JPH0437841B2 - - Google Patents

Info

Publication number
JPH0437841B2
JPH0437841B2 JP4617685A JP4617685A JPH0437841B2 JP H0437841 B2 JPH0437841 B2 JP H0437841B2 JP 4617685 A JP4617685 A JP 4617685A JP 4617685 A JP4617685 A JP 4617685A JP H0437841 B2 JPH0437841 B2 JP H0437841B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
sulfur
petroleum resin
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4617685A
Other languages
Japanese (ja)
Other versions
JPS61204210A (en
Inventor
Shigeo Miki
Yasuhisa Yoshida
Tsuratake Fujitani
Hisao Nakaoka
Mikiro Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON RIKA KK
Original Assignee
SHIN NIPPON RIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON RIKA KK filed Critical SHIN NIPPON RIKA KK
Priority to JP4617685A priority Critical patent/JPS61204210A/en
Publication of JPS61204210A publication Critical patent/JPS61204210A/en
Publication of JPH0437841B2 publication Critical patent/JPH0437841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水素添加石油樹脂の製造方法に関す
る。更に詳しくは、前段として石油樹脂中に含ま
れる硫黄分を除去し、しかる後に水素添加を行な
わしめることを特徴とする、触媒活性を大幅に持
続させ得る水素添加石油樹脂の新規な製造方法に
関する。 [従来の技術] 石油ナフサの熱分解物をフリーデルクラフト触
媒の存在下に重合させるか、熱重合させるかして
得られる石油樹脂は、主として粘着剤又は接着剤
のタツキーフアイアー、プラスチツク配合用改質
剤などに用いられているが、これらの用途に適し
た樹脂は、通常その軟化点が60〜140℃、分子量
が600〜10000程度のものである。とりわけ、これ
らの石油樹脂の水素添加物は、その耐候性、色
調、安定性又はゴム、ポリオレフインもしくはエ
チレン−酢酸ビニル共重合物などに対する相溶性
などが良好であるため、前記用途に用いる樹脂と
しては特に優れている。しかしながら前記の水素
添加に供する石油樹脂には100〜500ppmの硫黄が
含まれているため、多量の触媒を要し、高温、高
圧、長時間という厳しい条件でなければ水素添加
反応は進行しにくい。 従来より石油樹脂の水素添加反応に際して使用
される触媒としては、粉末もしくは成型されたニ
ツケル触媒、もしくは白金、ロジウム、パラジウ
ムなどの白金属触媒が知られている。又、水素添
加方法としては回分式の懸濁床方式あるいは、流
通式の懸濁気泡塔もしくは流通式の固定床方式が
採用されている。当該従来方式により水素添加す
る場合は、懸濁床では、硫黄により触媒が失活す
るため多量の粉末触媒を必要とし、かつ、触媒除
去のため高粘度液体を濾過するという困難を伴
う。一方、固定床では、充填触媒に硫黄が付着し
て、短期間に活性が低下し、触媒寿命が短く経済
上実用に耐えない。殊に、高価な貴金属を固定床
に用いることは被毒を考えると非常に困難であ
る。又、石油樹脂から硫化水素の形で硫黄を除く
方法も知られているが、水素ガスを循環使用する
場合に、生成する硫化水素を酸化亜鉛に吸着させ
るか、又はガスをアルカリ水溶液で洗浄するなど
のプロセスを必要とし煩雑である。 [発明が解決しようとする問題点] 本発明者らは、従来技術の問題点である硫黄被
毒による触媒の水素添加能力の低下に関し、鋭意
研究の結果、硫黄被毒により水素添加能力の著し
く低下した少量の粉末触媒と、硫黄を多量に含む
石油樹脂とを水素加圧下攪拌すると、驚くべきこ
とに石油樹脂の硫黄分が痕跡量となることを見出
し、この知見に基づいて本発明を完成するに至つ
た。 すなわち、本発明は芳香核及び/又は二重結合
を有する石油樹脂を水素添加するにあたり、硫黄
被毒により水素添加能力の低下した成型触媒を充
填した反応器に、石油樹脂と水素ガスとを並流で
流し加熱することにより、当該石油樹脂より硫黄
を除去し、脱硫された当該石油樹脂を水素添加能
力を有する触媒を充填した反応器に水素ガスと並
流で流し加熱することにより、芳香核及び/又は
二重結合を水素添加し、もつて、水素添加触媒の
寿命を経済的に有利な水準に保つことを特徴とす
る水素添加石油樹脂の新規な製造方法を提供する
ことを目的とする。 [問題を解決するための手段] 本発明に係る芳香核および/又は二重結合を有
する石油樹脂とは、二重結合を側鎖に有する芳香
族炭化水素もしくは二重結合を縮合環中に有する
芳香族炭化水素、もしくはオレフイン類の単独重
合物又は当該芳香族炭化水素とオレフイン類との
