JPH01190704A - Production of hydrogenated petroleum resin - Google Patents

Production of hydrogenated petroleum resin

Info

Publication number
JPH01190704A
JPH01190704A JP1973188A JP1973188A JPH01190704A JP H01190704 A JPH01190704 A JP H01190704A JP 1973188 A JP1973188 A JP 1973188A JP 1973188 A JP1973188 A JP 1973188A JP H01190704 A JPH01190704 A JP H01190704A
Authority
JP
Japan
Prior art keywords
petroleum resin
catalyst
hydrogenation
aromatic
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1973188A
Other languages
Japanese (ja)
Inventor
Takumi Okazaki
巧 岡崎
Kenji Azuma
東 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP1973188A priority Critical patent/JPH01190704A/en
Publication of JPH01190704A publication Critical patent/JPH01190704A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the title resin economically in a high degree of hydrogenation by facilitating reaction control, by passing a molten aromatic ring- containing petroleum resin and hydrogen gas through a reactor packed with a specified fixed bed catalyst. CONSTITUTION:A mixture of at least 50wt.% aromatic unsaturated hydrocarbon with, optionally, other olefins is polymerized in the presence of a Friedel-Crafts catalyst to obtain an aromatic nucleus-containing petroleum resin (A). Molten component A and a hydrogen gas in an amount 2-50 times larger than the theoretical hydrogen up-take of component A are passed through a reactor packed with a fixed bed catalyst composed of Pd supported on a carrier, preferably, alumina at a space velocity (the volume of the feed of the petroleum resin per hr/the volume of the catalyst packed) of 0.01-10hr<-1> and hydrogenated at 200-350 deg.C under a pressure of 10-300kg/cm<2> to a degree of hydrogenation of the aromatic nuclei of component A of at least 50%, preferably 50-70%.

Description

【発明の詳細な説明】 上の利 分 本発明は水素化石油樹脂の製造方法に関する。[Detailed description of the invention] upper profit The present invention relates to a method for producing hydrogenated petroleum resin.

虹釆五且遺 石油ナフサの熱分解物をフリーゾルタラフッ触奴の存在
下に重合して得られるいわゆる石油樹脂は主として粘着
剤または接着剤のタッキファイア−、プラスチ・ツク配
合用改質剤等に用いられているが、これらの用途に適し
た樹脂は通常その軟化点が80〜140°C1分子量が
800〜10000程度のものである。なかんずく、こ
れらの石油樹脂の水素化物は、その耐候性、色調、安定
性等が良好であり、しかもゴム、ポリオレフィンもしく
はエチレン−酢酸ビニル共重合体等に対する相溶性等も
良好であるため前記用途に用いられる樹脂としては特に
優れている。しかしながら、該石油樹脂は、その原料上
ツマ−に比べてはるかに水素化されがたい。その理由に
ついては未だ充分に解明されていないが、一般に、重合
度が高くなるにつれてその水素化は困難となることが経
験的に知られている。特に芳香環を有する石油樹脂のベ
ンゼン環をシクロヘキサン環に換える場合には多量の触
媒を添加し、しかも高温、高圧、長時間という厳しい条
件下でなければ水素化反応は進行しにくい。
The so-called petroleum resin, which is obtained by polymerizing the thermal decomposition product of Hongdae Wuhan Petroleum Naphtha in the presence of a free-solat fluorocarbon, is mainly used as a tackifier for adhesives or adhesives, and as a modifier for compounding plastics. Resins suitable for these uses usually have a softening point of 80 to 140°C and a molecular weight of about 800 to 10,000. Above all, these hydrogenated petroleum resins have good weather resistance, color tone, stability, etc., and are also good in compatibility with rubber, polyolefin, ethylene-vinyl acetate copolymer, etc., so they are suitable for the above uses. It is particularly excellent as a resin to be used. However, petroleum resins are much more difficult to hydrogenate than resins due to their raw materials. Although the reason for this has not yet been fully elucidated, it is generally known from experience that as the degree of polymerization increases, hydrogenation becomes more difficult. In particular, when replacing the benzene ring of a petroleum resin with an aromatic ring with a cyclohexane ring, a large amount of catalyst is added and the hydrogenation reaction is difficult to proceed unless severe conditions such as high temperature, high pressure, and long time are used.

