JPS6261202B2 - - Google Patents

Info

Publication number
JPS6261202B2
JPS6261202B2 JP1168483A JP1168483A JPS6261202B2 JP S6261202 B2 JPS6261202 B2 JP S6261202B2 JP 1168483 A JP1168483 A JP 1168483A JP 1168483 A JP1168483 A JP 1168483A JP S6261202 B2 JPS6261202 B2 JP S6261202B2
Authority
JP
Japan
Prior art keywords
catalyst
petroleum resin
hydrogenation
reactor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1168483A
Other languages
Japanese (ja)
Other versions
JPS59136312A (en
Inventor
Kenji Azuma
Shigeru Suetomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP1168483A priority Critical patent/JPS59136312A/en
Priority to DE19833338393 priority patent/DE3338393A1/en
Priority to US06/544,230 priority patent/US4540480A/en
Publication of JPS59136312A publication Critical patent/JPS59136312A/en
Publication of JPS6261202B2 publication Critical patent/JPS6261202B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素添加石油樹脂の製造方法に関す
る。さらに詳しくは、芳香核を有する石油樹脂を
水素添加するにあたり、特定の金属を担持した固
定床用触媒の充填下に反応器の下部より水素ガス
と溶融した芳香核を有する石油樹脂とを並流で上
方に流し、連続して水素添加を行なうことを特徴
とする水素添加石油樹脂の製造方法に関する。 石油ナフサの熱分解物をフリーデルクラフト触
媒の存在下に重合してえられるいわゆる石油樹脂
は、主として粘着剤または接着剤のタツキフアイ
ヤー、プラスチツク配合用改質剤などに用いられ
ているが、これらの用途に適した樹脂は通常その
軟化点が60〜140℃、分子量が600〜10000程度の
ものである。なかんづく、これらの石油樹脂の水
素添加物は、その耐候性、色調、安定性またはゴ
ム、ポリオレフインもしくはエチレン―酢酸ビニ
ル共重合物などに対する相溶性などが良好である
ため、前記用途に用いる樹脂としてはとくにすぐ
れている。しかしながら前記の水素添加に供する
石油樹脂はその原料モノマーに比べてはるかに水
素添加されがたい。その理由については未だ充分
に解明されていないが、一般に重合度が高くなる
につれてその水素添加は困難となる。とくに芳香
環を有する石油樹脂のベンゼン環をシクロヘキサ
ン環に変えるばあいには、多量の触媒を添加し、
高温、高圧、長時間というきびしい条件下でなけ
れば水素添加反応は進行しにくい。 従来より石油樹脂の水素添加反応に際して使用
される触媒としては粉末状のニツケル触媒もしく
は白金触媒が知られている。また水素添加方法と
しては回分式の懸濁床方式あるいは流通式の懸濁
気泡塔方式が一般的に採用されている。該従来方
式により水素添加するばあいは、水素添加したの
ち水素添加石油樹脂と粉状触媒とを分離するため
の過工程が不可欠である。しかも前記石油樹脂
のうちでも高軟化点のもの、すなわち高粘度のも
のにあつては溶融状態で過することが困難であ
つたり、過時間が遅延するなどの取扱い上の不
都合から、キシレン、トルエンなどの有機溶剤で
一たん稀釈したのち、触媒を過し、ついで液
より溶剤を蒸発させることにより初めて目的物で
ある水素添加石油樹脂をうることができる。した
がつて生産工程が極めて煩雑であり、しかも製品
コストの上昇にもつながり、好ましくない。とく
に前記触媒として白金触媒を従来方式で使用する
ばあいは、該触媒が非常に高価であるため定量的
に触媒が回収されないことから生じる経済的損失
は大きい。かかる問題点に鑑み、省資源、省エネ
ルギーなどの工業的、経済的見地から固定床によ
る石油樹脂の水素添加プロセスの確立が切望され
ている。 本発明者らは、従来技術の問題点である過、
蒸発工程を省略し、極めて合理化された新規な石
油樹脂の連続水素添加プロセスを開発すべく鋭意
研究を重ねた結果、特定金属を担持した固定床用
触媒が充填された反応器を使用し、特定の方式を
採用することにより従来技術の欠点をすべて解決
し、前記目的を達成しうることを見出し、本発明
を完成するにいたつた。 すなわち、本発明は芳香核を有する石油樹脂を
水素添加するにあたり、白金および(または)ロ
ジウムを担持した固定床用触媒の充填下に反応器
下部より水素ガスと溶融した石油樹脂とを並流で
上方へ流し、連続して水素添加を行なうことを特
徴とする水素添加石油樹脂の製造法に関する。 本発明において芳香核を有する石油樹脂とは二
重結合を側鎖に有する芳香族炭化水素もしくは二
重結合を縮合環中に有する芳香族炭化水素の単独
重合物または該芳香族炭化水素と他のオレフイン
類とからなる混合物の重合物をいい、下記成分を
塩化アルミニウム、三フツ化ホウ素のようなフリ
ーデルクラフト触媒の存在下に重合することによ
りえられる。 芳香族炭化水素としては、たとえばスチレン、
α―メチルスチレン、ビニルトルエン、ビニルキ
シレン、プロペニルベンゼン、インデン、メチル
インデン、エチルインデンなどがあげられる。ま
たオレフイン類としては、たとえばブテン、ペン
テン、ヘキセン、ヘプテン、オクテン、ブタジエ
ン、ペンタジエン、シクロペンタジエン、ジシク
ロペンタジエン、オクタジエンなどがあげられ
る。 本発明で使用する触媒は、特定金属を担持した
固定床用触媒であることが必要である。なぜな
ら、前記のごとく石油樹脂、とくに芳香核を有す
る石油樹脂は水素添加されにくいため高活性な触
媒が必要となるからである。一方、該石油樹脂中
には通常硫黄分が硫黄として100〜500ppm含有
されており、これが触媒毒として働き触媒寿命を
短縮させるため、高活性触媒が必ずしも適当であ
るとは限らず、硫黄に対する耐被毒性も本発明の
触媒の重要な因子となる。 以上の2種の因子につき検討を行なつた結果、
驚くべきことに白金および(または)ロジウムを
担持した固定床触媒を使用したばあい極めて満足
しうる結果がえられた。 触媒の被毒に関する知見は詳細には解明されて
いないが、本発明においては白金および(また
は)ロジウム触媒のばあいとニツケル触媒のばあ
いとでは明らかな差違を確認した。すなわち、ニ
ツケル触媒を使用したばあいは、触媒上に非常に
早く硫黄が吸着したり、あるいは硫黄と反応して
硫化ニツケルを生じることにより触媒劣化がおこ
る。これに対して白金および(または)ロジウム
触媒を使用したばあいは硫黄が水素化分解されて
硫化水素となり、水素ガスとともに触媒層外へ除
去されるため触媒上に蓄積されないことが認めら
れた。 すなわち、本発明の触媒としては白金および
(または)ロジウムを担持した固定用触媒があげ
られる。白金、ロジウムの担持量は単独または併
用で担体重量に対して0.2〜10重量%(以下、%
という)、好ましくは0.5〜5%とするのがよい。 使用する担体としてはとくに限定されないが、
多孔質で表面積の大きなアルミナ、シリカ、カー
ボン、チタニアなどが好ましい。 使用触媒の形状は円筒形、押出し物、ペレツト
状、球形などいずれを用いてもよいが、とくに球
形が好ましい。また触媒の大きさは触媒有効性能
に影響をおよぼすため小さいほどよいが、触媒充
填により反応器内に生じる圧力損失をも考慮する
と直径0.3〜8mm、好ましくは0.6〜3mmの球体と
するのがよい。 本発明の製造方法は前記固定床用触媒の充填層
に対して溶融した石油樹脂を下方より入れさらに
水素ガスを細かい気泡にして流し、触媒表面で効
率よく水素添加するいわゆる気液上向並流方式を
採用するものである。 本発明の反応条件については、水素添加率、反
応時間、反応器仕様などをそれぞれ考慮して適宜
決定されるが、通常反応圧力は30〜300Kg/cm2
好ましくは50〜150Kg/cm2がよい。水素供給量は
石油樹脂の理論水素吸収量の2〜50倍、好ましく
は5〜30倍、反応温度は200〜350℃、好ましくは
230〜320℃とするのがよい。また石油樹脂の供給
量はWHSV(Weight Hourly Space Velocity、
1時間当りの石油樹脂の供給重量/触媒充填重
量)が0.01〜10、好ましくは0.05〜2とするのが
よい。 前述したごとく、本発明の製造方法によれば、
従来の回分式の懸濁床方式あるいは流通式の懸濁
気泡塔方式と比べて反応時間を短縮し、かつ水素
添加率を向上させることができる。 つぎに実施例をあげて本発明を具体的に説明す
る。 実施例 1 反応器は長さ2m、内径26mm、内容積1のも
のを使用し、反応器の外側をヒーターで加熱し、
内温を一定に保つために4つのブロツクに区分し
て温度調節できるようにした。反応器下部には予
熱のために200mlのステンレスの充填物を充填
し、その上部に粒径1.5mmの球形の2%白金―ア
ルミナ触媒(日本エンゲルハルド株式会社製)
500gを固定して配置した。反応器内を温度295〜
305℃、圧力100Kg/cm2に保持し、水素ガス供給量
750N/hrおよび石油樹脂(「ペトロジン
#120」、軟化点120℃、硫黄含有率150ppm、芳
香核含量54%、三井石油化学株式会社製)供給量
150g/hrで反応器下部より上方へ流して水素添
加を行なつた。ついで分離器で気液を分離したの
ち水素添加石油樹脂を反応系外へ取りだした。 なお、前記の装置はベンチスケールのため、水
素ガスの循環は行なわなかつた。つぎに触媒活
性、触媒寿命を確認するために連続運転を行な
い、各時間経過後にえられた水素添加石油樹脂の
分析結果を第1表に示す。