2種以上の混合物の重合物をいい、塩化アルミニ
ウム、三フツ化ホウ素などのフリーデルクラフト
触媒存在下での重合もしくは熱重合により得られ
る。 芳香族炭化水素としては、例えば、スチレン、
α−メチルスチレン、ビニルトルエン、ビニルキ
シレン、プロペニルベンゼン、インデン、メチル
インデン、エチルインデンなどが挙げられる。
又、オレフイン類としては、例えば、ブテン、ペ
ンテン、ヘキセン、ヘプテン、オクテン、ブタジ
エン、ペンタジエン、シクロペンタジエン、ジシ
クロペンタジエン、オクタジエンなどが挙げられ
る。 本発明において硫黄を除去するために用いる触
媒としては、硫黄被毒を受けて水素添加能力の低
下するも脱硫能力を保持した触媒であれば足り、
ニツケルもしくは白金、パラジウム、ルテニウ
ム、ロジウムなどの白金属元素の担持成型触媒又
はこれらに銅、亜鉛、マンガン、クロム、バリウ
ムなどの異種金属を含有した触媒が例示される。
当該被毒触媒は、本発明において硫黄を除去した
石油樹脂の水素添加に用いられる成型触媒で長時
間反応に使用し、水素添加活性が低下したもので
もよいし、他のプロセスからのものでもよい。当
該被毒触媒に付着した硫黄の量は、触媒重量に対
し、15%以下がよい。15%を越えると硫黄除去能
力が急速に低下するので好ましくない。 硫黄を除去した当該石油樹脂の水素添加に用い
る触媒としては、水素添加用触媒が適用され、例
えばニツケルもしくは白金、パラジウム、ルテニ
ウム、ロジウムなどの白金属元素の担持成型触媒
又はこれらに銅、亜鉛、マンガン、クロム、バリ
ウムなどの異種金属を含有した触媒が提示でき
る。この触媒は市販の成型触媒でもよいし、別途
調製した成型触媒でもよい。 使用する触媒の形状は、円筒形、押出し物、ペ
レツト状、球形などいずれを用いてもよい。 本発明において、前記固定床用触媒の充填層に
対して、石油樹脂はそのまま溶融して仕込んでも
よいし、適当な溶剤、例えばシクロヘキサンなど
にて希釈して仕込んでもよい。 反応方式としては、硫黄除去用の触媒充填層、
水素添加反応用の触媒充填層に対して、石油樹脂
を下方より入れ、更に水素ガスを細かい気泡にし
て流し、触媒表面で効率よく水素添加する、いわ
ゆる気液上向並流方式でもよいし、上方より下方
へ液相をしたたり落ちるように流下させ、石油樹
脂の薄膜を形成させることにより当該下降液相で
効率よく水素添加する、いわゆるトリクル・ベツ
ド方式を採用するものであつてもよい。又、硫黄
除去反応と水素添加反応の両者でその方式を異に
してもよい。水素ガスは、硫黄を除去する触媒層
と水素添加反応を行なう触媒層で別々に流すか、
循環させてもよいし、気液を同一流としてもよ
い。 硫黄除去のための条件は、反応圧力として30〜
300Kg/cm2、好ましくは50〜250Kg/cm2がよい。水
素供給量は、石油樹脂の理論水素吸収量の2〜50
倍、反応温度は200〜350℃がよい。石油樹脂の供
給量は、硫黄除去反応層の触媒に対するWHSV
(Weight Hourly Space Velocity;触媒充填重
量に対する1時間あたりの石油樹脂の供給重量を
いう)が0.01〜10となるようにするのがよい。 本発明の硫黄を除去した石油樹脂の水素添加条
件は、反応圧力として30〜300Kg/cm2、好ましく
は50〜250Kg/cm2がよい。水素供給量は、石油樹
脂の理論水素吸収量の2〜50倍、好ましくは2〜
30倍である。反応温度は、200〜350℃、好ましく
は230〜320℃がよい。硫黄を除去した石油樹脂の
供給量は、水素添加反応層に対するWHSVが
0.01〜10とするのが好ましい。 各層の反応条件は、希望する硫黄の除去効率、
水素添加率や反応器仕様などを考慮して適宜決定
される。 [実施例] 以下に実施例を掲げ、本発明を詳説する。 実施例 1 反応器は長さ2m、内径21mm、内容積0.7の
ものを2本使用し、1本を硫黄除去用反応器、他
の1本を水素添加用反応器として用いた。いずれ
の反応器も外側をヒーターで加熱し、内温を一定
に保つために5個のブロツクに区分して温度調節
できるようにした。硫黄除去用反応器には、触媒
に対し重量で0.3%の硫黄が付着し、水素添加能
力の低下した成型ニツケル触媒(日揮化学社製
N111の被毒を受けたもの)を600g充填し、水素
添加用反応器には新しい成型ニツケル触媒N111
(日揮化学社製)を600g充填した。 各反応器内を温度245〜255℃、圧力200Kg/cm2
に保持し、水素ガス2Nm2/hと石油樹脂(「ペト
ロジン#120」、軟化点120℃、硫黄含有率100〜
150ppm、芳香族含量54%、三井石油化学社製)
を供給量300g/hで硫黄除去用反応器の下部よ
り流し、反応器上方より出てきた気液をそのま
ま、水素添加用反応器の下部より上方へ流して水
素添加を行なつた。次いで、分離器で気液を分離
したのち、水素添加石油樹脂を反応系外へ取り出
した。 次に、硫黄除去用触媒の脱流活性、水素添加用
触媒の水添活性並びに寿命を確認するために連続
運転を行ない、各時間経過後に得られた水素添加
樹脂を分析した。結果を表に示す。 なお、石油樹脂中の硫黄分析はJIS K−2264に
準じて行なつた。又、水素添加率は以下の測定法
により求めた。 すなわち、紫外線分光分析計により、274.5nm
における吸光度を測定し、次式により水素添加率
を計算した。 (A−B)×100/A(%) (式中Aは原料石油樹脂の吸光度、Bは水素添
加石油樹脂の吸光度を示す。) 実施例 2 実施例1における反応器を用い、硫黄除去用反
応器には、触媒に対し重量で0.6%の硫黄が付着
した成型ニツケル触媒(堺化学工業社製ST−111
の被毒を受けたもの)を600g充填し、水素添加