従来より、水素化石油樹脂の製造方法としては粉末状の
ニンケル触媒もしくは白金触媒を用いた回分式の懸濁床
方式あるいは流通式の懸濁気泡塔方式が一般的に採用さ
れている。しかしながら、該従来方式を採用する場合に
は、水素化したのち水素化石油樹脂と粉状触媒とを分離
するだめの濾過工程が不可欠である。しかも前記石油樹
脂のうちでも高軟化点のもの、すなわち高粘度のものに
あっては溶融状態で濾過することが困難であったり、濾
過が遅延子るなどの取り扱いLの不都合からキシレン、
トルエン等の有機溶剤で一旦稀釈したのち、触媒を濾過
し、次いで濾液より溶剤を蒸発させることにより初めて
水素化石油樹脂を得ることができるのである。したがっ
て、生産工程が極めて煩雑であり、しかも製品コストの
上昇にもつながり好ましくない。特に前記触媒として白
金触媒を従来方式で採用する場合には、該触媒が非常に
高価であるため定量的に触媒が回収されないことがら牛
しる経済的損失は大きい。
Conventionally, as a method for producing hydrogenated petroleum resins, a batch suspension bed system or a flow suspension bubble column system using a powdered nickel catalyst or platinum catalyst has generally been adopted. However, when this conventional method is employed, a filtration step is essential to separate the hydrogenated petroleum resin from the powdered catalyst after hydrogenation. Moreover, among the above-mentioned petroleum resins, those with a high softening point, that is, those with high viscosity, are difficult to filter in a molten state, and filtration is delayed, so xylene,
Hydrogenated petroleum resin can only be obtained by diluting the catalyst with an organic solvent such as toluene, filtering the catalyst, and then evaporating the solvent from the filtrate. Therefore, the production process is extremely complicated, and it also leads to an increase in product cost, which is undesirable. In particular, when a platinum catalyst is used as the catalyst in the conventional method, the catalyst is very expensive and cannot be quantitatively recovered, resulting in a large economic loss.

前記問題点に鑑みて白金あるいはロジウム触媒を固定床
に用いた水素化石油樹脂の製造方法(特開昭59−75
904号公報、特開昭59−13Ei312号公報参照
)が開示されており、該方法によれば前記生産工程の煩
雑さを十分に解決しうるに至った。しかしながら、白金
、ロジウム等の貴金属触媒は非常に高価であり生産コス
トが高いという欠点は未だ解決されていない。
In view of the above problems, a method for producing hydrogenated petroleum resin using a fixed bed of platinum or rhodium catalyst (Japanese Unexamined Patent Publication No. 59-75
No. 904 and Japanese Patent Application Laid-open No. 59-13Ei312), and according to this method, the complexity of the production process can be sufficiently solved. However, noble metal catalysts such as platinum and rhodium are very expensive and have a high production cost, which has not been solved yet.

通常、水素化石油樹脂は芳香核の水素化率が50〜70
%程度の場合にエチレン−酢酸ビニル共重合体等との相
溶性が最も良好となる。しかし、ニッケル、白金、ロジ
ウム等の水素化触媒は芳香核の水素化能が非常に高く、
芳香核のほとんどを容易に水素化しうる。そのためニッ
ケル、白金、ロジウム等の貴金属触媒を用いた場合には
、芳香核の水素化率が50〜70%程度の範囲となるよ
うに水素化反応を制御しがたいという欠点も有する。
Usually, hydrogenated petroleum resin has a hydrogenation rate of aromatic nuclei of 50 to 70.
%, the compatibility with ethylene-vinyl acetate copolymer etc. is best. However, hydrogenation catalysts such as nickel, platinum, and rhodium have a very high ability to hydrogenate aromatic nuclei.
Most of the aromatic nuclei can be easily hydrogenated. Therefore, when a noble metal catalyst such as nickel, platinum, or rhodium is used, it also has the disadvantage that it is difficult to control the hydrogenation reaction so that the hydrogenation rate of aromatic nuclei is in the range of about 50 to 70%.

