JPS6261201B2 - - Google Patents

Info

Publication number
JPS6261201B2
JPS6261201B2 JP18649682A JP18649682A JPS6261201B2 JP S6261201 B2 JPS6261201 B2 JP S6261201B2 JP 18649682 A JP18649682 A JP 18649682A JP 18649682 A JP18649682 A JP 18649682A JP S6261201 B2 JPS6261201 B2 JP S6261201B2
Authority
JP
Japan
Prior art keywords
catalyst
petroleum resin
reactor
platinum
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18649682A
Other languages
Japanese (ja)
Other versions
JPS5975904A (en
Inventor
Kenji Azuma
Shigeru Suetomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP18649682A priority Critical patent/JPS5975904A/en
Priority to DE19833338393 priority patent/DE3338393A1/en
Priority to US06/544,230 priority patent/US4540480A/en
Publication of JPS5975904A publication Critical patent/JPS5975904A/en
Publication of JPS6261201B2 publication Critical patent/JPS6261201B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素添加石油樹脂の製造方法に関す
る。さらに詳しくは、芳香核を有する石油樹脂を
水素添加するにあたり、特定の金属を担持した固
定床用触媒の充填下に反応器の上部より水素ガス
および溶融した芳香核を有する石油樹脂を並流で
下方に流下させ、連続して水素添加を行なうこと
を特徴とする水素添加石油樹脂の製造方法に関す
る。 石油ナフサの熱分解物をフリーデルクラフト触
媒の存在下に重合してえられるいわゆる石油樹脂
は、主として粘着剤または接着剤のタツキフアイ
ヤー、プラスチツク配合用改質剤などに用いられ
ているが、これらの用途に適した樹脂は通常その
軟化点60〜140℃、分子量が600〜10000程度のも
のである。なかんづく、これらの石油樹脂の水素
添加物は、その耐候性、色調、安定性またはゴ
ム、ポリオレフインもしくはエチレン―酢酸ビニ
ル共重合物などに対する相溶性などが良好である
ため、前記用途に用いる樹脂としてはとくにすぐ
れている。しかしながら前記の水素添加に供する
石油樹脂はその原料モノマーに比べてはるかに水
素添加されがたい。その理由については未だ充分
に解明されていないが、一般に重合度が高くなる
につれてその水素添加は困難となる。とくに芳香
環を有する石油樹脂のベンゼン環をシクロヘキサ
ン環に変えるばあいには、多量の触媒を添加し、
高温、高圧、長時間というきびしい条件下でなけ
れば水素添加反応は進行しにくい。 従来より石油樹脂の水素添加反応に際して使用
される触媒としては粉末状のニツケル触媒もしく
は白金触媒が知られている。また水素添加方法と
しては回分式の懸濁床方式あるいは流通式の懸濁
気泡塔方式が一般的に採用されている。該従来方
式により水素添加するばあいは、水素添加したの
ち水素添加石油樹脂と粉状触媒とを分離するため
の過工程が不可欠である。しかも前記石油樹脂
のうちでも高軟化点のもの、すなわち高粘度のも
のにあつては溶融状態で過することが困難であ
つたり、過時間が遅延するなどの取扱い上の不
都合から、キシレン、トルエンなどの有機溶剤で
一たん稀釈したのち、触媒を過し、ついで液
より溶剤を蒸発させることにより初めて目的物で
ある水素添加石油樹脂をうることができる。した
がつて生産工程が極めて煩雑であり、しかも製品
コストの上昇にもつながり、好ましくない。とく
に前記触媒として白金触媒を従来方式で使用する
ばあいは、該触媒が非常に高価であるため定量的
に触媒が回収されないことから生じる経済的損失
は大きい。かかる問題点に鑑み、省資源、省エネ
ルギーなどの工業的、経済的見地から固定床によ
る石油樹脂の水素添加プロセスの確立が切望され
ている。 本発明者らは、従来技術の問題点である過、
蒸発工程を省略し、極めて合理化された新規な石
油樹脂の連続水素添加プロセスを開発すべく鋭意
研究を重ねた結果、特定金属を担持した固定床用
触媒が充填された反応器を使用し、特定の流下方
式を採用することにより従来技術の欠点をすべて
解決し、前記目的を達成しうることを見出し、本
発明を完成するにいたつた。 すなわち、本発明は芳香核を有する石油樹脂を
水素添加するにあたり、()白金および(また
は)ロジウムあるいは()白金および(また
は)ロジウム()パラジウム、ルテニウムおよ
びレニウムよりなる群から選ばれた少なくとも1
種の金属を担持した固定床用触媒の充填下に反応
器上部より水素ガスと溶融した石油樹脂とを並流
で下方へ流下させ、連続して水素添加を行なうこ
とを特徴とする水素添加石油樹脂の製造法に関す
る。 本発明において芳香核を有する石油樹脂とは二
重結合を側鎖に有する芳香族炭化水素もしくは二
重結合を縮合環中に有する芳香族炭化水素の単独
重合物または該芳香族炭化水素と他のオレフイン
類とからなる混合物の重合物をいい、下記成分を
塩化アルミニウム、三フツ化ホウ素のようなフリ
ーデルクラフト触媒の存在下に重合することによ
りえられる。 芳香族炭化水素としては、たとえばステチレ
ン、α―メチルスチレン、ビニルトルエン、ビニ
ルキシレン、プロベニルベンゼン、インデン、メ
チルインデン、エチルエンデンなどがあげられ
る。またオレフイン類としては、たとえばブテ
ン、ベンテン、ヘキセン、ヘプテン、オクテン、
ブタジエン、ペンタジエン、シクロペンタジエ
ン、ジシクロペンタジエン、オクタジエンなどが
あげられる。 本発明で使用する触媒は、特定金属を担持した
固定床用触媒であることが必要である。なぜな
ら、前記のごとく石油樹脂、とくに芳香核を有す
る石油樹脂は水素添加されにくいため高活性な触
媒が必要となるからである。一方、該石油樹脂中
には通常硫黄分が硫黄として100〜500ppm含有
されており、これが触媒毒として働き触媒寿命を
短縮させるため、高活性触媒が必ずしも適当であ
るとは限らず、硫黄に対する耐被毒性も本発明の
触媒の重要な因子となる。 以上の2種の因子につき検討を行なつた結果、
驚くべきことに白金および(または)ロジウムを
担持した固定床用触媒を使用したばあい極めて満
足しうる結果がえられた。なお、白金および(ま
たは)ロジウムにパラジウム、ルテニウムまたは
レニウムのような金属を組合せてえられる固定床
用触媒も好適に使用できる。すなわち、パラジウ
ム、ルテニウムおよびレニウムよりなる群から選
ばれた少なくとも1種の金属を白金および(また
は)ロジウムに加えることにより白金および(ま
たは)ロジウムのみのばあいに比べて若干活性度