The present invention relates to a method for producing hydrogenated petroleum resins. More specifically, when hydrogenating a petroleum resin containing aromatic nuclei, hydrogen gas and petroleum resin containing molten aromatic nuclei are flowed together from the bottom of the reactor under a fixed bed catalyst supporting a specific metal. The present invention relates to a method for producing a hydrogenated petroleum resin, which is characterized by flowing the resin upwardly and performing hydrogenation continuously. The so-called petroleum resin obtained by polymerizing the thermal decomposition product of petroleum naphtha in the presence of a Friedel-Crafts catalyst is mainly used as a tackifier for pressure-sensitive adhesives or adhesives, a modifier for plastic compounding, etc. Resins suitable for these uses usually have a softening point of 60 to 140°C and a molecular weight of about 600 to 10,000. Above all, these hydrogenated petroleum resins have good weather resistance, color tone, stability, and compatibility with rubber, polyolefin, ethylene-vinyl acetate copolymer, etc., so they are suitable as resins for use in the above applications. Especially excellent. However, the petroleum resin subjected to the above-mentioned hydrogenation is much less likely to be hydrogenated than the raw material monomer. The reason for this has not yet been fully elucidated, but in general, hydrogenation becomes more difficult as the degree of polymerization increases. In particular, when converting the benzene ring of a petroleum resin having an aromatic ring to a cyclohexane ring, a large amount of catalyst is added,
The hydrogenation reaction is difficult to proceed unless it is under severe conditions of high temperature, high pressure, and long time. Powdered nickel catalysts or platinum catalysts have been known as catalysts used in the hydrogenation reaction of petroleum resins. As a hydrogenation method, a batch suspension bed system or a flow suspension bubble column system is generally employed. When hydrogenating by this conventional method, an overstep is essential to separate the hydrogenated petroleum resin and the powdered catalyst after the hydrogenation. Moreover, among the above-mentioned petroleum resins, those with high softening points, that is, those with high viscosity, are difficult to melt and have inconveniences in handling, such as a delay in elapsed time. The desired hydrogenated petroleum resin can only be obtained by diluting it once with an organic solvent such as, passing through a catalyst, and then evaporating the solvent from the liquid. Therefore, the production process is extremely complicated, and it also leads to an increase in product cost, which is undesirable. In particular, when a platinum catalyst is used as the catalyst in the conventional method, the catalyst is very expensive and therefore the catalyst cannot be quantitatively recovered, resulting in a large economic loss. In view of these problems, there is a strong desire to establish a hydrogenation process for petroleum resins using a fixed bed from an industrial and economic standpoint, such as resource saving and energy saving. The present inventors have solved the problems of the prior art.
As a result of intensive research to develop a new and highly streamlined continuous hydrogenation process for petroleum resins that eliminates the evaporation process, we have developed a method that uses a reactor filled with a fixed bed catalyst supporting specific metals. The inventors have discovered that by employing the method described above, all the drawbacks of the prior art can be solved and the above object can be achieved, and the present invention has been completed. That is, in hydrogenating a petroleum resin having an aromatic nucleus, the present invention processes hydrogen gas and molten petroleum resin in parallel flow from the lower part of a reactor while filling a fixed bed catalyst supporting platinum and/or rhodium. The present invention relates to a method for producing hydrogenated petroleum resin, which is characterized by flowing upward and performing hydrogenation continuously. In the present invention, the petroleum resin having an aromatic nucleus refers to an aromatic hydrocarbon having a double bond in its side chain, a homopolymer of an aromatic hydrocarbon having a double bond in a condensed ring, or a mixture of the aromatic hydrocarbon and other aromatic hydrocarbons. It refers to a polymer of a mixture consisting of olefins and can be obtained by polymerizing the following components in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride. Examples of aromatic hydrocarbons include styrene,