用反応器には、未使用の被毒を受けていないST
−111触媒600gを充填した。硫黄除去反応器内を
265〜270℃、水素添加用反応器内を230〜235℃に
加熱し、圧力を200Kg/cm2に保持し、水素ガス3N
m3/hと石油樹脂(「ペトロジン#120」)を供給
量300g/hで、硫黄除去用反応器上部より仕込
み、下部より出てきた気液をそのまま水素添加用
反応器の上部より仕込んで、水素添加を行なつ
た。以後、実施例1と同様に実施した。各時間経
過ごとに得られた水素添加樹脂の分析結果を表に
示す。 比較例 1 比較のため、脱硫用反応器を用いないこと以外
はすべて実施例1と同様にして反応を行なつた。
各時間経過後に得られた水素添加石油樹脂の分析
結果を表に併掲する。 [発明の効果] 表から明らかなように、本発明方法に係る水素
添加触媒の活性は長期間持続しており、その効果
は顕著である。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing hydrogenated petroleum resins. More specifically, the present invention relates to a novel method for producing hydrogenated petroleum resin that can significantly maintain catalytic activity, which is characterized by removing the sulfur content contained in the petroleum resin as a first step, and then performing hydrogenation. [Prior art] Petroleum resins obtained by polymerizing thermal decomposition products of petroleum naphtha in the presence of a Friedel-Crafts catalyst or by thermally polymerizing them are mainly used as adhesives or adhesives such as tackifier fire and plastic compounds. Resins suitable for these uses usually have a softening point of 60 to 140°C and a molecular weight of about 600 to 10,000. In particular, these hydrogenated petroleum resins have good weather resistance, color tone, stability, and compatibility with rubber, polyolefin, ethylene-vinyl acetate copolymer, etc., so they are suitable as resins for use in the above applications. Especially excellent. However, since the petroleum resin used for hydrogenation contains 100 to 500 ppm of sulfur, a large amount of catalyst is required, and the hydrogenation reaction is difficult to proceed unless under severe conditions of high temperature, high pressure, and long time. Conventionally, powdered or molded nickel catalysts, or platinum metal catalysts such as platinum, rhodium, and palladium are known as catalysts used in the hydrogenation reaction of petroleum resins. As the hydrogenation method, a batch suspended bed system, a flow suspension bubble column, or a flow fixed bed system is employed. When hydrogenating by this conventional method, in a suspended bed, a large amount of powdered catalyst is required because the catalyst is deactivated by sulfur, and it is difficult to filter a high viscosity liquid to remove the catalyst. On the other hand, in a fixed bed, sulfur adheres to the packed catalyst and the activity decreases in a short period of time, resulting in a short catalyst life and being