は低下するものの白金、ロジウムのシンタリング
防止に基づく耐熱性効果により触媒寿命を延長す
るのに有効である。 触媒の被毒に関する知見は詳細には解明されて
いないが、本発明においては白金および(また
は)ロジウム触媒のばあいとニツケル触媒のばあ
いとでは明らかな差違を確認した。すなわち、ニ
ツケル触媒を使用したばあいは、、触媒上に非常
に早く硫黄が吸着したり、あるいは硫黄と反応し
て硫化ニツケルを生じることにより触媒劣化がお
こる。これに対して白金および(または)ロジウ
ム触媒を使用したばあいは硫黄が水素化分解され
て硫化水素となり、水素ガスとともに触媒層外へ
除去されるため触媒上に蓄積されないことが認め
られた。 すなわち、本発明の触媒としては()白金お
よび(または)ロジウムあるいは()白金およ
び(または)ロジウムと()パラジウム、ルテ
ニウムおよびレニウムよりなる群から選ばれた少
なくとも1種を担持した固定床用触媒があげられ
る。白金、ロジウムの担持量は単独または併用で
担持体重量に対して0.2〜10重量%(以下、%と
いう)、好ましくは0.5〜5%とするのがよい。な
お、前記()の金属の担持量は、前記()の
担持量との合計重量が担体重量に対して前記範囲
を満足しかつ前記()と最大限同重量まで併用
することができる。 使用する担体としてはとくに限定されないが、
多孔質で表面積の大きなアルミナ、シリカ、カー
ボン、チタニアなどが好ましい。 使用触媒の形状は円筒形、押出し物、ペレツト
状、球形などいずれを用いてもよいが、とくに球
形が好ましい。また触媒の大きさは触媒有効活性
能に影響をおよぼすため小さいほどよいが、触媒
充填により反応器内に生じる圧力損失をも考慮す
ると直径0.3〜8mm、好ましくは0.6〜3mmの球体
とするのがよい。 本発明の製造法は前記固定用触媒の充填層に対
して溶融した石油樹脂からなる液相を下方へした
たり落ちるように流下させ、触媒表面で石油樹脂
の薄膜を形成させることにより該下降流相で効率
よく水素添加するいわゆるトリツクル・ベツド方
式を採用するものである。 本発明の反応条件については、水素添加率、反
応時間、反応器仕様などをそれぞれ考慮して適宜
決定されるが、通常反応圧力は30〜300Kg/cm2
好ましくは50〜〜150Kg/cm2がよい。水素供給量
は石油樹脂の理論吸収量の2〜50倍、好ましくは
2〜30倍、反応温度は200〜350℃、好ましくは
230〜320℃とするのがよい。また石油樹脂の供給
量はWHSV(Weight Hourly Space Velocity、
1時間当りの石油樹脂の供給重量/触媒充填重
量)が0.01〜10、好ましくは0.05〜2とするのが
よい。 前述したごとく、本発明の製造方法によれば、
高温下に石油樹脂を溶融させ、これを反応器上部
より下降さることにより触媒表面に石油樹脂の薄
膜を形成させ、これに連続相である水素ガスを効
率よく接触、拡散させることにより従来の回分式
の懸濁床方式あるいは流通式の懸濁気泡塔方式と
比べて反応時間を短縮し、かつ水素添加率を向上
させることができる。 つぎに実施例をあげて本発明を具体的に説明す
る。 実施例 1 反応器は長さ2m、内径26mm、内容積1のも
のを使用し、反応器の外側を真ちゆう製の鋳込ヒ
ーターで加熱し、内温を一定に保つために4つの
ブロツクに区分して温度調節できるようにした。
反応器上部には予熱のために200mlのステンレス
の充填物を充填し、その下部に粒径1.5mmの球形
の2%白金―アルミナ触媒(日本エンゲルハルド
株式会社製)500gを固定して配置した。反応器
内を温度295〜305℃、圧力100Kg/cm2に保持し、
水素ガス供給量150N/hrおよび石油樹脂(「ペ
トロジン#120」、軟化点120℃、硫黄含有率
150ppm、芳香核含量54%、三井石油化学株式会
社製)供給量150g/hrで反応器上部より下方へ
流下させて水素添加を行なつた。ついで分離器で
気液を分離したのち水素添加石油樹脂を反応系外
へ取りだした。 なお、前記の装置はベンチスケールのため、水
素ガスの循環は行なわなかつた。つぎに触媒活
性、触媒寿命を確認するために連続運転を行な
い、各時間経過後にえられた水素添加石油樹脂の
分析結果を第1表に示す。
The present invention relates to a method for producing hydrogenated petroleum resins. More specifically, when hydrogenating petroleum resins containing aromatic nuclei, hydrogen gas and petroleum resins containing molten aromatic nuclei are introduced from the top of the reactor in parallel flow under the filling of a fixed bed catalyst supporting a specific metal. The present invention relates to a method for producing hydrogenated petroleum resin, which is characterized by continuously hydrogenating the resin by flowing it downward. The so-called petroleum resin obtained by polymerizing the thermal decomposition product of petroleum naphtha in the presence of a Friedel-Crafts catalyst is mainly used as a tackifier for pressure-sensitive adhesives or adhesives, a modifier for plastic compounding, etc. Resins suitable for these uses usually have a softening point of 60 to 140°C and a molecular weight of about 600 to 10,000. Above all, these hydrogenated petroleum resins have good weather resistance, color tone, stability, and compatibility with rubber, polyolefin, ethylene-vinyl acetate copolymer, etc., so they are suitable as resins for use in the above applications. Especially excellent. However, the petroleum resin subjected to the above-mentioned hydrogenation is much less likely to be hydrogenated than its raw material monomer. The reason for this has not yet been fully elucidated, but in general, hydrogenation becomes more difficult as the degree of polymerization increases. In particular, when converting the benzene ring of a petroleum resin having an aromatic ring to a cyclohexane ring, a large amount of catalyst is added,
