JPS6260916A - Evaporative cooling device for internal combustion engine - Google Patents

Evaporative cooling device for internal combustion engine

Info

Publication number
JPS6260916A
JPS6260916A JP19916485A JP19916485A JPS6260916A JP S6260916 A JPS6260916 A JP S6260916A JP 19916485 A JP19916485 A JP 19916485A JP 19916485 A JP19916485 A JP 19916485A JP S6260916 A JPS6260916 A JP S6260916A
Authority
JP
Japan
Prior art keywords
refrigerant
water jacket
condenser
tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19916485A
Other languages
Japanese (ja)
Inventor
Yoshimasa Hayashi
義正 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19916485A priority Critical patent/JPS6260916A/en
Publication of JPS6260916A publication Critical patent/JPS6260916A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices

Abstract

PURPOSE:To enable air remained in a system to be automatically discharged by always communicating the lower part of a reservoir tank, which installed outside the cooling medium circulating system and is opened to the atomosphere, with a condenser lower tank via an auxiliary cooling medium passage. CONSTITUTION:When the vapor pressure in a system is raised by the beginning of evaporation, the air remained in the system is pushed down by the vapor of cooling medium to be gathered at the lower part of a condenser 3, and then pushed out to a reservoir tank 23 which is opened to the atomosphere. And, when the air is pushed out to a certain extent and the liquid level in the condenser 3 falls to enlarge the gaseous phase region of cooling medium at the upper part, the radiating capacity increases, the accordingly the level of liquid surface comes to settle in such a position as this radiating capacity balances with the heat generated by the engine, and the temperature in the system is maintained almost constant. Thus, the air remained in the system can be automatically discharged, and complicated control becomes unnecessary.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ウォータジャケット内の所定レベルまで液
相冷媒全貯留しておき、その沸騰気化により内燃機関各
部の冷却上行う内燃機IAの沸騰冷却装置に関し、特に
暖機運転時に冷媒循環系内から不凝縮気体である空気が
自然に排出されるようにしたS騰冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a boiling cooling system for an internal combustion engine IA, in which all of the liquid phase refrigerant is stored up to a predetermined level in a water jacket, and its boiling vaporization is used to cool various parts of the internal combustion engine. In particular, the present invention relates to a cooling device in which air, which is a non-condensable gas, is naturally discharged from a refrigerant circulation system during warm-up operation.

従来の技術 自動証用機関等の冷却装置として、冷媒の沸騰。Conventional technology Boiling refrigerant as a cooling device for automatic identification engines, etc.

凝縮のサイクルを利用した沸騰冷却装置が種々機案さn
ている。この種の冷却装置においてMLも大きな課電は
、不凝縮気体である空気全如何にして系内から除去し、
かつその侵入全阻止するかということにある。
Various boiling cooling devices using the condensation cycle have been proposed.
ing. In this type of cooling device, the ML is also large and the electric charge is large.
And the question is whether to completely prevent that intrusion.

例えば特公昭47−8019号公報に記載の装置は、第
2図に示すようにウォータジャケット41の上壁面にコ
ンデンサ42を立設し、ウォータジャケット41から立
ち上がつt発生蒸気がコンテンサ42に自然に流入し、
かつ凝縮した液相冷媒がそのままウォータジャケット4
1に滴下するように構成するとともに、コンデンサアッ
パタンク43と外部の冷媒容器44とを冷媒通路45に
て常時連通させた構成となっている。すなわち、系内に
残存してい友空気は上記冷媒通路45七介して自然に排
出され、かつ内部の圧力が上昇してコンデンサ42から
冷媒容器44へ液相冷媒が押し出されると、そ【だけコ
ンデンサ42の上部に窒気全含まない蒸気空間が形成さ
れることになる。
For example, in the device described in Japanese Patent Publication No. 47-8019, a condenser 42 is installed upright on the upper wall of a water jacket 41 as shown in FIG. flows naturally,
And the condensed liquid phase refrigerant is directly transferred to the water jacket 4.
The condenser upper tank 43 and an external refrigerant container 44 are constantly communicated through a refrigerant passage 45. That is, the friendly air remaining in the system is naturally discharged through the refrigerant passage 457, and when the internal pressure rises and liquid phase refrigerant is pushed out from the condenser 42 to the refrigerant container 44, the condenser A vapor space completely free of nitrogen is formed in the upper part of 42.

