JPS58172406A - Laminated blade for gas turbine - Google Patents

Laminated blade for gas turbine

Info

Publication number
JPS58172406A
JPS58172406A JP5547382A JP5547382A JPS58172406A JP S58172406 A JPS58172406 A JP S58172406A JP 5547382 A JP5547382 A JP 5547382A JP 5547382 A JP5547382 A JP 5547382A JP S58172406 A JPS58172406 A JP S58172406A
Authority
JP
Japan
Prior art keywords
blade
gas turbine
laminated
ceramic
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5547382A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Kobayashi
成嘉 小林
Manabu Matsumoto
学 松本
Mitsutaka Shizutani
静谷 光隆
Shigeyuki Akatsu
赤津 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5547382A priority Critical patent/JPS58172406A/en
Publication of JPS58172406A publication Critical patent/JPS58172406A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/12Laminated parts

Abstract

PURPOSE:To obtain a laminated blade of excellent heat resistance, corrosion resistance and strength, by alternately piling to connect plural ceramic plates formed to a sectional shape of a gas turbine blade and plural metallic plates formed to a similar shape to said ceramic plate. CONSTITUTION:Ceramic plates 1 formed to a sectional shape of a gas turbine blade and metallic plates 2 formed to a similar shape, in which a contour of the periphery is formed smaller slightly to the inside as compared with said plate 1, are alternalely piled and diffusively jointed to each other to constitute a laminated blade. Here grooves 3 forming cooling air holes are provided to the plate 1. In this way, the plate 1 distributively endures heat and corrosion further the plate 2 provides toughness and tensile strength, and excellent heat resistance, hardness, tensile strength, toughness and corrosion resistance can be obtained as a whole.

Description

【発明の詳細な説明】 本発明はガスタービン用の積層翼に関するものである。[Detailed description of the invention] The present invention relates to laminated blades for gas turbines.

ガスタービンlRは高温の燃焼ガスに接触するのでi*
の耐熱性を必要とする。この目的に沿って積層冷却翼が
用いられているが、従来の積層冷却翼は金属の薄板を積
み重ねて拡散接合してなシ、前記の薄板の表面にフォト
エツチングなどで微細な形状の溝を形成して複雑な冷却
構造を作って冷却効果の向上を図っている。
Since the gas turbine IR comes into contact with high-temperature combustion gas, i*
heat resistance is required. Laminated cooling blades are used for this purpose, but conventional laminated cooling blades are made by stacking thin metal plates and diffusion bonding them. The aim is to improve the cooling effect by forming a complex cooling structure.

しかし、従来のように金属材料だけで構成したタービン
翼では860C乃至900Cが実用の限界でToシ、こ
れ以上になると信頼性、耐久性の面で問題がある。そし
て、耐用温度にこのような限界があるためにガスタービ
ンの熱効率向上も制約を受けている。
However, in conventional turbine blades made only of metal materials, 860C to 900C is the practical limit, and anything higher than this poses problems in terms of reliability and durability. Since there is such a limit in the withstand temperature, improvement in the thermal efficiency of the gas turbine is also restricted.

i九、上述のように金属板を用いて構成した従、1 未形のガスタービン14においては、粗悪燃料を使用す
るとJllj面に腐食を生じるという不具合もある。
i9. In the unshaped gas turbine 14 constructed using metal plates as described above, there is also a problem that corrosion occurs on the Jllj surface when inferior fuel is used.

本発明は上記の事情に鑑みて為され、耐熱性および信頼
性の高いガスタービン用の積層翼を提供することを目的
とする。言うまでもなく、耐熱性に優れたガスタービン
翼はガスタービン入口ガス温度の上昇を可能ならしめて
直接的にガスタービンの熱効率向上に寄与するのみでな
く、冷却用空気流量の減少を可能ならしめて間接的に4
ガスタービンの熱効率向上に寄与し得る。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a laminated blade for a gas turbine that has high heat resistance and reliability. Needless to say, gas turbine blades with excellent heat resistance not only directly contribute to improving the thermal efficiency of the gas turbine by making it possible to increase the gas temperature at the gas turbine inlet, but also indirectly contribute to improving the thermal efficiency of the gas turbine by making it possible to reduce the flow rate of cooling air. to 4
It can contribute to improving the thermal efficiency of gas turbines.