Examples include α-methylstyrene, vinyltoluene, vinylxylene, propenylbenzene, indene, methylindene, and ethylindene. Examples of olefins include butene, pentene, hexene, heptene, octene, butadiene, pentadiene, cyclopentadiene, dicyclopentadiene, octadiene, and the like. The catalyst used in the present invention needs to be a fixed bed catalyst supporting a specific metal. This is because, as mentioned above, petroleum resins, especially petroleum resins having aromatic nuclei, are difficult to hydrogenate and therefore require a highly active catalyst. On the other hand, the petroleum resin usually contains 100 to 500 ppm of sulfur, which acts as a catalyst poison and shortens the catalyst life. Toxicity is also an important factor for the catalyst of the present invention. As a result of examining the above two types of factors,
Surprisingly, very satisfactory results were obtained when using fixed bed catalysts loaded with platinum and/or rhodium. Although knowledge regarding catalyst poisoning has not been elucidated in detail, in the present invention, clear differences were confirmed between platinum and/or rhodium catalysts and nickel catalysts. That is, when a nickel catalyst is used, catalyst deterioration occurs due to sulfur being adsorbed onto the catalyst very quickly or reacting with sulfur to produce nickel sulfide. On the other hand, when a platinum and/or rhodium catalyst was used, sulfur was hydrogenolyzed to become hydrogen sulfide, which was removed from the catalyst layer together with hydrogen gas, so it was not accumulated on the catalyst. That is, examples of the catalyst of the present invention include a fixing catalyst supporting platinum and/or rhodium. The supported amount of platinum and rhodium is 0.2 to 10% by weight (hereinafter referred to as %) based on the carrier weight, either alone or in combination.
), preferably 0.5 to 5%. The carrier used is not particularly limited, but
Porous materials with large surface areas such as alumina, silica, carbon, and titania are preferred. The shape of the catalyst used may be cylindrical, extrudate, pellet, or spherical, but spherical is particularly preferred. The size of the catalyst is better as it affects the effective performance of the catalyst, but considering the pressure loss that occurs in the reactor due to catalyst filling, it is better to use a spherical shape with a diameter of 0.3 to 8 mm, preferably 0.6 to 3 mm. . The production method of the present invention involves introducing molten petroleum resin from below into the packed bed of the fixed bed catalyst, and then flowing hydrogen gas in the form of fine bubbles to efficiently hydrogenate the catalyst on the catalyst surface, so-called gas-liquid upward parallel flow. This method is adopted. The reaction conditions of the present invention are determined appropriately taking into consideration the hydrogenation rate, reaction time, reactor specifications, etc., but the reaction pressure is usually 30 to 300 Kg/cm 2 ,
Preferably it is 50-150Kg/ cm2 . The amount of hydrogen supplied is 2 to 50 times, preferably 5 to 30 times, the theoretical hydrogen absorption amount of petroleum resin, and the reaction temperature is 200 to 350°C, preferably
The temperature is preferably 230 to 320°C. In addition, the supply amount of petroleum resin is determined by WHSV (Weight Hourly Space Velocity).
The ratio (weight of petroleum resin supplied per hour/weight of catalyst packed) is 0.01 to 10, preferably 0.05 to 2. As mentioned above, according to the manufacturing method of the present invention,
The reaction time can be shortened and the hydrogenation rate can be improved compared to the conventional batch-type suspended bed method or flow-type suspended bubble column method. Next, the present invention will be specifically explained with reference to Examples. Example 1 A reactor with a length of 2 m, an inner diameter of 26 mm, and an internal volume of 1 was used, and the outside of the reactor was heated with a heater.
In order to keep the internal temperature constant, it was divided into four blocks so that the temperature could be adjusted. The lower part of the reactor was filled with 200 ml of stainless steel for preheating, and the upper part was filled with a spherical 2% platinum-alumina catalyst with a particle size of 1.5 mm (manufactured by Nippon Engelhard Co., Ltd.).
500g was fixed and placed. Temperature inside the reactor: 295~
Maintained at 305℃, pressure 100Kg/ cm2 , hydrogen gas supply amount
750N/hr and petroleum resin ("Petrozin #120", softening point 120℃, sulfur content 150ppm, aromatic nucleus content 54%, manufactured by Mitsui Petrochemical Co., Ltd.) supply amount
Hydrogenation was carried out by flowing upward from the bottom of the reactor at a rate of 150 g/hr. Then, after separating gas and liquid in a separator, the hydrogenated petroleum resin was taken out of the reaction system. Note that since the above-mentioned apparatus was a bench scale, hydrogen gas was not circulated. Next, continuous operation was performed to confirm the catalyst activity and catalyst life, and the analysis results of the hydrogenated petroleum resin obtained after each time period are shown in Table 1.