発 が 決しようとしている間 へ 本発明は芳香核の水素化率が50%以−Lと高いにもか
かわらず該水素化反応を容易に制御しうる簡易かつ経済
的な水素化石油樹脂の製造方法を提供することを目的と
した。
While the hydrogenation is about to occur, the present invention aims at producing a simple and economical hydrogenated petroleum resin in which the hydrogenation reaction can be easily controlled despite the hydrogenation rate of aromatic nuclei being as high as 50% or more. The purpose was to provide a method.

□ 壱  ・ るための− 木発明者らは上記技術的背景および経済的背景に鑑み水
素化触媒に着目して鋭意検討を重ねた結果、パラジウム
触媒を使用しかつ特定の反応方式を採用した場合には前
記問題点を悉く解決しうろことを見出し、本発明を完成
するに至った。
□ 1. To Ru - Wood The inventors have conducted extensive studies focusing on hydrogenation catalysts in view of the above technical and economic backgrounds, and have found that when a palladium catalyst is used and a specific reaction method is adopted. They found a way to solve all of the above problems and completed the present invention.

すなわち、本発明は芳香核を有する石油樹脂を水素化す
るにあたり、担体にパラジウムを担持した固定床触媒を
反応器に充填し、水素ガスと溶融した石油樹脂を反応器
−h部あるいは反応器下部より並流で下方あるいは上方
へ流し連続して水素化を行ない芳香核の50%以上を水
素化することを特徴とする水素化石油樹脂の製造方法に
関する。
That is, in hydrogenating a petroleum resin having an aromatic nucleus, the present invention involves filling a reactor with a fixed bed catalyst in which palladium is supported on a carrier, and supplying hydrogen gas and molten petroleum resin to the reactor-h section or the lower part of the reactor. The present invention relates to a method for producing a hydrogenated petroleum resin, characterized in that hydrogenation is carried out continuously by flowing downward or upward in a cocurrent flow to hydrogenate 50% or more of the aromatic nuclei.

本発明において芳香核を有する石油樹脂とは、芳香族不
飽和炭化水素または芳香族不飽和炭化水素を少なくとも
50重量%以−ヒ含む他のオレフィンとの混合物を塩化
アルミニウム、三フッ化ホウ素のようなフリーデルΦク
ラフッ触媒の存在下に重合することにより得られる重合
物をいう。
In the present invention, petroleum resins having aromatic nuclei refer to aromatic unsaturated hydrocarbons or mixtures with other olefins containing at least 50% by weight of aromatic unsaturated hydrocarbons, such as aluminum chloride and boron trifluoride. It refers to a polymer obtained by polymerization in the presence of a Friedel-Krauch catalyst.

ここで芳香族不飽和炭化水素とは、石油類の分解等によ
り得られるもののなかで沸点が100〜280°Cのも
のを指し、具体的にはスチレン、α−メチルスチレン、
ビニルトルエン、プロペニルベンゼン、ビニルキシレン
、インデン、メチルインデン、エチルインデン等があげ
られる。また、その他のオレフィンとしてはブテン、ペ
ンテン、ヘキセン、ヘプテン、オクテン、ブタジェン、
ペンタジェン、シクロペンタジェン、ジシクロペンタジ
ェン、オクタジエン等があげられる。
Here, aromatic unsaturated hydrocarbons refer to those with a boiling point of 100 to 280°C among those obtained by decomposition of petroleum, and specifically, styrene, α-methylstyrene,
Examples include vinyltoluene, propenylbenzene, vinylxylene, indene, methylindene, and ethylindene. Other olefins include butene, pentene, hexene, heptene, octene, butadiene,
Examples include pentadiene, cyclopentadiene, dicyclopentadiene, and octadiene.