ガスタービンの耐熱性を向上さ″せる九め、七ツミツク
を利用することが考えられゐが、セラ建ツクは一般に金
属材料に比してl1Ilvh九めに樵々O技術的問題が
ある。
It has been considered to utilize materials that improve the heat resistance of gas turbines, but ceramic construction generally has more technical problems than metal materials.

本発明は、耐熱性に優れ九竜うセックの長所と、強靭性
に優れ丸金属材料の長所とを発揮し、かつ脆弱であると
いう七うZツタの欠点と耐熱性不充分という金属材料の
欠点とを相互にカバーし合うようなガスタービン翼を構
成する丸め、ガスタービン翼の断面形状に形感した多数
のセラミック板と、上記と類似の形状(詳しくは、その
外周の輪郭がガスタービン翼の断面形状よ)も若干小さ
い形状)の金属板とを文具に積み重ねて接金し九ことを
特徴とする。
The present invention exhibits the advantages of Kuryu Usec, which has excellent heat resistance, and the advantages of round metal materials, which have excellent toughness, and the disadvantages of Nanau Z ivy, which is brittle, and the disadvantages of metal materials, which have insufficient heat resistance. A large number of ceramic plates shaped like the cross-sectional shape of a gas turbine blade and a shape similar to the above (in detail, the outline of the outer periphery of the gas turbine blade It is characterized by the fact that metal plates with a cross-sectional shape similar to that of the wings (also slightly smaller in shape) are stacked on the stationery and welded together.

菖1wJは従来形の積層真の一例を示す分解斜視図で、
翼の断面形状に形成した多数の金属板を積み重ねた構造
である。
Iris 1wJ is an exploded perspective view showing an example of a conventional laminated stem.
It has a structure made up of a number of metal plates stacked in the cross-sectional shape of a wing.

第2図は本発明の一実施例の分解斜視図で、翼の断面形
状に形成したセラミック板lと、上記のセラセック板に
比して外周の輪郭を僅かに内側に寄せて小さくした形状
の金属板2とを交互に積み重ねた構造とし、互いに拡散
接合して積層体を構成する。本実施例は以上のようにし
て翼断面形状に形成した複数個のセラミック板1と、こ
れに類似の形状に形成し九複数個の金属板2とを交互に
積み重ねて接合して、ガスタービン用のセラミック接合
具を構成する。
FIG. 2 is an exploded perspective view of one embodiment of the present invention, showing a ceramic plate l formed in the cross-sectional shape of a wing, and a ceramic plate l formed in a shape with a smaller outer circumference than the Cerasec plate described above, with its outer circumference slightly moved inward. The metal plates 2 are stacked alternately, and are diffusion bonded to each other to form a laminate. In this embodiment, a plurality of ceramic plates 1 formed in the cross-sectional shape of an airfoil as described above and a plurality of metal plates 2 formed in a similar shape to this are alternately stacked and bonded to form a gas turbine. Construct a ceramic joint tool for use.

1lI3図は上記のようにして構成した積層体の斜視図
である。このように、翼弦方向と垂直表面による断面形
状に形成したセラミック板1と、これと類似の形状に形
成し九金属板2とを積層すると接合が容易で正確な形状
のガスタービン翼を構成し易い。
Figure 1lI3 is a perspective view of the laminate constructed as described above. In this way, by laminating the ceramic plate 1 formed in a cross-sectional shape according to the chord direction and the vertical surface and the nine metal plates 2 formed in a similar shape, a gas turbine blade with an accurate shape can be constructed with ease of joining. Easy to do.

3114図は上記と異なゐ実施例を示す1本例におiて
は翼弦方向とほぼ自直な面による断面形状に形成したセ
ラミック板と、これと類似の形状に形成した金属板とを
交互に積み重ねて接合してあゐ。
Figure 3114 shows an embodiment different from the above. In this example, a ceramic plate formed in a cross-sectional shape with a plane substantially perpendicular to the chord direction, and a metal plate formed in a similar shape to this are used. Stack them alternately and join them.