しかし、このような構成では、コンデンサ42の下方か
ら上昇して来る蒸気流によって、コンデンサ42内で凝
縮し几液滴もコンデンサ42の外部へ押し出してしまう
虞nがある、などウォータジャケラ)41で保有する冷
媒量やコンデンサ42の放Miなどが非常に不安定であ
り、従って高出力でかつ安定した冷却が必要な自動車用
機関などには側底通用できない。
However, in such a configuration, there is a risk that the vapor flow rising from below the condenser 42 may condense within the condenser 42 and push out the droplets to the outside of the condenser 42. The amount of refrigerant held in the engine and the amount of Mi released by the condenser 42 are extremely unstable, and therefore, it cannot be used in automobile engines that require high output and stable cooling.

こnに対し、本出願人は、ウォータジャケットとコンデ
ンサと窃媒供給ポンプとで主体として閉ループ状の冷媒
循環系音形成し、ウォータジャケットで発生した耐媒@
気tコンデンサに導いて凝縮させた後、液面センサの一
出に基づく冷媒供給ポンプの作動によって再度ウォータ
ジャケットへ補給するようにし次沸騰冷却装置を(道々
摩案している。この装置では、系最上部に電磁弁を備え
た空気排出通路上接続してあり、胎動直後等に系外のリ
ザーバタンクから冷媒供給ポンプ金用いて系内に液相冷
媒全強制的に導入し、かつ同時に上記イa*’を開いて
、系内に残存していた空気の研出?行うようにしている
。(ψ1えば特開昭60−36712号公報、特開昭6
0−、−’A6715”i4公報等)。
In response to this, the present applicant has developed a system in which the sound of the refrigerant circulation system is mainly formed in a closed loop by the water jacket, condenser, and stealth medium supply pump, and the sound of the refrigerant generated in the water jacket is
After the refrigerant is introduced into the gas condenser and condensed, the refrigerant supply pump is activated based on the output of the liquid level sensor to replenish the water jacket. The top of the system is connected to an air exhaust passage equipped with a solenoid valve, and immediately after fetal movement, etc., liquid phase refrigerant is forcibly introduced into the system from a reservoir tank outside the system using a refrigerant supply pump, and at the same time A*' is opened to remove the air remaining in the system.
0-, -'A6715''i4 publication, etc.).

発明が解決しようとする問題点 しかし、上記のような冷媒供給ポンプを用い九冷媒の強
制導入により空気全弁し出す方式では、冷媒供給ポンプ
の前後に流路切換8!!樽となる複数の4磁弁が心安で
あるとともに、空気排出通路の電磁弁tも含めて4!維
な?1lIJ御を行わねばならず、装置の簡素化、低コ
スト化が困矯であった。ま之、系内が完全に液相冷媒で
Am 7?:さn次状態で暖機運転が行わnる九め、シ
リンダ璧や燃焼室壁等が十分暖する1でに比較的時間が
掛かり、急速暖機が実現できない。
Problems to be Solved by the Invention However, in the method of using a refrigerant supply pump as described above to forcefully introduce the refrigerant and exhaust all air, the flow path must be switched before and after the refrigerant supply pump. ! The multiple 4-magnetic valves that form the barrel are safe, and the 4-magnetic valve including the solenoid valve t in the air exhaust passage! Is it true? 1lIJ control had to be performed, making it difficult to simplify the device and reduce costs. Man, the system is completely liquid phase refrigerant Am 7? : When warm-up operation is performed in the n-th state, it takes a relatively long time to sufficiently warm up the cylinder wall, combustion chamber wall, etc., and rapid warm-up cannot be achieved.

問題点全解決するための手段 この発明は上記の問題点を解決する友めに、ウォータジ
ャケット等からなる冷媒循環系の外部に、ウォータジャ
ケットの所定レベルと絹等しい高さに位1にする大気開
放されたリザーバタンクを設けるとともに、このリザー
バタンクの下部とコンデンサロアタンクとを補助冷媒通
路tブPして常時連通させ、かつ系内が負圧のときに開
作動する一方向弁が介装された9気導入通路?、冷媒循
環系の上部に接続した構成となっている。
Means for Solving All Problems In order to solve the above problems, the present invention provides an atmosphere that is placed outside a refrigerant circulation system consisting of a water jacket and the like at a height equal to the predetermined level of the water jacket. In addition to providing an open reservoir tank, the lower part of this reservoir tank and the condenser lower tank are always communicated through an auxiliary refrigerant passage tbP, and a one-way valve that opens when the system is under negative pressure is interposed. 9 Qi introduction passage? , connected to the top of the refrigerant circulation system.

