JPH0580564B2 - - Google Patents
Info
- Publication number
- JPH0580564B2 JPH0580564B2 JP23542885A JP23542885A JPH0580564B2 JP H0580564 B2 JPH0580564 B2 JP H0580564B2 JP 23542885 A JP23542885 A JP 23542885A JP 23542885 A JP23542885 A JP 23542885A JP H0580564 B2 JPH0580564 B2 JP H0580564B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- jacket
- liquid
- condenser
- liquid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 claims description 244
- 239000007791 liquid phase Substances 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 34
- 239000012071 phase Substances 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 9
- 230000017525 heat dissipation Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、液相冷媒を冷媒ジヤケツト内で沸騰
気化させて内燃機関の冷却を行うようにした内燃
機関の沸騰冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a boiling cooling device for an internal combustion engine that cools the engine by boiling and vaporizing a liquid phase refrigerant within a refrigerant jacket.
〈従来の技術〉
潜熱を利用した熱交換効率の向上、高温度冷却
による燃料消費率の向上、燃焼室壁の均一温度冷
却、制御の容易性及び小型軽量化等の観点から、
近年、冷却水の沸騰気化潜熱を利用した冷却装置
が注目されており、例えば特公昭47−5019号公報
や特開昭57−62912号公報に記載のものが知られ
ている。しかし、特公昭47−5019号公報に記載の
装置は、冷媒ジヤケツトの上壁面にコンデンサを
立設し、冷媒ジヤケツトから立ち上がつた発生蒸
気がコンデンサに自然に流入するとともに、凝縮
した液相冷媒がそのまま冷媒ジヤケツトに滴下す
るようにした構成であつて、コンデンサの下方か
ら上昇してくる蒸気流によつて、コンデンサ内で
凝縮した液滴もコンデンサの外部に押し出してし
まうおそれがある、など冷媒ジヤケツトで保有す
る冷媒量やコンデンサの放熱量などが非常に不安
定なものであり、安定した冷却が必要な自動車用
機関などには到底適用できない。<Conventional technology> From the viewpoints of improving heat exchange efficiency using latent heat, improving fuel consumption rate by high temperature cooling, uniform temperature cooling of the combustion chamber wall, ease of control, and reduction in size and weight,
In recent years, cooling devices that utilize the latent heat of boiling and vaporization of cooling water have attracted attention, and for example, those described in Japanese Patent Publication No. 47-5019 and Japanese Patent Application Laid-Open No. 57-62912 are known. However, in the device described in Japanese Patent Publication No. 47-5019, a condenser is installed upright on the upper wall of the refrigerant jacket, and the generated vapor rising from the refrigerant jacket naturally flows into the condenser, and the condensed liquid phase refrigerant is The structure is such that the refrigerant drips directly into the refrigerant jacket, and there is a risk that the vapor flow rising from below the condenser may push out the droplets that have condensed inside the condenser. The amount of refrigerant held in the jacket and the amount of heat dissipated by the condenser are extremely unstable, making it completely unsuitable for applications such as automobile engines that require stable cooling.
また特開昭57−62912号公報に記載の装置は、
冷媒ジヤケツトの発生蒸気を分離タンクを介して
コンデンサに導入するとともに、液化した冷媒を
ポンプによつて一旦分離タンクに圧送し、該分離
タンク内液面と上記冷媒ジヤケツト内液面とが自
然に等しくなることを利用して冷媒ジヤケツト内
へ分離タンクから冷媒を補給するように構成した
ものであるから、冷媒ジヤケツト内の液面レベル
が過渡的に不安定化し易く、燃焼室壁等が局部的
に冷却不良となるおそれがある。 Furthermore, the device described in Japanese Patent Application Laid-open No. 57-62912 is
The vapor generated in the refrigerant jacket is introduced into the condenser via the separation tank, and the liquefied refrigerant is once forced into the separation tank by a pump, so that the liquid level in the separation tank and the liquid level in the refrigerant jacket are naturally equal. Since the refrigerant is configured to replenish the refrigerant from the separation tank into the refrigerant jacket by taking advantage of the fact that There is a risk of cooling failure.