このように構成すゐと、翼長方向に関してタービン翼の
強度を大きくすることができる。
With this configuration, the strength of the turbine blade can be increased in the blade span direction.

第5図は、纂2図の実施例の詳細を示すため、同図に示
した面Pで切断し九ところを拡大して描いである。
In order to show the details of the embodiment shown in FIG. 2, FIG. 5 is an enlarged drawing of 9 parts cut along the plane P shown in the same figure.

セ9ンツク板1の外周は、構成すぺ龜タービン翼の表面
と同じ形状に形成し、かつ、外周部を厚内としてその断
面TがT字状をなすように形成する。tは1字形の頂辺
の厚さ寸法である。
The outer periphery of the connecting plate 1 is formed to have the same shape as the surface of the constituent spare turbine blades, and is formed so that the outer periphery is within the thickness and the cross section T thereof is T-shaped. t is the thickness dimension of the top side of the 1-character shape.

金属板2の外周は、構成すべきタービン翼の表面の形状
に比して前記の電寸法だけ内側に寄せて縮小しである。
The outer periphery of the metal plate 2 is reduced inward by the electrical dimension described above compared to the shape of the surface of the turbine blade to be constructed.

これKよシ、仮l!j1/sで示し九ように金属1fL
2の外周縁と、セラ建ツク板外周の厚内部の内側縁とが
、タービン翼長方向に揃う。
This is K, temporary l! Metal 1fL as shown by j1/s
The outer circumferential edge of No. 2 and the inner edge of the thick inside of the outer circumference of the cellar building plate are aligned in the turbine blade length direction.

第6図は第5図のように形成したセラミック板lと金属
板2とを積層して構成し九ガスタービン翼の断面図であ
る。前述のセラミック板lの外周部のT字状断面の頂辺
が互いに尚接し、この積層体の翼の表層には厚さtのセ
ラミック表面が形成され、金属板の外周が真向に露出し
ていない、このように構成すると、金属部材が燃焼ガス
に触れないのてガスタービン翼全体としての耐熱性およ
び耐食性が著しく向上する。
FIG. 6 is a sectional view of a nine gas turbine blade constructed by laminating the ceramic plate 1 and metal plate 2 formed as shown in FIG. The top sides of the T-shaped cross sections of the outer periphery of the ceramic plate 1 mentioned above are still in contact with each other, a ceramic surface with a thickness t is formed on the surface layer of the blade of this laminate, and the outer periphery of the metal plate is directly exposed. With this configuration, the heat resistance and corrosion resistance of the gas turbine blade as a whole are significantly improved because the metal members do not come into contact with the combustion gas.

本実施例においては、上述のように重ね合わせたセラミ
ック板と金属板との当接面を拡散接合によって接合しで
ある0本発明を実地に適用する場合、拡散接合以外の適
宜の接合方法を用いることも可能である。
In this example, the abutment surfaces of the ceramic plate and the metal plate stacked as described above are bonded by diffusion bonding. When the present invention is actually applied, an appropriate bonding method other than diffusion bonding may be used. It is also possible to use

このようにしてセラミック板と金属板とを交互に積層し
て構成し九ガスタービン翼は、セラミック部材が耐熱性
と耐食性とを受は持ち、金属部材が靭性と抗張力とを受
は持って、全体として優れ・ぐま た耐熱性、硬度、抗張力、靭性および耐食性が得られる
In this way, the gas turbine blade is constructed by alternately laminating ceramic plates and metal plates, with the ceramic member having heat resistance and corrosion resistance, and the metal member having toughness and tensile strength. Overall, it provides excellent heat resistance, hardness, tensile strength, toughness, and corrosion resistance.

上述の実施例において、セラミック板lの接合面に、真
向とほぼ珈直な方向に形成した溝3は板を積層したとき
冷却空気孔を構成するように設は丸ものである。
In the above-described embodiment, the grooves 3 formed in the bonding surfaces of the ceramic plates 1 in a substantially perpendicular direction are round so as to constitute cooling air holes when the plates are stacked.