The hydrogenation reaction is difficult to proceed unless it is under severe conditions of high temperature, high pressure, and long time. Powdered nickel catalysts or platinum catalysts have been known as catalysts used in the hydrogenation reaction of petroleum resins. As a hydrogenation method, a batch suspension bed system or a flow suspension bubble column system is generally employed. When hydrogenating by this conventional method, an overstep is essential to separate the hydrogenated petroleum resin and the powdered catalyst after the hydrogenation. Moreover, among the above-mentioned petroleum resins, those with high softening points, that is, those with high viscosity, are difficult to melt and have inconveniences in handling, such as a delay in elapsed time. The desired hydrogenated petroleum resin can only be obtained by diluting it once with an organic solvent such as, passing through a catalyst, and then evaporating the solvent from the liquid. Therefore, the production process is extremely complicated, and it also leads to an increase in product cost, which is undesirable. In particular, when a platinum catalyst is used as the catalyst in the conventional method, the catalyst is very expensive and therefore the catalyst cannot be quantitatively recovered, resulting in a large economic loss. In view of these problems, there is a strong desire to establish a hydrogenation process for petroleum resins using a fixed bed from an industrial and economic standpoint such as resource and energy conservation. The present inventors have solved the problems of the prior art.
As a result of intensive research to develop a new and extremely streamlined continuous hydrogenation process for petroleum resins that eliminates the evaporation step, we have developed a system that uses a reactor filled with a fixed bed catalyst supporting specific metals. The present inventors have discovered that all the drawbacks of the prior art can be overcome and the above objectives can be achieved by adopting the flow down method, and have completed the present invention. That is, in hydrogenating a petroleum resin having an aromatic nucleus, the present invention uses at least one selected from the group consisting of () platinum and (or) rhodium, or () platinum and (or) rhodium () palladium, ruthenium, and rhenium.
Hydrogenated petroleum characterized by continuous hydrogenation by flowing hydrogen gas and molten petroleum resin downward in parallel flow from the upper part of the reactor under the filling of a fixed bed catalyst supporting a certain metal. Concerning a method for producing resin. In the present invention, the petroleum resin having an aromatic nucleus refers to an aromatic hydrocarbon having a double bond in its side chain, a homopolymer of an aromatic hydrocarbon having a double bond in a condensed ring, or a mixture of the aromatic hydrocarbon and other aromatic hydrocarbons. It refers to a polymer of a mixture consisting of olefins and can be obtained by polymerizing the following components in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride. Examples of aromatic hydrocarbons include stethylene, α-methylstyrene, vinyltoluene, vinylxylene, propenylbenzene, indene, methylindene, and ethylendene. Examples of olefins include butene, bentene, hexene, heptene, octene,