【表】 第1表から明らかなように、3000時間の連続水
素添加反応にもかかわらず触媒の劣化がおこらず
約80%の水素添加率を保持したが、4000時間では
水素添加率が約60%に低下し触媒劣化の傾向が認
められた。 なお、水素添加率は以下の測定法により求め
た。 すなわち、紫外線分光器により274.5nmにおけ
る吸光度を測定し、次式により水素添加率を算出
した。 A−B/A×100(%) (式中、Aは原料石油樹脂の吸光度、Bは水素
添加石油樹脂の吸光度を示す。) 実施例 2 実施例1の白金触媒を2%ロジウム―アルミナ
触媒に代えた他は実施例1と同様にして水素添加
を行なつた。えられた水素添加石油樹脂の分析結
果を第2表に示す。
[Table] As is clear from Table 1, the catalyst did not deteriorate despite continuous hydrogenation reaction for 3000 hours and maintained a hydrogenation rate of approximately 80%, but after 4000 hours the hydrogenation rate decreased to approximately 60%. %, indicating a tendency for catalyst deterioration. Note that the hydrogenation rate was determined by the following measurement method. That is, the absorbance at 274.5 nm was measured using an ultraviolet spectrometer, and the hydrogenation rate was calculated using the following formula. A-B/A×100 (%) (In the formula, A indicates the absorbance of the raw petroleum resin, and B indicates the absorbance of the hydrogenated petroleum resin.) Example 2 The platinum catalyst of Example 1 was replaced with a 2% rhodium-alumina catalyst. Hydrogenation was carried out in the same manner as in Example 1 except that . The analysis results of the obtained hydrogenated petroleum resin are shown in Table 2.

