the auxiliary combustion chamber.

第5図は耐熱合金5UH310からなる副燃焼室チャン
バー本体1に、噴孔2を含み縦に外周面に達するスリッ
ト5を、噴孔2に平行に傾き方向の中心線上に一個所入
れ、切り離されたスリット5の切り口面を適宜の接着手
段により、突き合わせて正規の真円の状態に仮止め固定
した後、第1図に示すように副燃焼室チャンバー本体1
のフランジ3aを形成する耐熱合金5UH310からな
るインサートリング3内に焼きばめて一体型とした。
Figure 5 shows that a slit 5 containing the nozzle hole 2 and extending vertically to the outer circumferential surface of the sub-combustion chamber main body 1 made of heat-resistant alloy 5UH310 is cut out by inserting a slit 5 parallel to the nozzle hole 2 on the center line of the inclination direction. After the cut surfaces of the slits 5 are butted together and temporarily fixed in a regular perfect circle state using an appropriate adhesive means, the auxiliary combustion chamber chamber body 1 is assembled as shown in FIG.
It was shrink-fitted into an insert ring 3 made of heat-resistant alloy 5UH310 that forms the flange 3a of the flange 3a.

第6図はスリット5aを噴孔2の傾き方向と反対側の中
心線上に一個所入れた例を示す。
FIG. 6 shows an example in which a slit 5a is provided at one location on the center line of the nozzle hole 2 on the opposite side to the direction of inclination.

尚この他、副燃焼室チャンバー本体にスリットを入れる
位置は、熱応力の発生情況や亀裂の発生状態を考慮して
適宜選定される。
In addition, the position where the slit is made in the main body of the auxiliary combustion chamber is appropriately selected in consideration of the occurrence of thermal stress and the state of occurrence of cracks.

スリットを入れる場合、副燃焼室チャンバーの外周面は
、スリン1−の切りしろを含みスリットを入れてスリッ
ト面を突き合わせた時に、外周面が真円となるように楕
円状に加工されである。
When a slit is formed, the outer circumferential surface of the sub-combustion chamber is processed into an elliptical shape, including the cutting margin of the slit 1-, so that when the slit is made and the slit surfaces are butted together, the outer circumferential surface becomes a perfect circle.

副燃焼室チャンバー本体1をインサートリング3に焼き
ばめる場合に、焼きばめ代は高温においても締めつけ力
が作用して、弛みが生じないよう適宜選定される。又副
燃焼室チャンバーとインサートリングとの間に、圧縮時
には縮み、弛緩時には適宜に復元する耐熱性緩衝材を介
装させて弛みを防止する等考慮されている。
When the auxiliary combustion chamber main body 1 is shrink-fitted to the insert ring 3, the shrink-fitting margin is appropriately selected so that tightening force is applied even at high temperatures and no loosening occurs. In addition, consideration has been given to preventing loosening by interposing a heat-resistant cushioning material between the auxiliary combustion chamber and the insert ring, which contracts when compressed and restores itself appropriately when relaxed.

上記方法により形成された下記の副燃焼室チャンバーに
ついて夫々耐熱亀裂性試験を行なった。
A heat crack resistance test was conducted on each of the following sub-combustion chambers formed by the above method.

(IA)第2図による2個に分割したもの。(IA) Divided into two pieces according to Figure 2.

(IB)第3図による2個に分割したもの。(IB) Divided into two pieces according to Figure 3.

(IC)第4図による3個に分割したもの。(IC) Divided into three parts according to Figure 4.

(nA)第5図によるスリットを入れたもの。(nA) With slits as shown in Figure 5.

(n B)第6図によるスリットを入れたもの。(nB) With slits as shown in Figure 6.

比較材として第1表に示す化学成分からなる副燃焼室チ
ャンバーを用いた。
As a comparative material, a sub-combustion chamber having the chemical components shown in Table 1 was used.

(m)マルテンサイト組織のRI K−MB(IV) 
オース−rfイI−組織のSUH310(V)Nimo
cast80 本試験は第9図に示す試験装置12に取付けられた第1
0図に示す保持具13に試験片の副燃焼室チャンバー本
体1を固定し、ガスバーナ14で下面から約950℃に
加熱した後、試験袋@12を回転させ副燃焼室チャンバ
ー本体1をスプレー15の上方に移動させて水をスプレ
ーして約4゜℃まで水冷した後空冷する。第11図に示
す加熱、冷却のサイクルを300回繰り返したのち、第
7図に示すように噴孔部2の底面周縁に発生した亀裂1
1の長さを測定し、その長さの合計によって耐熱亀裂性
を判定した。
(m) RI K-MB (IV) of martensitic structure
Aus-rf I-Organization SUH310 (V) Nimo
cast80 This test was conducted using the first
The auxiliary combustion chamber main body 1 of the test piece is fixed to the holder 13 shown in Figure 0, heated from the bottom to about 950°C with the gas burner 14, and then the test bag @ 12 is rotated and the auxiliary combustion chamber main body 1 is sprayed with the spray 15. Move it above the room, spray water on it, cool it to about 4°C, and then air cool it. After repeating the heating and cooling cycle shown in FIG. 11 300 times, a crack 1 appeared on the bottom periphery of the nozzle hole 2 as shown in FIG.
The lengths of 1 were measured, and the heat crack resistance was determined based on the total length.