第7図は上記と異なる。実施例の断面を示し、第8図は
その部分的拡大図、519図は同斜視図である。
FIG. 7 is different from the above. A cross section of the embodiment is shown, FIG. 8 is a partially enlarged view thereof, and FIG. 519 is a perspective view thereof.

本実施例(第7図、嬉8図)Kおける金属41[2は前
記の実施例(515図、516図)の金属4[j!と類
似の構成部材である。
The metal 41 [2 in this example (Figs. 7 and 8) K is the metal 4 [j! It is a similar component.

本実施例が前記の実施例に比して異なるところは、隣接
する二つのセラミック板1Gと同1oとの外周部のT字
状部が互%AKm接する個所にインロー形の凹凸9を形
成して組み合わせ九こと、並びに、金属板2の外周面と
上2ミック板100厚内部の内1111面との間に!!
114を構成し九ことである。
This embodiment differs from the previous embodiments in that a spigot-shaped unevenness 9 is formed at the location where the T-shaped portions of the outer peripheries of two adjacent ceramic plates 1G and 1o come into contact with each other. 9 combinations, and between the outer circumferential surface of the metal plate 2 and the inner 1111 surface of the upper 2 metal plate 100 thickness! !
There are 9 things that make up 114.

本例のように、ガスタービン翼の表面に形成する厚さt
のセラにツク層om@tインロー状に組合わせると、金
属板2を燃焼ガス流から完全に1断することができ、金
属板2は熱漬4度の小さいセラずツク層に保護されて低
温を保つので、酸化によゐ損耗を受けない上に、高温に
よる強度低下を生じない。
As in this example, the thickness t formed on the surface of the gas turbine blade is
When combined with a ceramic layer in the form of a spigot, the metal plate 2 can be completely isolated from the combustion gas flow, and the metal plate 2 is protected by a small ceramic layer heated at 4 degrees Celsius. Since it is kept at a low temperature, it does not suffer from wear due to oxidation, and does not suffer from loss of strength due to high temperatures.

この実施例においては空114を形成するため、セラミ
ック板10と金属板2との接合は当接面5のみにおいて
行なうが、この部分は燃焼ガスとの間に厚さtのセラミ
ック層、および空隙4を介してい石ので温度が低く、従
ってセラミックと金属との熱膨張差による熱応力を小さ
くすることができ、充分の接合強度が得られる。
In this embodiment, in order to form a void 114, the ceramic plate 10 and the metal plate 2 are joined only at the contact surface 5, but this portion has a ceramic layer of thickness t between the combustion gas and the void. Since the temperature of the stone is low, the thermal stress caused by the difference in thermal expansion between the ceramic and the metal can be reduced, and sufficient bonding strength can be obtained.

本実施例に訃いて形成した空隙4は、溝3によって形成
される冷却空気孔に連通する。冷却空気は翼の中央部に
形成した冷却9気用ヘッダから溝3を通って纂8図に示
す矢印のごとく翼表面に向かい、更Kg!114を通っ
て翼表面の内側に沿って翼弦方向(紙面と垂直)に流れ
、後縁部から主流ガス内に噴出させる。このように構成
するとガスタービン翼内の各部に均一に冷却空気を供給
することができる。
The gap 4 formed in this embodiment communicates with the cooling air hole formed by the groove 3. The cooling air flows from the cooling 9-air header formed in the center of the wing, passes through the groove 3, and heads towards the wing surface as shown by the arrow shown in Figure 8, and the cooling air reaches the wing surface in the direction of the arrow shown in Figure 8. 114 along the inside of the blade surface in the chord direction (perpendicular to the page) and is ejected from the trailing edge into the mainstream gas. With this configuration, cooling air can be uniformly supplied to each part within the gas turbine blade.