作用 通常運転時には、系内の冷媒はウォータジャケットで5
ti1)気化し、かつコンデンサで4縮するというサイ
クルを繰り返しつつ循環する。このときウォータジャケ
ット内の冷媒液面は、所定ノベルに開口させ几オーバ7
0−通路あるいは液面スイッチによる冷媒供給ポンプの
ON−OF F 1lls すどの適宜な液面規制手反
によって所定レベルに維持さしる。1次系内圧力はリザ
ーバタンクを弁して略大気圧に保たれるので、冷媒沸点
っまり機関温度が略一定にa侍される。
Function: During normal operation, the refrigerant in the system is
ti1) It circulates while repeating the cycle of vaporizing and condensing in a condenser. At this time, the refrigerant liquid level in the water jacket is opened to a predetermined level and the level is raised to 7.
The refrigerant supply pump is turned on and off using the 0-passage or the liquid level switch.The liquid level is maintained at a predetermined level by appropriate liquid level regulation measures such as the 0-channel or the liquid level switch. Since the pressure inside the primary system is maintained at approximately atmospheric pressure by valving the reservoir tank, the boiling point of the refrigerant and the engine temperature are kept approximately constant.

一万、上述のように冷媒の沸騰・凝縮が行われる系内に
当初残ダしてい友空気は、蒸気流によってコンデンサ下
部に自然に集めらnlかっここから補助冷媒通路7通し
て蒸気に押し出される形で糸外に排出される。空気が排
出さnてコンデンサの凝ka能力が十分にある状態では
コンデンサの下部が液相冷媒領域となるので冷媒蒸気の
流出は生じない。
As mentioned above, the free air initially remaining in the system where the refrigerant is boiled and condensed is naturally collected at the bottom of the condenser by the steam flow, and is pushed out from here through the auxiliary refrigerant passage 7 to steam. It is discharged outside the thread in the form of When air is discharged and the condenser has sufficient condensing capacity, the lower part of the condenser becomes a liquid phase refrigerant region, and no refrigerant vapor flows out.

また機関停止後は、温度低下に伴う系内の圧力低下によ
って空気導入通路の一方向弁が開き、糸上部の空間に空
気が流入する。1九リザーバタンクとロアタンクとは常
時連通しているので、系内はリザーバタンクの冷媒fg
L面と等しい高さまでが液相冷媒領域となり、七nより
上部が空気によって占めらAfc状態となる。
Further, after the engine is stopped, the one-way valve in the air introduction passage opens due to the pressure drop in the system due to the temperature drop, and air flows into the space above the yarn. 19 The reservoir tank and lower tank are always in communication, so the refrigerant fg in the reservoir tank is in the system.
The area up to the same height as the L plane becomes the liquid phase refrigerant area, and the area above 7n is occupied by air and becomes the Afc state.

従って始動時には、初めからウォータジャケット内の冷
媒液面が所定Vペル近傍に位置していることになり、そ
の状態で暖機運転が行わnるので、刀口熱すべき冷媒量
が少なく急速暖機が実現できる。
Therefore, at startup, the refrigerant liquid level in the water jacket is located near the predetermined Vpel from the beginning, and warm-up operation is performed in that state, so the amount of refrigerant to be heated is small and rapid warm-up occurs. can be realized.

実施例 第1図はこの発明に係る沸騰冷却装置の一実施例上水す
もので、同図におりて、lはウォータジャケット2を備
えてなる内燃機関、3は気相冷媒?凝縮するためのコン
デンサ、4は電動式の冷媒供給ポンプを夫々示している
Embodiment FIG. 1 shows an embodiment of the evaporative cooling device according to the present invention, which is an internal combustion engine equipped with a water jacket 2, and 3 a gas-phase refrigerant. A condenser for condensation and 4 indicate an electric refrigerant supply pump.