耐熱亀裂性の試験結果は、(■)耐酸化性の低いRIK
−MBは酸化により生じるスケールがひどく、スケール
の成長と剥離が繰り返されることにより、噴孔部の鋭角
部は細り脱落し焼損を起こしてしまった。 (IV)S
UH31’Oの亀裂の総長は14.1ame  (V)
Nimocast80の亀裂の総長は10.5mmであ
ったのに比して1本発明の分割した(I A)、(I 
B)、(I C)の3試料と、スリットを入れた(■A
)、(JIB)の2試料共全てに亀裂の発生は認められ
ず耐熱亀裂性が著しく向上し改善されたことが認められ
た。
The test results for heat cracking resistance are (■) RIK with low oxidation resistance.
-MB had severe scale caused by oxidation, and as the scale grew and peeled off repeatedly, the sharp corners of the nozzle holes became thin and fell off, causing burnout. (IV)S
The total length of the UH31'O crack is 14.1ame (V)
The total crack length of Nimocast 80 was 10.5 mm, whereas the crack length of the present invention was 10.5 mm.
B), (I C) and the slit (■A
) and (JIB), no cracks were observed and it was recognized that the heat cracking resistance was significantly improved.

効果 ディーゼルエンジン用副燃焼室チャンバーとして、従来
の耐熱合金やセラミックス等からなる副燃焼室チャンバ
ー本体を、予め分割或いはスリットを入れておくことに
より熱応力を逃して熱応力の集中をなくシ、高温に曝さ
れても亀裂の発生が防止されて将来のエンジンの性能向
上に伴い要求される過酷な条件にも、充分に耐え得る耐
久性に優れたディーゼルエンジン用副燃焼室チャンバー
を安価に提供できる実用的効果は顕著である。
Effects As an auxiliary combustion chamber for diesel engines, the main body of the auxiliary combustion chamber, which is conventionally made of heat-resistant alloys or ceramics, is divided or slitted in advance to release thermal stress and eliminate concentration of thermal stress. It is possible to provide a sub-combustion chamber for diesel engines at a low cost that has excellent durability and can withstand the harsh conditions that will be required to improve the performance of future engines by preventing the occurrence of cracks even when exposed to The practical effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 本発明に係わる副燃焼室チャンバーの一例を示
す断面図 第2図 噴孔に平行に2分割した平面図第3図 噴孔に
直角に2分割した平面図第4図 噴孔に平行とある傾斜
角を有する面にて3分割した平面図 第5図 噴孔の傾き方向にスリットを入れた平面図 第6図 噴孔の傾き方向と反対方向にスリットを入れた
平面図 第7図 亀裂の発生状況を示す平面図 第8図 従来の副燃焼室チャンバーの断面図第9図 熱
疲労試験装置の概要図 第10図 熱疲労試験装置の試験片保持具と試験方法を
示す概要図 第11図 熱疲労試験の加熱冷却サイクルを示すグラフ 1:副燃焼室チャンバー本体  2:噴孔3:インサー
トリング     3a:フランジ4:分割面  4a
:分割面   4b:分割面5ニスリツト  5aニス
リツト  6:渦流室9:鋭角部 10:鋭角部 11
:亀裂12:熱疲労試験装置     13:保持具1
4:バーナ 15ニスプレー
Fig. 1 A sectional view showing an example of the auxiliary combustion chamber according to the present invention Fig. 2 A plan view divided into two parallel to the nozzle hole Fig. 3 A plan view divided into two at right angles to the nozzle hole Fig. 4 Parallel to the nozzle hole Figure 5: A plan view divided into three parts by a plane with a certain angle of inclination. Figure 6: A plan view where a slit is cut in the direction of inclination of the nozzle hole. Figure 7: A plan view where a slit is cut in the direction opposite to the direction of inclination of the nozzle hole. Fig. 8 is a plan view showing the occurrence of cracks; Fig. 9 is a cross-sectional view of a conventional auxiliary combustion chamber; Fig. 10 is a schematic diagram of the thermal fatigue testing device; Figure 11 Graph showing the heating and cooling cycle of thermal fatigue test 1: Sub-combustion chamber chamber body 2: Nozzle hole 3: Insert ring 3a: Flange 4: Divided surface 4a
: Divided surface 4b: Divided surface 5 nislit 5a nislit 6: Swirl chamber 9: Acute angle part 10: Acute angle part 11
: Crack 12: Thermal fatigue test device 13: Holder 1
4: Burner 15 Nispray