また、第6図の実施例に示したようにタービン翼中央部
の冷却9気用ヘッダから翼表面に向かう冷却孔のみを#
l13によって形成すると、簡単な構成で冷却を行なう
ことができ、#13内を翼表面に向かって流れた冷却空
気流は翼表面KtIA出してフィルム冷却を行なうので
、ガスタービン翼が燃焼ガスから伝導される熱量を軽減
することができる。
In addition, as shown in the example of Fig. 6, only the cooling holes extending from the cooling 9 air header in the center of the turbine blade to the blade surface are
If formed by #13, cooling can be performed with a simple configuration, and the cooling airflow flowing towards the blade surface in #13 is directed to the blade surface KtIA and performs film cooling, so that the gas turbine blade conducts from the combustion gas. The amount of heat generated can be reduced.

本発明を適用したガスタービン翼は金属部材が表面に露
出していないので、粗悪燃料を用−九場合も翼表面に腐
食を生じる虞れが無い、また、第8図の実施例において
、もし、6で示したよりな′亀裂を生じてセラミック板
の1部が欠損しても金属板2は直接的忙燃焼ガスに触れ
なiので着しi損傷を受ける虞れが無い、又もし7のよ
うな亀裂t”住じて七ラミック板の一部が欠損しても、
この欠損部から冷却空気が主流ガス中に噴出し、金属板
2の外周面は冷却空気流に包まれるので重大な損傷を蒙
る虞れが無い。
Since the gas turbine blade to which the present invention is applied has no metal members exposed on the surface, there is no risk of corrosion on the blade surface even when using inferior fuel. , even if a part of the ceramic plate is damaged due to a crack like that shown in 6, there is no risk of damage to the metal plate 2 because it does not come into direct contact with the combustion gas. Even if a part of the lamic board is damaged due to cracks like
Cooling air is ejected from this defect into the mainstream gas, and the outer peripheral surface of the metal plate 2 is surrounded by the cooling air flow, so there is no risk of serious damage.

又、屯し翼表面K14弦方向の亀裂が発生して成長して
も、隣接するセラミック板との境界−において亀裂の成
長が停止するので、亀裂が広範!8に及ぶ虞れが無い。
Also, even if a crack occurs and grows in the K14 chord direction on the blade surface, the crack stops growing at the boundary with the adjacent ceramic plate, so the crack is wide! There is no risk that it will reach 8.

以上説明したように1本発明は、ガスタービン翼の断面
形状に形成した複数個のセラミック板と、上記と類似の
形状に形成した複数個の金属板とを交互に積み重ねて接
合することによシ、耐熱性および信頼性の高い積層ガス
タービン翼を構成することができる。
As explained above, one aspect of the present invention is to alternately stack and bond a plurality of ceramic plates formed in the cross-sectional shape of a gas turbine blade and a plurality of metal plates formed in a similar shape to the above. Furthermore, a laminated gas turbine blade with high heat resistance and reliability can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般に用いられている積層式のガスタービ
ン翼の分解斜視図、WJ2図は本発明に係るガスタービ
ン用のセラミック接合1j11−翼の一実施例の分解斜
視図、第3図は同じく斜視図、第4図は上記と異なる実
施例の斜視図、第5図は第2図に示し九実施例のP面に
よって切断した分解斜視図、第6図は同じく組立状態を
示す断面図、第7図は更に異なる実施例の組立状態の断
面図、第8図は同じく一拡大断面図、第9図は同じく斜
視図である。 l・・・セラミック板、2・・・金属板、3・・・冷却
空気孔を構成する溝、4・・・冷却空気孔を構成する空
隙、5・・・接合面、6.7・・・仮想した亀裂、10
・・・セラζツク板。
Fig. 1 is an exploded perspective view of a laminated type gas turbine blade commonly used in the past, Fig. WJ2 is an exploded perspective view of an embodiment of the ceramic bonded 1j11-blade for gas turbines according to the present invention, and Fig. 3 is FIG. 4 is a perspective view of an embodiment different from the above, FIG. 5 is an exploded perspective view taken along the P plane of the ninth embodiment shown in FIG. 2, and FIG. 6 is a cross-sectional view showing the assembled state. , FIG. 7 is a sectional view of another embodiment in an assembled state, FIG. 8 is an enlarged sectional view, and FIG. 9 is a perspective view. 1...Ceramic plate, 2...Metal plate, 3...Groove forming the cooling air hole, 4...Group forming the cooling air hole, 5...Joint surface, 6.7...・Imaginary crack, 10
... Sera ζ Tsuku board.