economically impractical. In particular, it is very difficult to use expensive precious metals in fixed beds, considering the possibility of poisoning. Also, methods for removing sulfur in the form of hydrogen sulfide from petroleum resins are known, but when hydrogen gas is recycled, the generated hydrogen sulfide is adsorbed on zinc oxide, or the gas is washed with an alkaline aqueous solution. It is complicated and requires processes such as [Problems to be Solved by the Invention] The present inventors have conducted intensive research regarding the problem of the prior art, which is the reduction in the hydrogenation ability of the catalyst due to sulfur poisoning. When a small amount of the reduced powder catalyst and a petroleum resin containing a large amount of sulfur were stirred under hydrogen pressure, it was surprisingly discovered that the petroleum resin contained only a trace amount of sulfur.Based on this knowledge, the present invention was completed. I came to the conclusion. That is, in hydrogenating petroleum resins having aromatic nuclei and/or double bonds, the present invention involves placing petroleum resins and hydrogen gas in parallel in a reactor filled with a shaped catalyst whose hydrogenation capacity has been reduced due to sulfur poisoning. Sulfur is removed from the petroleum resin by heating it in a stream, and aromatic nuclei are produced by heating the desulfurized petroleum resin in a cocurrent flow with hydrogen gas into a reactor filled with a catalyst capable of hydrogenation. It is an object of the present invention to provide a novel method for producing hydrogenated petroleum resin, which is characterized by hydrogenating double bonds and/or by maintaining the life of a hydrogenation catalyst at an economically advantageous level. . [Means for solving the problem] The petroleum resin having an aromatic nucleus and/or double bond according to the present invention is an aromatic hydrocarbon having a double bond in a side chain or having a double bond in a condensed ring. Refers to a homopolymer of aromatic hydrocarbons or olefins, or a polymer of a mixture of two or more of the aromatic hydrocarbons and olefins, in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride. It can be obtained by polymerization or thermal polymerization. Examples of aromatic hydrocarbons include styrene,
Examples include α-methylstyrene, vinyltoluene, vinylxylene, propenylbenzene, indene, methylindene, and ethylindene.