本発明では、担体にパラジウムを担持した触媒を用いる
ことが必須である。なぜなら、前記のごとき本発明の目
的に照らせば、本発明の触媒は比較的安価であり、かつ
石油樹脂の芳香核の水素化能が白金、ロジウム等に比べ
て小さく高水素化率にもかかわらず水素化反応を容易に
制御しうる水素化触媒が要求されるからである。その他
に、該石油樹脂中には通常、硫黄分が硫黄として100
〜500ppm含有されていることから硫黄に対する耐
被毒性が良好でなければならず、さらには芳香核の水素
化により発生する多量の反応熱を考慮して酎熱性等も要
求される。
In the present invention, it is essential to use a catalyst in which palladium is supported on a carrier. This is because, in light of the above-mentioned objectives of the present invention, the catalyst of the present invention is relatively inexpensive, and the hydrogenation ability of the aromatic nuclei of petroleum resins is smaller than that of platinum, rhodium, etc., despite the high hydrogenation rate. This is because a hydrogenation catalyst that can easily control the hydrogenation reaction is required. In addition, the petroleum resin usually has a sulfur content of 100% as sulfur.
Since the content is ~500 ppm, it must have good resistance to sulfur poisoning, and it must also have good resistance to sulfur heat, taking into account the large amount of reaction heat generated by hydrogenation of aromatic nuclei.

V上の諸因子につき検討を行なった結果、驚くべきこと
に相体にパラジウムを担持した。固定床用触媒を使用し
た場合には極めて満足しうる結果が得られた。
As a result of examining various factors on V, surprisingly, palladium was supported on the phase. Very satisfactory results were obtained using fixed bed catalysts.

また、パラジウムを担持する担体としては特に限定され
ないが、多孔質で表面積の大きな担体、たとえばアルミ
ナ、シリカ、カーボン、チタニア等が用いられる。これ
らのなかでも特にアルミナが好ましい。担体として、何
故、アルミナが特に好ましいかは定かでないが、他の担
体に比べて担持金属であるパラジウムが高分散になりや
すいことおよびパラジウム上で解離した水素がスピルオ
ーバー(相体]−を移動すること)しやすいことなどが
その原因である考えられる。
Further, the carrier supporting palladium is not particularly limited, but a porous carrier having a large surface area, such as alumina, silica, carbon, titania, etc., may be used. Among these, alumina is particularly preferred. It is not clear why alumina is particularly preferable as a carrier, but the reason is that palladium, which is a supported metal, tends to be highly dispersed compared to other carriers, and that hydrogen dissociated on palladium migrates as a spillover (phase). This is thought to be due to the fact that it is easy to do.

また、担体へのパラジウムの担持量も特に制限されない
が、通常は担体重量に対して0.2〜10重量%程度、
好ましくは0.5〜5重量%である。
The amount of palladium supported on the carrier is also not particularly limited, but is usually about 0.2 to 10% by weight based on the weight of the carrier.
Preferably it is 0.5 to 5% by weight.

上記のようにして得られる使用触媒の形状は円筒形、押
し出し物、ペレット状、球形等のいずれを用いてもよい
が、特に球形が好ましい。また触媒の大きさは触媒有効
活性能に影響を及ぼすためできるだけ小さな触媒を用い
るのがよい。さらに詳しくは、触媒を反応器に充填し、
流体を流したときに反応器内に生じる圧力損失を考慮し
て、直径0.3〜8■程度、好ましくは0.6〜3■の
球形とするのがよい。
The shape of the catalyst obtained as described above may be cylindrical, extrudate, pellet, or spherical, but spherical is particularly preferred. Further, since the size of the catalyst affects the effective activity of the catalyst, it is preferable to use the smallest possible catalyst. More specifically, the catalyst is loaded into a reactor,
In consideration of the pressure loss that occurs in the reactor when fluid is flowed, it is preferable to use a spherical shape with a diameter of about 0.3 to 8 square centimeters, preferably 0.6 to 3 square centimeters.