Examples include butadiene, pentadiene, cyclopentadiene, dicyclopentadiene, and octadiene. The catalyst used in the present invention needs to be a fixed bed catalyst supporting a specific metal. This is because, as mentioned above, petroleum resins, especially petroleum resins having aromatic nuclei, are difficult to hydrogenate and therefore require a highly active catalyst. On the other hand, the petroleum resin usually contains 100 to 500 ppm of sulfur, which acts as a catalyst poison and shortens the catalyst life. Toxicity is also an important factor for the catalyst of the present invention. As a result of examining the above two types of factors,
Surprisingly, very satisfactory results have been obtained using fixed bed catalysts supported on platinum and/or rhodium. A fixed bed catalyst obtained by combining platinum and/or rhodium with a metal such as palladium, ruthenium or rhenium can also be suitably used. That is, by adding at least one metal selected from the group consisting of palladium, ruthenium, and rhenium to platinum and/or rhodium, the activity is slightly lower than when platinum and/or rhodium are used alone. It is effective in extending the life of the catalyst due to the heat resistance effect based on the prevention of sintering of platinum and rhodium. Although knowledge regarding catalyst poisoning has not been elucidated in detail, in the present invention, clear differences were confirmed between platinum and/or rhodium catalysts and nickel catalysts. That is, when a nickel catalyst is used, catalyst deterioration occurs due to sulfur being adsorbed onto the catalyst very quickly or reacting with sulfur to produce nickel sulfide. On the other hand, when a platinum and/or rhodium catalyst was used, sulfur was hydrogenolyzed to become hydrogen sulfide, which was removed from the catalyst layer together with hydrogen gas, so it was not accumulated on the catalyst. That is, the catalyst of the present invention is a fixed bed catalyst supporting at least one member selected from the group consisting of () platinum and/or rhodium, or () platinum and/or rhodium and () palladium, ruthenium, and rhenium. can be given. The amount of platinum and rhodium supported, alone or in combination, is preferably 0.2 to 10% by weight (hereinafter referred to as %), preferably 0.5 to 5%, based on the weight of the support. The supported amount of the metal in () above can be used in combination up to the total weight of the supported amount with the supported amount in () satisfying the above range with respect to the carrier weight and up to the same weight as the above (). The carrier used is not particularly limited, but