Claims (1)

【特許請求の範囲】[Claims] 耐熱性素材からなるディーゼルエンジン用副燃焼室チャ
ンバー本体1を、噴孔2を含む分割面4にて2個以上に
縦に分割し、2個以上に分割された夫々のブロックを適
宜の接着手段により、相互に正規の突き合わせ位置に仮
止め固定するか、若しくは、耐熱性素材からなるディー
ゼルエンジン用副燃焼室チャンバー本体1に、噴孔2を
含み縦に外周面に達するスリット5を1個所入れて、切
り離されたスリットの切り口面を適宜の接着手段により
突き合わせ、正規の真円の状態に仮止め固定して、夫々
固定されたものを更に耐熱性素材からなる副燃焼室チャ
ンバー本体1のフランジ3aを形成する、インサートリ
ング3内に焼きばめて一体型としたことを特徴とするデ
ィーゼルエンジン用副燃焼室チャンバー。
A sub-combustion chamber main body 1 for a diesel engine made of a heat-resistant material is vertically divided into two or more blocks at a dividing surface 4 including nozzle holes 2, and each block divided into two or more blocks is bonded with an appropriate bonding means. Either they are temporarily fixed in their proper abutting positions, or one slit 5 is formed in the main body 1 of the auxiliary combustion chamber for a diesel engine made of a heat-resistant material, which includes the nozzle hole 2 and extends vertically to the outer circumferential surface. Then, the cut surfaces of the separated slits are butted together using an appropriate adhesive means, and temporarily fixed in a regular perfect circle state. An auxiliary combustion chamber for a diesel engine, characterized in that it is integrally shrink-fitted into an insert ring 3 forming an insert ring 3a.
JP13683485A 1985-06-25 1985-06-25 Subcombustion chamber for diesel engine Pending JPS62620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13683485A JPS62620A (en) 1985-06-25 1985-06-25 Subcombustion chamber for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13683485A JPS62620A (en) 1985-06-25 1985-06-25 Subcombustion chamber for diesel engine

Publications (1)

Publication Number Publication Date
JPS62620A true JPS62620A (en) 1987-01-06

Family

ID=15184592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13683485A Pending JPS62620A (en) 1985-06-25 1985-06-25 Subcombustion chamber for diesel engine

Country Status (1)

Country Link
JP (1) JPS62620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525864A (en) * 1982-10-29 1985-06-25 Pioneer Electronic Corporation Device for generating a tuning frequency set command signal of a tuner system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525864A (en) * 1982-10-29 1985-06-25 Pioneer Electronic Corporation Device for generating a tuning frequency set command signal of a tuner system

Similar Documents

Publication Publication Date Title
US7386980B2 (en) Combustion liner with enhanced heat transfer
US8256224B2 (en) Combustion apparatus
US10767863B2 (en) Combustor tile with monolithic inserts
US7104756B2 (en) Temperature tolerant vane assembly
US8128350B2 (en) Stacked lamellae ceramic gas turbine ring segment component
JP4454993B2 (en) Double wall combustor liner segment with improved cooling
US5538380A (en) Metallic nut for use with ceramic threads
US20100272953A1 (en) Cooled hybrid structure for gas turbine engine and method for the fabrication thereof
US5653580A (en) Nozzle and shroud assembly mounting structure
US20040197190A1 (en) Turbine blade with recessed squealer tip and shelf
JP2007107524A (en) Assembly for controlling thermal stress in ceramic matrix composite article
US6471469B2 (en) Methods and apparatus for sealing gas turbine engine variable nozzles
EP3279568A1 (en) Heat shield panel for gas turbine engine
JP5357404B2 (en) Afterburner
EP2904323A2 (en) Thermally free liner retention mechanism
US20090148280A1 (en) Turbine Vane for a Gas Turbine Engine
US5706647A (en) Airfoil structure
JPS62620A (en) Subcombustion chamber for diesel engine
US20210140325A1 (en) Ceramic airfoil trailing end configuration
JPS6242213B2 (en)
JPS58172406A (en) Laminated blade for gas turbine
JPS58175720A (en) Catalyst layer supporting device for catalytic combustion device
JP2529823B2 (en) Diesel engine auxiliary combustion chamber chamber and method for manufacturing the same
JPS5979007A (en) Turbine blade
JPS58188559A (en) Refractory plate material for sliding nozzle