Examples of olefins include butene, pentene, hexene, heptene, octene, butadiene, pentadiene, cyclopentadiene, dicyclopentadiene, octadiene, and the like. In the present invention, the catalyst used for removing sulfur may be any catalyst that is poisoned by sulfur and has a reduced hydrogenation ability but retains desulfurization ability.
Examples include supported molded catalysts of nickel or platinum metal elements such as platinum, palladium, ruthenium, and rhodium, and catalysts containing dissimilar metals such as copper, zinc, manganese, chromium, and barium.
The poisoned catalyst may be a shaped catalyst used in the hydrogenation of petroleum resin from which sulfur has been removed in the present invention, which has been used for a long reaction and has a reduced hydrogenation activity, or it may be one from another process. . The amount of sulfur attached to the poisoned catalyst is preferably 15% or less based on the weight of the catalyst. If it exceeds 15%, the sulfur removal ability rapidly decreases, which is not preferable. As the catalyst used for hydrogenation of the petroleum resin from which sulfur has been removed, a hydrogenation catalyst is applied, such as a supported molded catalyst of nickel or a platinum metal element such as platinum, palladium, ruthenium, rhodium, etc. Catalysts containing different metals such as manganese, chromium, and barium can be proposed. This catalyst may be a commercially available shaped catalyst or a separately prepared shaped catalyst. The shape of the catalyst used may be cylindrical, extrudate, pellet, or spherical. In the present invention, the petroleum resin may be melted and charged as it is to the packed bed of the fixed bed catalyst, or it may be diluted with a suitable solvent such as cyclohexane and then charged. The reaction method includes a catalyst packed bed for sulfur removal,
A so-called gas-liquid upward parallel flow method may be used, in which petroleum resin is introduced from below into a catalyst packed bed for hydrogenation reaction, and hydrogen gas is made into fine bubbles and hydrogenated efficiently on the catalyst surface. A so-called trickle-bed method may be adopted, in which the liquid phase is allowed to drip from above to below, forming a thin film of petroleum resin to efficiently perform hydrogenation in the descending liquid phase. Further, the methods may be different for both the sulfur removal reaction and the hydrogenation reaction. Either the hydrogen gas is passed through the catalyst layer that removes sulfur and the catalyst layer that performs the hydrogenation reaction, or
It may be circulated, or the gas and liquid may flow in the same flow. The conditions for sulfur removal are as reaction pressure 30~
300Kg/cm 2 , preferably 50 to 250Kg/cm 2 . The hydrogen supply amount is 2 to 50% of the theoretical hydrogen absorption amount of petroleum resin.
The reaction temperature is preferably 200 to 350°C. The amount of petroleum resin supplied is the WHSV for the catalyst in the sulfur removal reaction layer.
(Weight Hourly Space Velocity; refers to the weight of petroleum resin supplied per hour relative to the weight of catalyst packed) is preferably set to 0.01 to 10. The hydrogenation conditions for the petroleum resin from which sulfur has been removed according to the present invention are such that the reaction pressure is 30 to 300 Kg/cm 2 , preferably 50 to 250 Kg/cm 2 . The amount of hydrogen supplied is 2 to 50 times the theoretical hydrogen absorption amount of petroleum resin, preferably 2 to 50 times.
It is 30 times more. The reaction temperature is 200-350°C, preferably 230-320°C. The supply amount of petroleum resin from which sulfur has been removed is determined by the WHSV for the hydrogenation reaction layer.