Porous materials with large surface areas such as alumina, silica, carbon, and titania are preferred. The shape of the catalyst used may be cylindrical, extrudate, pellet, or spherical, but spherical is particularly preferred. The size of the catalyst is better as it affects the effective activity of the catalyst, but considering the pressure loss that occurs in the reactor due to catalyst filling, it is recommended to use a sphere with a diameter of 0.3 to 8 mm, preferably 0.6 to 3 mm. good. The manufacturing method of the present invention involves causing a liquid phase made of a molten petroleum resin to drip downwardly onto the packed bed of the fixing catalyst, and forming a thin film of petroleum resin on the surface of the catalyst. This method employs the so-called trickle bed method in which hydrogen is efficiently added in the phase. The reaction conditions of the present invention are determined appropriately taking into consideration the hydrogenation rate, reaction time, reactor specifications, etc., but the reaction pressure is usually 30 to 300 Kg/cm 2 ,
Preferably it is 50 to 150 Kg/cm 2 . The amount of hydrogen supplied is 2 to 50 times, preferably 2 to 30 times, the theoretical absorption amount of petroleum resin, and the reaction temperature is 200 to 350°C, preferably
The temperature is preferably 230 to 320°C. In addition, the supply amount of petroleum resin is determined by WHSV (Weight Hourly Space Velocity).
The ratio (weight of petroleum resin supplied per hour/weight of catalyst packed) is 0.01 to 10, preferably 0.05 to 2. As mentioned above, according to the manufacturing method of the present invention,
By melting petroleum resin under high temperature and lowering it from the top of the reactor, a thin film of petroleum resin is formed on the catalyst surface, and hydrogen gas, which is a continuous phase, is efficiently brought into contact with this film and diffused. The reaction time can be shortened and the hydrogenation rate can be improved compared to the suspended bed system or the suspended bubble column system. Next, the present invention will be specifically explained with reference to Examples. Example 1 A reactor with a length of 2 m, an internal diameter of 26 mm, and an internal volume of 1 was used.The outside of the reactor was heated with a cast-in brass heater, and four blocks were installed to keep the internal temperature constant. The temperature can be adjusted by dividing it into two sections.
The upper part of the reactor was filled with 200 ml of stainless steel for preheating, and 500 g of spherical 2% platinum-alumina catalyst (manufactured by Nippon Engelhard Co., Ltd.) with a particle size of 1.5 mm was fixed and placed at the bottom. . Maintain the inside of the reactor at a temperature of 295-305℃ and a pressure of 100Kg/ cm2 ,
Hydrogen gas supply rate 150N/hr and petroleum resin ("Petrosine #120", softening point 120℃, sulfur content
Hydrogenation was carried out by flowing down from the top of the reactor at a feed rate of 150 g/hr (150 ppm, aromatic nucleus content 54%, manufactured by Mitsui Petrochemicals Co., Ltd.). Then, after separating gas and liquid in a separator, the hydrogenated petroleum resin was taken out of the reaction system. Note that since the above-mentioned apparatus was a bench scale, hydrogen gas was not circulated. Next, continuous operation was performed to confirm the catalyst activity and catalyst life, and the analysis results of the hydrogenated petroleum resin obtained after each time period are shown in Table 1.