上記ウォータジャケット2は、内燃機関lのシリンダお
よび燃焼室の外周埋金包囲するようにシリンダブロック
5およびシリンダヘッド6の両者に亘って形成さ2n九
、もので、通常気相空間となる上部が各気筒で互いに連
通しているとともに、その上部の過室な位置に蒸気出ロ
アが設けらnている。この蒸気出ロアは、接続管8およ
び蒸気通路9(l−介してコンデンサ3の上部人口3a
に連通しており、かつ上記接続管8には、令媒循壌系の
最上部となる冷媒注入部8aが上方に豆ち上がつt形で
形成さnているとともに、その上部開口?キャップ10
が密閉している。
The water jacket 2 is formed over both the cylinder block 5 and the cylinder head 6 so as to surround the outer periphery of the cylinder and combustion chamber of the internal combustion engine 1, and the upper part, which is normally a gas phase space, is Each cylinder communicates with each other, and a steam outlet lower is provided in an upper chamber position. This steam output lower is connected to the upper part 3a of the condenser 3 through the connecting pipe 8 and the steam passage 9 (l-).
The connecting pipe 8 has a refrigerant injection part 8a which is the top part of the refrigerant circulation system and is formed in a T-shape that rises upwards. cap 10
is closed.

1次上記ウォータジャケット2の所定レベルE1具体的
にはシリンダヘッド6側の一略中間の高さ位置において
、一つあるいは同一レベルに並んだ複数個の余剰冷媒排
出口1)が開口形匝さnている。
Specifically, at a predetermined level E1 of the primary water jacket 2, at a substantially middle height position on the cylinder head 6 side, one or a plurality of surplus refrigerant discharge ports 1) arranged at the same level are opened. There are n.

尚、12は、上記ウォータジャケット2にヒータ用通路
13全弁じて接続さn九車室14暖房用のヒータコアで
あり、その下流側に、図示せぬヒータスイッチに連動し
て作動するヒータ用ポンプ15が設けらnている。
Reference numeral 12 designates a heater core for heating the vehicle compartment 14, which is connected to the water jacket 2 through all valves of the heater passage 13, and downstream thereof is a heater pump that operates in conjunction with a heater switch (not shown). 15 are provided.

上記コンデンサ3は、上記人口3a?有するアッパタン
ク16と、上下方向に沿った微細なチューブを主体とし
たコア部17と、このコアW517で凝縮さn−九液化
冷媒を一時貯留するロアタンク18とから構成さntも
ので、例えば車両前部など車両走行風?受は得る位置に
設置さn1更にその前面あるいは背面に、強制冷却用の
電動式冷却ファン19を備えている。ま九上記ロアタン
ク18の底部に冷媒循還通路20の一端が接続さGてお
り、かつこの冷媒循環通路20の他端が上記ウォータジ
ャケット2のシリンダブロック5@に設は友冷媒入口’
JaIC接縫されている。そして、上記冷媒循環通路2
0の中間部には、上記の冷媒供給ポンプ4が弁装さfL
%史にその吐出側に逆止弁嘘1が配設さnている。尚、
冷媒供給ポンプ4がその作動停止時に冷媒の通流を生じ
ない型式のものであnば、上記逆止弁21は機略するこ
とができる。
The above capacitor 3 is the above population 3a? It consists of an upper tank 16, a core part 17 mainly consisting of fine tubes along the vertical direction, and a lower tank 18 that temporarily stores the n-9 liquefied refrigerant condensed by this core W517. Vehicle running style? The receiver n1 is installed at a position where it can be cooled, and is further provided with an electric cooling fan 19 for forced cooling on the front or back side thereof. One end of a refrigerant circulation passage 20 is connected to the bottom of the lower tank 18, and the other end of this refrigerant circulation passage 20 is connected to the cylinder block 5 of the water jacket 2 as a companion refrigerant inlet.
JaIC is sewn on. And the refrigerant circulation passage 2
The above-mentioned refrigerant supply pump 4 is valve-equipped in the middle part of fL.
A check valve 1 is disposed on the discharge side of the valve. still,
If the refrigerant supply pump 4 is of a type that does not allow refrigerant to flow when it is stopped, the check valve 21 can be omitted.

また上記ロアタンク18は、ウォータジャケット2の余
剰冷媒排出口1)の高さ位Itlに対し相対的に低位置
に配設さnており、かつオーバフロー通路22を介して
上記余剰冷媒排出口1)に連通している。このオーバフ
ロー通路22は、蒸気発生量の少ない低負荷時において
も確実に液相冷媒金戻し得るように通路断面積等が設定
されている。
Further, the lower tank 18 is arranged at a relatively low position with respect to the height Itl of the surplus refrigerant discharge port 1) of the water jacket 2, and is connected to the surplus refrigerant discharge port 1) via the overflow passage 22. is connected to. The cross-sectional area of the overflow passage 22 is set so that the liquid phase refrigerant can be reliably returned even under low load when the amount of steam generated is small.