本発明の製造方法は前記固定床用触媒の充填層に対して
溶融した石油樹脂からなる液層を下方へしたたり落るよ
うに瀉下させ、触媒表面で石油樹脂の薄膜を形成させる
ことにより該下降波相で効率よく水素化するいわゆるト
リックル、ベツド方式、あるいは前記固定床用触媒の充
填層に対して溶融した石油樹脂からなる液層を下方より
入れさらに水素ガスを細かい気泡にして流し、触媒表面
で効率よく水素化するいわゆる気液上向並流方式のいず
れも採用しうる。
The production method of the present invention involves dripping a liquid layer of molten petroleum resin downwards on the packed bed of the fixed bed catalyst to form a thin film of petroleum resin on the catalyst surface. There is a so-called trickle or bed method that efficiently hydrogenates in the downward wave phase, or a liquid layer made of molten petroleum resin is introduced from below into the packed bed of the fixed bed catalyst, and hydrogen gas is made into fine bubbles and flows through the catalyst. Any of the so-called gas-liquid upward cocurrent flow systems that efficiently hydrogenate on the surface may be adopted.

反応条件は脱色の状態、芳香核の水素化率、反応時間、
反応器仕様等をそれぞれ考慮して適宜決定される。通常
、反応圧力は10−300kg/ c rrf、好まし
くlま50〜150kg/ Cm’である。水素供給早
は石油樹脂の理論水素吸収量の2〜50倍、好ましくは
5〜30倍、反応温度は200〜350’(!程度、好
ましくは230〜320°Cがよい。また、石油樹脂の
供給量はWt(SV (Weight Hourly 
5pace Velocity、1時間当たりの石油樹
脂供飴量/触奴充填容量)が0.01〜1ohr、好ま
しくは0.1〜2 hrとするのがよい。
The reaction conditions are decolorization state, hydrogenation rate of aromatic nucleus, reaction time,
It is determined as appropriate, taking into consideration the reactor specifications, etc. Usually, the reaction pressure is 10-300 kg/cm', preferably 50-150 kg/cm'. The hydrogen supply speed is 2 to 50 times, preferably 5 to 30 times, the theoretical hydrogen absorption amount of the petroleum resin, and the reaction temperature is about 200 to 350°C, preferably 230 to 320°C. The supply amount is Wt(SV (Weight Hourly
5pace velocity (amount of petroleum resin fed candy/hourly filler capacity) is preferably 0.01 to 1 ohr, preferably 0.1 to 2 hr.

かくして得られた水素化石油樹脂の芳香核の水素化率は
50%以上、好ましくは50〜70%である。
The hydrogenation rate of aromatic nuclei of the hydrogenated petroleum resin thus obtained is 50% or more, preferably 50 to 70%.

水素化率が50%に満たない場合にはエチレン−酢酸ビ
ニル共重合体等との相溶性が悪くなる傾向がある。また
色調はガードナー色数1以下、好ましくはハーゼン色数
200以下、更に好ましくはハーゼン色数100以下で
ある。軟化点は80〜120°C程度であるのがよい。
If the hydrogenation rate is less than 50%, the compatibility with ethylene-vinyl acetate copolymer etc. tends to deteriorate. Further, the color tone is a Gardner color number of 1 or less, preferably a Hazen color number of 200 or less, and more preferably a Hazen color number of 100 or less. The softening point is preferably about 80 to 120°C.