It is preferably 0.01 to 10. The reaction conditions for each layer depend on the desired sulfur removal efficiency,
It is determined as appropriate, taking into consideration the hydrogenation rate, reactor specifications, etc. [Example] The present invention will be explained in detail with reference to Examples below. Example 1 Two reactors having a length of 2 m, an inner diameter of 21 mm, and an internal volume of 0.7 were used, one of which was used as a sulfur removal reactor and the other as a hydrogenation reactor. The outside of each reactor was heated with a heater, and in order to keep the internal temperature constant, it was divided into five blocks so that the temperature could be adjusted. In the sulfur removal reactor, a molded nickel catalyst (manufactured by JGC Chemical Co., Ltd.) was used, which had 0.3% sulfur by weight attached to the catalyst and had a reduced hydrogenation capacity.
The hydrogenation reactor was filled with 600g of N111 poisoned catalyst, and the hydrogenation reactor was filled with new molded nickel catalyst N111.
(manufactured by JGC Chemical Co., Ltd.) was filled with 600 g. Temperature inside each reactor: 245-255℃, pressure: 200Kg/cm 2
Hydrogen gas 2Nm 2 /h and petroleum resin ("Petrosin #120", softening point 120℃, sulfur content 100~
150ppm, aromatic content 54%, manufactured by Mitsui Petrochemicals)
was fed from the lower part of the sulfur removal reactor at a feed rate of 300 g/h, and the gas and liquid coming out from the upper part of the reactor were flowed as they were from the lower part of the hydrogenation reactor to perform hydrogenation. Next, after separating gas and liquid in a separator, the hydrogenated petroleum resin was taken out of the reaction system. Next, continuous operation was performed to confirm the deflow activity of the sulfur removal catalyst, the hydrogenation activity and life of the hydrogenation catalyst, and the hydrogenated resin obtained after each time period was analyzed. The results are shown in the table. Incidentally, the sulfur analysis in the petroleum resin was conducted according to JIS K-2264. Further, the hydrogenation rate was determined by the following measuring method. That is, 274.5nm by an ultraviolet spectrometer
The absorbance at was measured, and the hydrogenation rate was calculated using the following formula. (A-B) x 100/A (%) (In the formula, A indicates the absorbance of the raw petroleum resin, and B indicates the absorbance of the hydrogenated petroleum resin.) Example 2 The reactor in Example 1 was used to remove sulfur. The reactor was equipped with a molded nickel catalyst (ST-111 manufactured by Sakai Chemical Industry Co., Ltd.) with 0.6% sulfur attached by weight to the catalyst.
The hydrogenation reactor was filled with 600g of unused and unpoisoned ST.
600 g of -111 catalyst was charged. Inside the sulfur removal reactor
Heat the inside of the hydrogenation reactor to 265-270℃, 230-235℃, maintain the pressure at 200Kg/ cm2 , and add 3N of hydrogen gas.
m 3 /h and petroleum resin (Petrozin #120) at a feed rate of 300 g/h were charged from the top of the sulfur removal reactor, and the gas and liquid coming out from the bottom was directly charged from the top of the hydrogenation reactor. , hydrogenation was performed. Thereafter, the same procedure as in Example 1 was carried out. The analysis results of the hydrogenated resin obtained for each time period are shown in the table. Comparative Example 1 For comparison, a reaction was carried out in the same manner as in Example 1 except that a desulfurization reactor was not used.