23は、上記ウォータジャケット2やコンデンサ3を主
体とじ九冷媒循環系の外部に投けらn*。
23, the above-mentioned water jacket 2 and condenser 3 are mainly closed and thrown outside the refrigerant circulation system n*.

リザーバタンクであって、こnは通気機能を有す、Bキ
ー?ツ:7’2+t−弁して大気に開放さnているとと
もに、内部の冷媒液面がウォータジャケット2の所定レ
ベルlと略等しくなるように所定の高さ位置に股直さn
ており、かっロアタンク1Bの比較的上部に接続された
補助冷媒通路25を介して常時ロアタンク1Bに連通し
ている。尚、上記キャップ24が取り付けら扛る管部2
3aには放熱フィン26が設けらnており、内部の液相
冷媒が高温になった場せの蒸気の損失r可及的に抑制し
ている。
It's a reservoir tank, and this one has a ventilation function, the B key? T: 7'2+t- valve is opened to the atmosphere, and the refrigerant liquid level inside is approximately equal to the predetermined level l of the water jacket 2, so that it is adjusted to a predetermined height position.
It is always in communication with the lower tank 1B via an auxiliary refrigerant passage 25 connected to a relatively upper portion of the lower tank 1B. In addition, the pipe portion 2 to which the cap 24 is attached
3a is provided with radiation fins 26 to suppress as much as possible the loss of steam caused when the internal liquid phase refrigerant reaches a high temperature.

ま九冷諜循環系の最上部となる冷媒注入部84に、空気
導入通路27の一端が接続さnているとともに、その他
端が上記リザーバタンク23の管部231に接硬さnて
お9、かつその通路中に一方向弁28が弁装さ江ている
。この一方向9P28は、通常は使気導入通!!?全閉
路しており、系内が負圧のときに開作動してリザーバタ
ンク23から系内へ空気の導入全許容する構成となって
いる。尚、リザーバタンク23のキャップ24にエアフ
ィルタ29が設けらルてお9、系内への導入空気の濾過
ならびに冷媒液滴の分離回収を図っている。
One end of the air introduction passage 27 is connected to the refrigerant injection part 84 which is the top of the cooling circulation system, and the other end is connected to the pipe part 231 of the reservoir tank 23 with a hardness of 9. , and a one-way valve 28 is installed in the passage. This one-way 9P28 is usually used to introduce kaiseki! ! ? The circuit is completely closed, and is opened when the system has a negative pressure to completely allow air to be introduced from the reservoir tank 23 into the system. An air filter 29 is provided on the cap 24 of the reservoir tank 23 to filter the air introduced into the system and to separate and recover refrigerant droplets.

ま几上記冷媒供給ポンプa?iウォータジャケット2の
逼宜位宜に配設し友第1温度スイッチ30全ブrして電
源に接続さn、かつ冷却7ア/19はロアタンク18に
配設し′fC,第2@度スイッチ31全ブrして′電源
に接峯児さnている。上d己第1.第2温度スイッチ3
 n 、31 r、1.何nも所定温度以上のときにO
Nとなるもので、その作動温度は、高地における冷媒沸
点よりも低くかつ暖機が完了したとみなせる温度、汐+
1.tば83℃程度に設定さnている。
The above refrigerant supply pump a? The first temperature switch 30 is installed at the right position of the water jacket 2, and the first temperature switch 30 is connected to the power supply, and the cooling 7A/19 is installed in the lower tank 18, and the second temperature switch 30 is connected to the power supply. Switch 31 is completely closed and connected to the power supply. Senior self 1st. Second temperature switch 3
n, 31 r, 1. O when the temperature is above the specified temperature
The operating temperature is lower than the boiling point of the refrigerant at high altitudes and the temperature at which warm-up is considered to have been completed.
1. The temperature is set at about 83°C.

次に上記のように横取さn几沸膿冷却装置の作動につい
て説明する。
Next, the operation of the above-described cooling device will be explained.