以下に本発明を実施例および比較例をあげてさらに詳細
に説明するが本発明は何ら各個に限定されるものではな
い。
EXAMPLES The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

実施例1 反応器は長さ5m、内径27mm、内容@2.8flの
ものを使用し反応器の外側に熱媒体を流して温度調節で
きるようにした。反応器上部には予熱のために200m
Mの粒径4〜8 mmのアルミナ球を充填し、その下部
に粒径1.5 mmの球形の2χパラジウム−アルミナ
触媒(日本エンゲルハルト(株)製) 15002を固
定して配置した。反応器内を温度280°C1圧力?O
kg/ c m’に保持し、水素ガス供給量1.5Nr
rf/hrおよび石油樹脂(三井石油化学工業(株)製
部品名ベトロジン#120軟化点120°C)供給量4
00g/hrで反応器−11部より下方へ流下させて水
素化反応を行なった。ついで分離器で気液を分離した後
、水素化石油樹脂を反応系外へ取り出した。
Example 1 A reactor with a length of 5 m, an inner diameter of 27 mm, and a content of 2.8 fl was used, and the temperature could be adjusted by flowing a heat medium outside the reactor. 200 m above the reactor for preheating
M alumina spheres with a particle size of 4 to 8 mm were filled, and a spherical 2χ palladium-alumina catalyst (manufactured by Nippon Engelhardt Co., Ltd.) 15002 with a particle size of 1.5 mm was fixed and placed below the alumina spheres. Temperature 280°C 1 pressure inside the reactor? O
kg/cm', hydrogen gas supply amount 1.5Nr
rf/hr and petroleum resin (manufactured by Mitsui Petrochemical Industries, Ltd. Part name Vetrogin #120 Softening point 120°C) Supply amount 4
A hydrogenation reaction was carried out by flowing downward from 11 parts of the reactor at a rate of 00 g/hr. After gas and liquid were separated in a separator, the hydrogenated petroleum resin was taken out of the reaction system.

反応が安定した後、得られた水素化石油樹脂の特性とし
て芳香核の水素化率、色調、軟化点および相溶性を下記
の試験方法にしたがって測定した。
After the reaction was stabilized, the hydrogenation rate of aromatic nuclei, color tone, softening point, and compatibility of the obtained hydrogenated petroleum resin were measured according to the following test method.

その結果を第1表に示す。また、反応条件として用いた
触媒、反応温度および反応方式を第1表に合わせて示す
The results are shown in Table 1. The catalyst, reaction temperature, and reaction method used as reaction conditions are also shown in Table 1.

試験方法 (芳香核の水素化率の測定) H−NMRにより、得られた水素化石油樹脂の芳香核の
プロトン数を測定し、次式により水素化率を算出した。
Test method (measurement of hydrogenation rate of aromatic nucleus) The number of protons of the aromatic nucleus of the obtained hydrogenated petroleum resin was measured by H-NMR, and the hydrogenation rate was calculated using the following formula.

A:原料石油樹脂の芳香核のプロトン数B、水素化石油
柵脂の芳香核のプロトン数(色調の測定) ASTM(I)1888)に規定された方法にしたがっ
て、得られた水素化石油樹脂のハーゼン色数を測定した
。色数が小さいほどよく脱色されていることを示す。
A: Number of protons in the aromatic nucleus of raw petroleum resin B, Number of protons in the aromatic nucleus of hydrogenated petroleum resin (measurement of color tone) Hydrogenated petroleum resin obtained according to the method specified in ASTM (I) 1888) The Hazen color number was measured. The smaller the color number, the better the decolorization.

(軟化点の測定) JIS−に253+に規定された環球法にしたがって、
得られた水素化石油樹脂の軟化点を測定した。
(Measurement of softening point) According to the ring and ball method specified in JIS-253+,
The softening point of the obtained hydrogenated petroleum resin was measured.