【表】 第1表から明らかなように、3000時間の連続水
素添加反応にもかかわらず触媒の劣化がおこらず
約90%の高水素添加率を保持したが、4000時間で
は水素添加率が70%に低下し触媒劣化の傾向が認
められた。 なお、水素添加率は以下の測定法により求め
た。 すなわち、紫外線分光器により274.5nmにおけ
る吸光度を測定し、次式により水素添加率を算出
した。 A−B/A×100(%) (式中、Aは原料石油樹脂の吸光度、Bは水素
添加石油樹脂の吸光度を示す。) 実施例 2〜5 実施例1の白金触媒を第2表に示す各触媒に代
えた他は実施例1と同様にして水素添加を行なつ
た。えられた水素添加石油樹脂の分析結果を第2
表に示す。
[Table] As is clear from Table 1, the catalyst did not deteriorate despite continuous hydrogenation reaction for 3000 hours and maintained a high hydrogenation rate of approximately 90%, but after 4000 hours the hydrogenation rate decreased to 70%. %, indicating a tendency for catalyst deterioration. Note that the hydrogenation rate was determined by the following measurement method. That is, the absorbance at 274.5 nm was measured using an ultraviolet spectrometer, and the hydrogenation rate was calculated using the following formula. A-B/A×100 (%) (In the formula, A indicates the absorbance of the raw petroleum resin, and B indicates the absorbance of the hydrogenated petroleum resin.) Examples 2 to 5 The platinum catalyst of Example 1 is shown in Table 2. Hydrogenation was carried out in the same manner as in Example 1 except that the catalysts shown were used instead. The analysis results of the obtained hydrogenated petroleum resin were analyzed in the second
Shown in the table.