先ず機関の停止状態においては、ウォータジャケット2
の所定レベルi筐で全液相冷媒(例えばエチVングリコ
ール水浴液)が占め、これより上部?突気が占めている
とともに、リザーバタンク23には上記所定ンベルlと
略等しい高さ1で液相冷媒が残存している。尚、コンデ
ンサ3にはリザーバタンク23と釣り甘う高さ1で液相
冷媒が存在する。この状態で機関が始動すると、ウォー
タジャケット2内の冷媒は速やかに温度上昇し、やがて
沸騰が始まる。ここでウォータジャケット2内の保有冷
媒量は非常に少量であり、しかも冷媒供給ポンプ4は1
漫機完了温度1で停止状悪全保つので、滞留状態のまま
集中的に熱を受けることになり、急速暖機を実現できる
First, when the engine is stopped, water jacket 2
The entire liquid phase refrigerant (e.g., ethyl glycol water bath liquid) occupies a predetermined level i of the cabinet, and above this level The liquid phase refrigerant remains in the reservoir tank 23 at a height 1 approximately equal to the predetermined level 1 described above. It should be noted that liquid phase refrigerant exists in the condenser 3 at a height 1 that is approximately equal to the reservoir tank 23. When the engine is started in this state, the temperature of the refrigerant in the water jacket 2 quickly rises, and eventually begins to boil. Here, the amount of refrigerant held in the water jacket 2 is very small, and the refrigerant supply pump 4 is only 1
Since the machine is kept in a stopped state at the completion temperature of 1, it receives heat intensively while remaining in the stagnation state, and rapid warm-up can be achieved.

ウォータジャケット2内の冷媒温度が所定の暖気完了温
度に達すると第1温度スイッチ31)Kより冷媒供紺ポ
ンプ4が作動開始し、以恢磯関停止1でロアタンク18
からウォータジャケット2へg絖的に液相冷媒を供給す
る。そして余剰の液相冷媒はオーバフロー通路22ケ弁
じてロアタンク18に戻るので、ウォータジャケット2
内の冷媒液面は常に所定Vベル1K(4’4に壌持され
る。
When the refrigerant temperature in the water jacket 2 reaches a predetermined warm-up completion temperature, the refrigerant supply pump 4 starts operating from the first temperature switch 31)K, and then the lower tank 18 starts operating at the Isoseki stop 1.
A liquid phase refrigerant is supplied from the tank to the water jacket 2 in a linear manner. Then, the excess liquid phase refrigerant returns to the lower tank 18 through the overflow passage 22 valve, so the water jacket 2
The refrigerant liquid level inside is always maintained at a predetermined V-bell 1K (4'4).

−万、l弗騰開始によって系内の蒸気圧が高まると、系
内に残存してい友空気は冷V&蒸気に押さnてコンデン
サ3の下方に渠められ、補助冷媒通路25全通してリザ
ーバタンク23に押し出される。
- When the vapor pressure in the system increases due to the start of the rise, the free air remaining in the system is pushed by the cold V&steam and drained below the condenser 3, passing through the entire auxiliary refrigerant passage 25 to the reservoir. It is pushed out into the tank 23.

ある程度空気が押し出され、かつコンデンサ3内の嵌置
が低下してコンデンサ3の上部に気相冷媒領域が拡大す
ると、コンデンサ3の放熱能力が増大するので、この放
熱能力と機@元熱這とが半画した立直にコンデンサ3の
液面位置が定まり、以後は、脚間の負荷や原画走行風等
に応じてコンデンサ3の液面位置が自然に上下動しつつ
系内温度?塔一定に保つ。また負荷の増大などでコンデ
ンサA内のq気排出が相対的に不十分なものとなると、
系内圧力が高筐るtめコンデンサ3の下部に滞留した空
気は虹に排出される。尚、空気とともに若干の冷媒蒸気
が流出するが、こnはリザーバタンク23内で凝節して
回収される。
When the air is pushed out to some extent and the fitting inside the condenser 3 is lowered to expand the gas phase refrigerant area above the condenser 3, the heat dissipation capacity of the condenser 3 increases, so this heat dissipation capacity and the machine The liquid level position of the condenser 3 is fixed at the vertical position where is half-scaled, and from then on, the liquid level position of the condenser 3 naturally moves up and down depending on the load between the legs, the wind when the original is running, etc., and the system temperature? Keep the tower constant. Also, if the q air discharge inside capacitor A becomes relatively insufficient due to an increase in load, etc.
The air stagnant at the bottom of the t-th condenser 3, where the system internal pressure is high, is discharged in a straight line. Note that some refrigerant vapor flows out along with the air, but this vapor condenses in the reservoir tank 23 and is recovered.