(相溶性) エチレン−酢酸ビニル共重合体(三井ポリケミカル■製
、工/′−フレックス220 ) 2gと水素化石油樹
脂2gを試験管に入れシリコンオイルパスで加熱し16
0°Cになったところでガラス棒で撹拌し、さらにオイ
ルバスを200°Cまで昇温したのち放冷する。このと
き試験管の内部が白濁した温度を観察し、該温度が10
0’O未満ならば○、100’O以−ヒならば×とした
(Compatibility) 2 g of ethylene-vinyl acetate copolymer (manufactured by Mitsui Polychemical Co., Ltd., Ko/'-Flex 220) and 2 g of hydrogenated petroleum resin were placed in a test tube and heated in a silicone oil path for 16 hours.
When the temperature reached 0°C, stir with a glass rod, further heat the oil bath to 200°C, and then let it cool. At this time, the inside of the test tube was observed to become cloudy, and the temperature was 10
If it was less than 0'O, it was marked as ○, and if it was more than 100'O, it was marked as ×.

実施例2 反応器内の温度を300°C1圧力を100kg/ c
 rri’に代えた他は実施例1と全く同様の操作を行
った。
Example 2 Temperature inside the reactor: 300°C1 Pressure: 100kg/c
The operation was exactly the same as in Example 1 except that rri' was replaced.

反応が安定した後、得られた水素化石油樹脂の特性を実
施例1と同様にして測定した。その結果および反応条件
を第1表に示す。
After the reaction stabilized, the properties of the obtained hydrogenated petroleum resin were measured in the same manner as in Example 1. The results and reaction conditions are shown in Table 1.

実施例3 実施例1の反応器の下部に予熱のため粒径4〜6mmの
アルミナ球を充填しその上部に実施例1と同じパラジウ
ム触媒1500gを充填した。反応器内を温度300°
C1水素圧力too kg/ c rrfに保持し水素
ガス供給量2ONrn’ / hrおよび石油樹脂(三
井石油化学工業(株)製、商品名ベトロジン#120軟
化点120°C)供給量300m文で反応器下部より上
方へ流して水素化反応を行なった。ついで分離器で気液
を分離した後、生成樹脂を反応系外へ取り出した。反応
が安定した後、得られた水素化石油樹脂の特性を実施例
1と同様にして測定した。その結果および反応条件を第
1表に示す。
Example 3 The lower part of the reactor of Example 1 was filled with alumina spheres having a particle size of 4 to 6 mm for preheating, and the upper part was filled with 1500 g of the same palladium catalyst as in Example 1. Temperature inside the reactor is 300°
C1 was maintained at a hydrogen pressure of too kg/crrf, a hydrogen gas supply rate of 2ONrn'/hr, and a petroleum resin (manufactured by Mitsui Petrochemical Industries, Ltd., trade name Vetrogin #120, softening point 120°C) supply rate of 300 m into the reactor. The hydrogenation reaction was carried out by flowing upward from the bottom. Then, after separating gas and liquid using a separator, the produced resin was taken out of the reaction system. After the reaction stabilized, the properties of the obtained hydrogenated petroleum resin were measured in the same manner as in Example 1. The results and reaction conditions are shown in Table 1.

比較例1 触媒を2z白金−アルミナ触媒(日本エンゲルハルト(
株)製)に代えた他は実施例1と全く同様に行なった。
Comparative Example 1 The catalyst was a 2z platinum-alumina catalyst (Nippon Engelhardt).
The same procedure as in Example 1 was carried out except that the material was replaced with (manufactured by Co., Ltd.).

ついで分離器で気液を分離した後、生成樹脂を反応系外
へ取り出した。反応が安定した後、得られた水素化石油
樹脂の特性を実施例1と同様にして測定した。その結果
および反応条件を第1表に示す。
Then, after separating gas and liquid using a separator, the produced resin was taken out of the reaction system. After the reaction stabilized, the properties of the obtained hydrogenated petroleum resin were measured in the same manner as in Example 1. The results and reaction conditions are shown in Table 1.

[以下余白] 魚」L二」L釆 本発明によれば、安価なパラジウム触媒を用いることに
より触媒のコストを下げることができ、また水素化反応
を制御しやすいため芳香核の水素化率が50%以上、な
かでも50〜70%の水素化石油樹脂を容易に製造しう
る。
[Blank below] According to the present invention, the cost of the catalyst can be lowered by using an inexpensive palladium catalyst, and the hydrogenation rate of aromatic nuclei can be increased because the hydrogenation reaction is easy to control. Hydrogenated petroleum resins of 50% or more, particularly 50 to 70%, can be easily produced.