【表】 第2表の結果から明らかなように3000時間の連
続水素添加反応にもかかわらず触媒劣化がおこら
ず約80%の水素添加率を保持したが4000時間を経
過したとき水素添加率が約60%に低下し、触媒の
劣化傾向が認められた。
[Table] As is clear from the results in Table 2, catalyst deterioration did not occur despite continuous hydrogenation reaction for 3000 hours and the hydrogenation rate was maintained at approximately 80%, but after 4000 hours the hydrogenation rate decreased. It decreased to about 60%, indicating a tendency for catalyst deterioration.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香核を有する石油樹脂を水素添加するにあ
たり、白金および(または)ロジウムを担持した
固定床用触媒を反応器に充填し、反応器下部より
水素ガスと溶融した石油樹脂とを並流で上方へ流
し、連続して水素添加を行なうことを特徴とする
水素添加石油樹脂の製造方法。
1. When hydrogenating petroleum resins having aromatic nuclei, a fixed bed catalyst supporting platinum and/or rhodium is packed into a reactor, and hydrogen gas and molten petroleum resin are flowed upward from the bottom of the reactor in parallel flow. A method for producing hydrogenated petroleum resin, characterized by flowing the resin into a tank and continuously adding hydrogen to the resin.
JP1168483A 1982-10-23 1983-01-26 Production of hydrogenated petroleum resin Granted JPS59136312A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1168483A JPS59136312A (en) 1983-01-26 1983-01-26 Production of hydrogenated petroleum resin
DE19833338393 DE3338393A1 (en) 1982-10-23 1983-10-21 METHOD FOR PRODUCING A HYDRATED PETROLEUM RESIN
US06/544,230 US4540480A (en) 1982-10-23 1983-10-21 Process for preparing hydrogenated petroleum resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168483A JPS59136312A (en) 1983-01-26 1983-01-26 Production of hydrogenated petroleum resin