−万、冷却ファン19は、ロアタンク18内の冷媒温度
が高まると作動開始し、コンデンサ3全強市1j冷却す
る。
- The cooling fan 19 starts operating when the temperature of the refrigerant in the lower tank 18 rises, and cools the condenser 3 completely.

筐た機関停止後は、系内の温度低下に伴って系内圧力が
負圧化しようとするが、空気導入通路27の一方向Q2
8が開いて系内に空気が導入さn1負圧化が防止される
。そして、ウォータジャケット2円の液相冷媒は逆止弁
21の作用によって口γタンク1Bへの逆流が防止さ3
.67’hめ所定ンベルj17cfi侍さtシ、またコ
ンデンサ3内にはリザーバタンク23と釣り甘う位置1
で液相冷媒カニ導入石Cることになる。
After the engine is stopped, the pressure in the system tends to become negative as the temperature in the system decreases, but the one-way Q2 of the air introduction passage 27
8 is opened, air is introduced into the system, and n1 is prevented from becoming negative pressure. The liquid phase refrigerant in the water jacket 2 yen is prevented from flowing back into the port γ tank 1B by the action of the check valve 21.
.. At 67'h, there is a designated bell level 17cfi, and in the capacitor 3 there is a reservoir tank 23 and a fishing position 1.
This means that the liquid phase refrigerant is introduced into the stone C.

尚、図中に想像線で示すように!r&管8の下面に冷媒
回収4路32を接続し、蒸気流に同伜して持ち出さルる
液相冷媒を回収してウォータジャケット2に戻すエラに
溝底すnば、高貴ff時におけるコンデンサ3の凝縮性
能を一層確実に確保することができる。
In addition, as shown by the imaginary line in the figure! A refrigerant recovery channel 32 is connected to the lower surface of the r&pipe 8, and the groove bottom is installed in the gills to recover the liquid phase refrigerant carried out along with the vapor flow and return it to the water jacket 2. The condensing performance of No. 3 can be ensured even more reliably.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の沸騰冷却装置によnば、系内に残存してい友9気?自
動四に排出でき、冷媒供給ポンプによV強制的に9気排
出を行う場会のような多数の電磁弁や複雑な制御が不要
である。
Effects of the Invention As is clear from the above explanation, the evaporative cooling device for an internal combustion engine according to the present invention has the effect of causing gas to remain in the system. It can be discharged automatically in four stages, and there is no need for many electromagnetic valves or complicated controls as in the case where the refrigerant is forcibly discharged by a refrigerant supply pump.

1t%機関停止時に系内に積億的に空気全導入し、始動
時におけるウォータジャケット内の保有冷媒量を可及的
に少なくしたので、急速暖機を実現できる。
1t% All air is introduced into the system when the engine is stopped, and the amount of refrigerant held in the water jacket is minimized when the engine is started, so rapid warm-up can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すS底説明図、第2図
は従来の訓騰確却装置の一例を示す構成説明図である。 l・・・内燃暖間、2・・・ウォータジャケット、3・
・・コンデンサ、4・・・冷媒供給ポンプ、7・・・蒸
気出口、1)−−−余卿1冷媒υ−出口、18・・・ロ
アタンク、19・・・冷却ファン、20・・・冷媒循環
通路、21・・・逆止弁、22・・・オー′バフロー通
路、23・・・リザーバタンク、25・・・補助冷媒通
路、27・・・空気導入通路、28・・・一方向弁、3
0・・・第1温度スイッチ、31・・・第2温度スイッ
チ、、
FIG. 1 is an explanatory view of the S-bottom showing an embodiment of the present invention, and FIG. 2 is an explanatory view of the configuration of an example of a conventional hunting confirmation device. l...Internal combustion warm-up, 2...Water jacket, 3.
...Condenser, 4...Refrigerant supply pump, 7...Steam outlet, 1) ---Refrigerant υ-outlet, 18...Lower tank, 19...Cooling fan, 20...Refrigerant Circulation passage, 21... Check valve, 22... Overflow passage, 23... Reservoir tank, 25... Auxiliary refrigerant passage, 27... Air introduction passage, 28... One-way valve ,3
0...First temperature switch, 31...Second temperature switch,