The analysis results of the hydrogenated petroleum resin obtained after each time period are also shown in the table. [Effects of the Invention] As is clear from the table, the activity of the hydrogenation catalyst according to the method of the present invention continues for a long period of time, and the effect is remarkable. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族及び/又は二重結合を有する石油樹脂
を固定床にて連続的に水素添加するにあたり、触
媒重量に対し15重量%以下の硫黄で被毒されるこ
とにより水素添加能力の低下した触媒を用いて、
水素加圧下、加熱することにより、あらかじめ石
油樹脂中に含まれる硫黄分を除去し、しかる後、
水素添加能力を有する触媒にて水素添加を行わせ
ることを特徴とする水素添加石油樹脂の製造方
法。
1. When continuously hydrogenating petroleum resins containing aromatic and/or double bonds in a fixed bed, a catalyst whose hydrogenation ability has decreased due to poisoning with sulfur of 15% by weight or less based on the catalyst weight. Using,
By heating under hydrogen pressure, the sulfur content contained in the petroleum resin is removed in advance, and then,
A method for producing a hydrogenated petroleum resin, characterized in that hydrogenation is carried out using a catalyst having hydrogenation ability.
JP4617685A 1985-03-07 1985-03-07 Production of hydrogenated petroleum resin Granted JPS61204210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4617685A JPS61204210A (en) 1985-03-07 1985-03-07 Production of hydrogenated petroleum resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4617685A JPS61204210A (en) 1985-03-07 1985-03-07 Production of hydrogenated petroleum resin

Publications (2)

Publication Number Publication Date
JPS61204210A JPS61204210A (en) 1986-09-10
JPH0437841B2 true JPH0437841B2 (en) 1992-06-22

Family

ID=12739716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4617685A Granted JPS61204210A (en) 1985-03-07 1985-03-07 Production of hydrogenated petroleum resin

Country Status (1)

Country Link
JP (1) JPS61204210A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531915B2 (en) * 2000-03-16 2010-08-25 丸善石油化学株式会社 Process for continuous nuclear hydrogenation of aromatic epoxy compounds
TWI494335B (en) * 2012-08-31 2015-08-01 Tsrc Corp Method for hydrogenating polymer and hydrogenated polymer thereof
US20220306775A1 (en) * 2019-07-04 2022-09-29 Zeon Corporation Method for producing hydrocarbon resin hydride

Also Published As

Publication number Publication date
JPS61204210A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
CN105175633B (en) A kind of Combined stone oleoresin hydrotreating method and processing system
US4629767A (en) Hydrogenation process and catalyst
US4540480A (en) Process for preparing hydrogenated petroleum resin
JP2001504537A (en) Hydrogenation of unsaturated hydrocarbons
JP2006291182A5 (en)
CN101668577A (en) Process for reducing carbon monoxide in olefin-containing hydrocarbon feedstocks
US2932620A (en) Process for preparing catalysts utilizing alumina in the carriers
US2487867A (en) Catalyst purification
US2894898A (en) Method of treating hydrocarbons with an alumina containing catalyst composite
US4293722A (en) Process for conversion of propane to gasoline
US3549720A (en) Selective hydrogenation of acetylenes and catalyst therefor
US3995753A (en) Dispensing apparatus for particulate matter
JPH0437841B2 (en)
JPH10502123A (en) Method for reforming hydrocarbon feedstocks with sulfur-sensitive catalysts
US3691063A (en) Residual fuel oil hydrocracking process
EP0255754B1 (en) Olefin hydrogenation method
KR101109814B1 (en) A process for the selective hydrogenation of olefins
JPS6261202B2 (en)
WO2003106019A1 (en) Catalyst for petroleum resin hydrogenation and process for producing hydrogenated petroleum resin
JPS6261201B2 (en)
JPH06157364A (en) Catalytic reduction of phenylacetylene in styrene stream
US3998897A (en) Selective hydrogenation of cyclopentadiene-norbornadiene mixtures
US20040260130A1 (en) Process for total hydrogenation using a catalytic reactor with a hydrogen-selective membrane
KR910004883B1 (en) Process for selective hydrogenation of dienes in pyrolysis gasoline
JPH05279269A (en) Method for hydrogenation reaction of unsaturated hydrocarbon compound