Claims (1)

【特許請求の範囲】 1、ガスタービン翼の断面形状に形成した複数個のセラ
ミック板と、上記と類似の形状に形成した複数個O金属
板とを交互に積み重ねて接合した仁とを特徴とするガス
タービン用の積層翼。 2、前記のガスタービン翼の断面形状は、翼長方向と喬
直な面による断面形状であることを特徴とする特許請求
の範囲第1項に記載のガスタービン用積層翼。 3、前記のガスタービン翼の断面形状は、翼弦方とほぼ
−直な面による断面形状であることを特徴とする%lF
Fl11求の範囲第1項に記載のガスタービ・y用の積
層翼。 4、前記のセラミック板は外周側の縁に沿って厚内形状
に形成するとともに、前記の金属板の外周形状を翼の断
面の輪郭よりも一定寸法だけ内側に縮めた形状とし、上
記のセラミック板と金属板とを交互に積重ねてなる積層
体の外周面がセラミックによって形成され、金属板の外
周面は上記積層体の表面に露出しないように構成したこ
とを特徴とする特許請求の範囲[1項、同第2項、又は
同第3項に記載のガスタービン用の積層興。 5、前記のセラミック板と金属板との接合面K11Iを
形成し、これらの板を交互に積み重ねてなゐ積層体内部
に冷却空気孔を構成したことを特徴とする特許請求の範
囲第1項、同第2項、同第3項、又は同Is4項Kit
e載のガスタービン用の積層翼。 6、前記の冷却9気孔は、タービン真中央部の冷却9気
用ヘツダから翼表面忙向かう方向のものとしたことを特
徴とする特許請求の@@第6項に記載のガスタービン用
の積層翼。 7、前記の冷却空気孔はタービン真中央部の冷却9気用
ヘッダから翼表WJに向かう方向やもの、及び真表面の
内側に沿って翼弦方向に向かい、後縁部で主流ガスに連
通するものとし九ことを特徴とする特許請求の範囲第5
項に記載のガスタービン用の積層翼。
[Scope of Claims] 1. It is characterized by a layer in which a plurality of ceramic plates formed in the cross-sectional shape of a gas turbine blade and a plurality of metal plates formed in a similar shape to the above are alternately stacked and bonded. laminated blades for gas turbines. 2. The laminated blade for a gas turbine according to claim 1, wherein the cross-sectional shape of the gas turbine blade is a cross-sectional shape formed by a plane perpendicular to the blade span direction. 3. The cross-sectional shape of the gas turbine blade is characterized by being a cross-sectional shape of a plane substantially perpendicular to the chord direction of the blade.
A laminated blade for a gas turbine y according to item 1 of the request for Fl11. 4. The ceramic plate is formed into a thick inner shape along the outer peripheral edge, and the outer peripheral shape of the metal plate is shrunk inward by a certain dimension from the contour of the cross section of the blade, and the ceramic plate is Claims characterized in that the outer circumferential surface of a laminate formed by stacking plates and metal plates alternately is formed of ceramic, and the outer circumferential surface of the metal plates is configured so as not to be exposed on the surface of the laminate. A laminated wall for a gas turbine according to item 1, item 2, or item 3. 5. Claim 1, characterized in that a joint surface K11I is formed between the ceramic plate and the metal plate, and cooling air holes are formed inside the laminate made by stacking these plates alternately. , Paragraph 2 of the same, Paragraph 3 of the same, or Paragraph Is4 of the same Kit
Laminated blades for e-mounted gas turbines. 6. The laminated layer for a gas turbine according to claim 6, characterized in that the cooling air holes are directed from the cooling air header at the center of the turbine toward the blade surface. Wings. 7. The cooling air holes are directed from the cooling air header at the center of the turbine toward the blade surface WJ, and along the inside of the true surface in the chord direction, communicating with the mainstream gas at the trailing edge. Claim 5 is characterized in that:
A laminated blade for a gas turbine as described in 2.
JP5547382A 1982-04-05 1982-04-05 Laminated blade for gas turbine Pending JPS58172406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547382A JPS58172406A (en) 1982-04-05 1982-04-05 Laminated blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547382A JPS58172406A (en) 1982-04-05 1982-04-05 Laminated blade for gas turbine