【表】 第2表の結果から明らかなように実施例2およ
び3では4000時間を経過したとき水素添加率の低
下がおこり、触媒の劣化傾向が認められた。 一方、実施例4および5においてルテニウムま
たはパラジウムを加えた触媒を使用したばあいに
は4000時間経過後もほとんど水素添加率の低下が
なく、明らかに触媒の延命効果が認められた。
[Table] As is clear from the results in Table 2, in Examples 2 and 3, the hydrogenation rate decreased after 4000 hours, and a tendency for catalyst deterioration was observed. On the other hand, in Examples 4 and 5, when catalysts containing ruthenium or palladium were used, there was almost no decrease in the hydrogenation rate even after 4000 hours had passed, and the effect of extending the life of the catalyst was clearly observed.

Claims (1)

【特許請求の範囲】 1 芳香核を有する石油樹脂を水素添加するにあ
たり、()白金および(または)ロジウムを担
持した固定床用触媒を反応器に充填し、反応器上
部より水素ガスと溶融した石油樹脂とを並流で下
方へ流下させ、連続して水素添加を行なうことを
特徴とする水素添加石油樹脂の製造方法。 2 芳香核を有する石油樹脂を水素添加するにあ
たり、()白金および(または)ロジウムと
()パラジウム、ルテニウムおよびレニウムよ
りなる群から選ばれた少なくとも1種の金属を担
持した固定床用触媒を反応器に充填し、反応器上
部より水素ガスと溶融した石油樹脂とを並流で下
方へ流下させ、連続して水素添加を行なうことを
特徴とする水素添加石油樹脂の製造方法。
[Scope of Claims] 1. In hydrogenating petroleum resins having aromatic nuclei, a fixed bed catalyst supporting () platinum and/or rhodium is charged into a reactor and fused with hydrogen gas from the upper part of the reactor. 1. A method for producing hydrogenated petroleum resin, which comprises flowing the petroleum resin downward in cocurrent with the petroleum resin and continuously hydrogenating the resin. 2. When hydrogenating petroleum resins having aromatic nuclei, a fixed bed catalyst supporting () platinum and/or rhodium and () at least one metal selected from the group consisting of palladium, ruthenium, and rhenium is reacted. 1. A method for producing hydrogenated petroleum resin, which comprises filling a reactor and causing hydrogen gas and molten petroleum resin to flow downward from the upper part of the reactor in cocurrent flow to perform hydrogenation continuously.
JP18649682A 1982-10-23 1982-10-23 Production of hydrogenated petroleum resin Granted JPS5975904A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18649682A JPS5975904A (en) 1982-10-23 1982-10-23 Production of hydrogenated petroleum resin
DE19833338393 DE3338393A1 (en) 1982-10-23 1983-10-21 METHOD FOR PRODUCING A HYDRATED PETROLEUM RESIN
US06/544,230 US4540480A (en) 1982-10-23 1983-10-21 Process for preparing hydrogenated petroleum resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18649682A JPS5975904A (en) 1982-10-23 1982-10-23 Production of hydrogenated petroleum resin

Publications (2)

Publication Number Publication Date
JPS5975904A JPS5975904A (en) 1984-04-28
JPS6261201B2 true JPS6261201B2 (en) 1987-12-21

Family

ID=16189502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18649682A Granted JPS5975904A (en) 1982-10-23 1982-10-23 Production of hydrogenated petroleum resin

Country Status (1)

Country Link
JP (1) JPS5975904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131402U (en) * 1989-04-04 1990-11-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395841B1 (en) * 2000-09-06 2002-05-28 The Dow Chemical Company Process for hydrogenating unsaturated polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131402U (en) * 1989-04-04 1990-11-01

Also Published As

Publication number Publication date
JPS5975904A (en) 1984-04-28

Similar Documents

Publication Publication Date Title
US4540480A (en) Process for preparing hydrogenated petroleum resin
EP0378104B1 (en) Polymer hydrogenation catalysts
EP1689834B1 (en) Ring opening for increased olefin production
US4393259A (en) Process for conversion of propane or butane to gasoline
RU2310639C2 (en) Selective acetylenes' hydrogenation method
US4629767A (en) Hydrogenation process and catalyst
JP2001504537A (en) Hydrogenation of unsaturated hydrocarbons
US3755488A (en) Selective absorption and hydrogenation of acetylenes
ZA200503916B (en) Process for production of high-octane gasoline.
US3050514A (en) Process and product of polymerizing ethylenic hydrocarbons
CA2330036A1 (en) Process for the hydrogenation of phenyl acetylene in a styrene-containing medium with the aid of a catalyst
JPS62184100A (en) Continuous hydrogenation of fat, fatty acid and fatty acid derivative
US4293722A (en) Process for conversion of propane to gasoline
US3549720A (en) Selective hydrogenation of acetylenes and catalyst therefor
US3995753A (en) Dispensing apparatus for particulate matter
JPS6261201B2 (en)
JPS6261202B2 (en)
US20040024273A1 (en) Method for the hydrogenation of aromatics by means of reactive distillation
CN112439433B (en) Catalyst with hydrogenation and dimerization functions and preparation method and application thereof
JPH025682B2 (en)
US3691063A (en) Residual fuel oil hydrocracking process
JPH0437841B2 (en)
JP2599406B2 (en) Hydrodecolorization of petroleum resin
WO2003106019A1 (en) Catalyst for petroleum resin hydrogenation and process for producing hydrogenated petroleum resin
JPH05279269A (en) Method for hydrogenation reaction of unsaturated hydrocarbon compound