Claims (1)

【特許請求の範囲】 1 芳香核を有する石油樹脂を水素化するにあたり、担
体にパラジウムを担持した固定床触媒を反応器に充填し
、水素ガスと溶融した石油樹脂を反応器上部あるいは反
応器下部より並流で下方あるいは上方へ流し連続して水
素化を行ない芳香核の50%以上を水素化することを特
徴とする水素化石油樹脂の製造方法。 2 芳香核の水素化率が50%以上70%以下である特
許請求の範囲第1項記載の水素化石油樹脂の製造方法。
[Claims] 1. In hydrogenating petroleum resins having aromatic nuclei, a fixed bed catalyst with palladium supported on a carrier is filled in a reactor, and hydrogen gas and molten petroleum resin are poured into the upper part or lower part of the reactor. A method for producing a hydrogenated petroleum resin, characterized by hydrogenating 50% or more of aromatic nuclei by flowing downward or upward in a cocurrent flow and hydrogenating continuously. 2. The method for producing a hydrogenated petroleum resin according to claim 1, wherein the hydrogenation rate of aromatic nuclei is 50% or more and 70% or less.
JP1973188A 1988-01-26 1988-01-26 Production of hydrogenated petroleum resin Pending JPH01190704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1973188A JPH01190704A (en) 1988-01-26 1988-01-26 Production of hydrogenated petroleum resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1973188A JPH01190704A (en) 1988-01-26 1988-01-26 Production of hydrogenated petroleum resin

Publications (1)

Publication Number Publication Date
JPH01190704A true JPH01190704A (en) 1989-07-31

Family

ID=12007460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1973188A Pending JPH01190704A (en) 1988-01-26 1988-01-26 Production of hydrogenated petroleum resin

Country Status (1)

Country Link
JP (1) JPH01190704A (en)

Similar Documents

Publication Publication Date Title
CN111527184B (en) Process for selective hydrogenation
JPH0242084B2 (en)
JPH027324B2 (en)
PL192732B1 (en) Method of selectively hydrogenating highly unsaturated compounds in a stream of hydrocarbons
US4629767A (en) Hydrogenation process and catalyst
US4540480A (en) Process for preparing hydrogenated petroleum resin
CN106008819A (en) Production device and method of low-chroma C9 hydrogenated petroleum resin
US5156816A (en) System for purifying styrene monomer feedstock using ethylbenzene dehydrogenation waste gas
JP4930741B2 (en) Method for producing hydrogenated petroleum resin and hydrogenation catalyst used in the production method
US4293722A (en) Process for conversion of propane to gasoline
JP7203092B2 (en) Method for deodorizing hydrogenated petroleum resin and method for producing hydrogenated petroleum resin
CN113939548B (en) Process for preparing hydrogenated petroleum resin
JPH01190704A (en) Production of hydrogenated petroleum resin
JPS6261202B2 (en)
JP2599406B2 (en) Hydrodecolorization of petroleum resin
JPS6261201B2 (en)
CN113088332B (en) Heat transfer printing wax and production method thereof
JPH0437841B2 (en)
GB1596959A (en) Selective hydrogenation of c2-minus fractions
CN108329429B (en) Method for continuously preparing light-colored dicyclopentadiene petroleum resin
JP3289310B2 (en) Production method of hydrogenated petroleum resin
JPH05279269A (en) Method for hydrogenation reaction of unsaturated hydrocarbon compound
US6555073B1 (en) Catalytic reduction of phenylacetylene in a styrene stream
JP3882970B2 (en) Method for producing hydrogenated petroleum resin
EP0479753B1 (en) Process for reduction of the phenylacetylene contaminants in styrene