Publications (1)

Publication Number Publication Date
JPS58172406A true JPS58172406A (en) 1983-10-11

Family

ID=12999570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547382A Pending JPS58172406A (en) 1982-04-05 1982-04-05 Laminated blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS58172406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316790A (en) * 2005-05-09 2006-11-24 Snecma Service Method for manufacturing hollow blade including recessed tip cap and method for repairing the blade
US8241001B2 (en) 2008-09-04 2012-08-14 Siemens Energy, Inc. Stationary turbine component with laminated skin
JP2018505983A (en) * 2014-11-24 2018-03-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Hybrid ceramic matrix composite
US20180156038A1 (en) * 2015-07-02 2018-06-07 Siemens Aktiengesellschaft Arrangement for a turbine
JP2018529044A (en) * 2015-08-28 2018-10-04 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Interlocking modular blades for gas turbines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316790A (en) * 2005-05-09 2006-11-24 Snecma Service Method for manufacturing hollow blade including recessed tip cap and method for repairing the blade
US8241001B2 (en) 2008-09-04 2012-08-14 Siemens Energy, Inc. Stationary turbine component with laminated skin
JP2018505983A (en) * 2014-11-24 2018-03-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Hybrid ceramic matrix composite
US20180156038A1 (en) * 2015-07-02 2018-06-07 Siemens Aktiengesellschaft Arrangement for a turbine
JP2018524510A (en) * 2015-07-02 2018-08-30 シーメンス アクティエンゲゼルシャフト Configuration for turbine
US10851654B2 (en) 2015-07-02 2020-12-01 Siemens Aktiengesellschaft Arrangement for a turbine
JP2018529044A (en) * 2015-08-28 2018-10-04 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Interlocking modular blades for gas turbines

Similar Documents

Publication Publication Date Title
US7435058B2 (en) Ceramic matrix composite vane with chordwise stiffener
US7153096B2 (en) Stacked laminate CMC turbine vane
US7198458B2 (en) Fail safe cooling system for turbine vanes
US5501914A (en) Solid oxide electrolyte fuel cell
US7972113B1 (en) Integral turbine blade and platform
JPS614807A (en) Cooling type dual alloy turbine blade wheel and its production
US20090324393A1 (en) Ceramic matrix composite turbine engine component
US20090081033A1 (en) Stacked Lamellae Ceramic Gas Turbine Ring Segment Component
US20200149408A1 (en) Dual-walled components for a gas turbine engine
US10787914B2 (en) CMC airfoil with monolithic ceramic core
JP2010038158A (en) Method and system for manufacturing blade
US20180135426A1 (en) Dual-wall airfoil with leading edge cooling slot
US20190277571A1 (en) Ganged plate stack in cast plate fin heat exchanger
US20080141531A1 (en) Non-stablug stator apparatus and assembly method
JPS58172406A (en) Laminated blade for gas turbine
WO2015088699A1 (en) Gas turbine engine component mateface surfaces
US20190106990A1 (en) Hybrid components with internal cooling channels
US11261741B2 (en) Ceramic airfoil trailing end configuration
US6892532B2 (en) Exhaust system having low-stress exhaust manifold flange
EP4227629A1 (en) Conformal heat exchanger
RU2712563C2 (en) Heat exchanger with fin wave control
EP3553448B1 (en) Secondarily applied cold side features for cast heat exchanger
CN106605040A (en) Method for manufacturing turbine assembly
KR102382138B1 (en) turbine rotor blades, and gas turbines
US20160312638A1 (en) Turbomachinery blade outer air seal