Publications (2)

Publication Number Publication Date
JPS59136312A JPS59136312A (en) 1984-08-04
JPS6261202B2 true JPS6261202B2 (en) 1987-12-21

Family

ID=11784833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168483A Granted JPS59136312A (en) 1982-10-23 1983-01-26 Production of hydrogenated petroleum resin

Country Status (1)

Country Link
JP (1) JPS59136312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675572B2 (en) * 1990-06-25 1994-09-28 富士写真光機株式会社 Degassed water injection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4164899A (en) * 1998-06-10 1999-12-30 Asahi Kasei Kogyo Kabushiki Kaisha Method of hydrogenating block copolymer
CN107876051A (en) * 2016-09-29 2018-04-06 中国石油化工股份有限公司 A kind of hydrogenation of petroleum resin palladium series catalyst, preparation method and applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675572B2 (en) * 1990-06-25 1994-09-28 富士写真光機株式会社 Degassed water injection device

Also Published As

Publication number Publication date
JPS59136312A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US4540480A (en) Process for preparing hydrogenated petroleum resin
CN100417436C (en) Catalytic selective hydrogenation
JPS58125703A (en) Manufacture of hydrogen-purified hydrocarbon resin
US4629767A (en) Hydrogenation process and catalyst
JP2001504537A (en) Hydrogenation of unsaturated hydrocarbons
CN111527184A (en) Process for selective hydrogenation
US5156816A (en) System for purifying styrene monomer feedstock using ethylbenzene dehydrogenation waste gas
CA2330036A1 (en) Process for the hydrogenation of phenyl acetylene in a styrene-containing medium with the aid of a catalyst
US2487867A (en) Catalyst purification
US3549720A (en) Selective hydrogenation of acetylenes and catalyst therefor
CN109718808B (en) Selective hydrogenation catalyst, method for preparing hydrogenated petroleum resin, hydrogenated petroleum resin prepared by method, and hot-melt pressure-sensitive adhesive
JPS6261202B2 (en)
CN112439433B (en) Catalyst with hydrogenation and dimerization functions and preparation method and application thereof
JPS6261201B2 (en)
US3691063A (en) Residual fuel oil hydrocracking process
JPH0437841B2 (en)
WO2003106019A1 (en) Catalyst for petroleum resin hydrogenation and process for producing hydrogenated petroleum resin
JP2599406B2 (en) Hydrodecolorization of petroleum resin
JPH05279269A (en) Method for hydrogenation reaction of unsaturated hydrocarbon compound
JPH01190704A (en) Production of hydrogenated petroleum resin
US2717888A (en) Nickel oxide and alkali hydride catalyst for ethylene polymerization
WO2004018525A1 (en) Process for production of hydrogenated petroleum resins
JPH05239125A (en) Production of hydrogenated petroleum resin
JPS621375B2 (en)
US6727398B2 (en) Methods and systems for purifying styrene feedstock comprising use of low palladium catalyst