Claims (1)

【特許請求の範囲】[Claims] (1)上部に蒸気出口を有し、かつ所定レベルまで液相
冷媒が貯留されるウォータジャケットと、このウォータ
ジャケットで発生した冷媒蒸気が導入され、かつ下部の
ロアタンクに凝縮した液相冷媒が貯留されるコンデンサ
と、上記ロアタンクと上記ウォータジャケットとの間に
配設されてロアタンクからウォータジャケットへ液相冷
媒を補給する冷媒供給ポンプと、上記ウォータジャケッ
ト、コンデンサおよび冷媒供給ポンプからなる冷媒循環
系の外部に設けられ、かつ上記ウォータジャケットの所
定レベルと略等しい高さに位置する大気開放されたリザ
ーバタンクと、一端が上記リザーバタンクの下部に、か
つ他端が上記ロアタンクに夫々接続された補助冷媒通路
と、上記冷媒循環系の上部に接続され、かつ系内が負圧
のときに開作動する一方向弁が介装された空気導入通路
とを備えてなる内燃機関の沸騰冷却装置。
(1) A water jacket that has a vapor outlet at the top and stores liquid phase refrigerant up to a predetermined level, and the refrigerant vapor generated in this water jacket is introduced, and the condensed liquid phase refrigerant is stored in the lower tank at the bottom. a refrigerant circulation system consisting of a condenser, a refrigerant supply pump disposed between the lower tank and the water jacket and replenishing liquid phase refrigerant from the lower tank to the water jacket, and the water jacket, the condenser, and the refrigerant supply pump. a reservoir tank which is provided externally and is open to the atmosphere and located at a height substantially equal to a predetermined level of the water jacket; and an auxiliary refrigerant whose one end is connected to the lower part of the reservoir tank and the other end is connected to the lower tank. A boiling cooling device for an internal combustion engine, comprising: a passage; and an air introduction passage connected to the upper part of the refrigerant circulation system and provided with a one-way valve that opens when the system is under negative pressure.
JP19916485A 1985-09-09 1985-09-09 Evaporative cooling device for internal combustion engine Pending JPS6260916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19916485A JPS6260916A (en) 1985-09-09 1985-09-09 Evaporative cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19916485A JPS6260916A (en) 1985-09-09 1985-09-09 Evaporative cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6260916A true JPS6260916A (en) 1987-03-17

Family

ID=16403223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19916485A Pending JPS6260916A (en) 1985-09-09 1985-09-09 Evaporative cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6260916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232107A (en) * 1988-03-11 1989-09-18 Chugoku Electric Power Co Inc:The Method of deaeration of cooling water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232107A (en) * 1988-03-11 1989-09-18 Chugoku Electric Power Co Inc:The Method of deaeration of cooling water

Similar Documents

Publication Publication Date Title
JPS6210414A (en) Evaporative cooling apparatus of internal-combustion engine
JPH0580565B2 (en)
JPS61275522A (en) Evaporative cooling device for engine
JPS6093116A (en) Evaporative cooling type intercooler
JPH073172B2 (en) Boiling cooling device for internal combustion engine
JPS62162716A (en) Evaporative cooling device for internal combustion engine
JPS6181219A (en) Car heater of evaporative cooling type internal-combustion engine
JPS6260916A (en) Evaporative cooling device for internal combustion engine
JPS61123712A (en) Evaporative cooling apparatus for internal-combustion engine
JPS6125910A (en) Boiling medium cooling device in engine
JPS6161908A (en) Evaporative cooling device of internal-combustion engine
JPS6210415A (en) Evaporative cooling apparatus of internal-combustion engine
JPH0580564B2 (en)
JPH0223781Y2 (en)
JPS62271923A (en) Evaporative cooling apparatus for internal combustion engine
JPS6287606A (en) Evaporative cooling device
JPH032670Y2 (en)
JPH0456129B2 (en)
JPS6060006B2 (en) radiator
JPS614815A (en) Boiling/cooling device for engine
JPH0410327Y2 (en)
JPS62618A (en) Evaporative cooling device for internal-combustion engine
JPS61275521A (en) Evaporative cooling device for internal combustion engine
JPS63150416A (en) Cooling device for engine
JPS6136015A (en) Heating device of boiling-cooling type engine