これに対し、本出願人は、冷媒ジヤケツトとコ
ンデンサと冷媒供給ポンプとを主体として閉ルー
プ状の冷媒循環系を形成するとともに、上記冷媒
ジヤケツトの所定レベルに液面スイツチ或いは温
度スイツチを配設し、冷媒ジヤケツトで発生した
冷媒蒸気をコンデンサに導いてそのロワータンク
に凝縮させた後、上記スイツチの検出に基づく冷
媒供給ポンプの作動によつて再度冷媒ジヤケツト
に補給して、冷媒ジヤケツト内の冷媒液面を所定
レベルに保つようにした沸騰冷却装置を種々提案
している(例えば特開昭60−36712号公報、特開
昭60−36715号公報等)。 On the other hand, the present applicant forms a closed-loop refrigerant circulation system mainly consisting of a refrigerant jacket, a condenser, and a refrigerant supply pump, and also arranges a liquid level switch or a temperature switch at a predetermined level of the refrigerant jacket. After the refrigerant vapor generated in the refrigerant jacket is led to the condenser and condensed in its lower tank, the refrigerant is replenished into the refrigerant jacket by the operation of the refrigerant supply pump based on the detection of the above switch, and the refrigerant liquid level in the refrigerant jacket is increased. Various boiling cooling devices designed to maintain the temperature at a predetermined level have been proposed (for example, JP-A-60-36712, JP-A-60-36715, etc.).
しかし、これらのものはいずれも液面スイツチ
或いは温度スイツチの検出信号に基づき各種電磁
弁及び冷媒供給ポンプを電子制御することによ
り、あらゆる機関の運転条件を考慮した沸騰冷却
装置の制御システムを提供するものであるから、
高い信頼性ならびに耐久性、安全性が要求される
ものであつて、この点からして装置の簡素化、低
コスト化が困難である。 However, all of these systems electronically control various electromagnetic valves and refrigerant supply pumps based on detection signals from liquid level switches or temperature switches, thereby providing a boiling cooling system control system that takes into account all engine operating conditions. Because it is a thing,
High reliability, durability, and safety are required, and from this point of view, it is difficult to simplify the device and reduce costs.
またこれらのものは、特にコンデンサ下部のロ
ワータンクに凝縮して貯留される液相冷媒を冷媒
供給ポンプを介して機関の冷媒ジヤケツトに導く
構成を採用しているが、ロワータンク内の液相冷
媒量即ち液面レベルは、コンデンサの放熱能力を
左右するのに対し、冷媒供給ポンプは機関の冷媒
ジヤケツト内の液相冷媒レベル若しくは冷媒温度
に応じて作動するから、ロワータンク内の液相冷
媒レベルが大きく変動し、コンデンサにおける放
熱量を大きく変化させるおそれがある。かかる放
熱量の変化は気相冷媒(蒸気)圧力を変動させ、
ひいては冷媒ジヤケツト内の液相冷媒の沸点を変
動させて機関温度が不安定になり易い。 In addition, these devices employ a structure in which the liquid phase refrigerant condensed and stored in the lower tank below the condenser is guided to the engine's refrigerant jacket via a refrigerant supply pump, but the amount of liquid phase refrigerant in the lower tank, The liquid level affects the heat dissipation ability of the condenser, whereas the refrigerant supply pump operates according to the liquid refrigerant level or refrigerant temperature in the engine's refrigerant jacket, so the liquid refrigerant level in the lower tank fluctuates greatly. However, there is a risk that the amount of heat dissipated from the capacitor will change significantly. This change in the amount of heat dissipation causes the gas phase refrigerant (steam) pressure to fluctuate,
As a result, the boiling point of the liquid phase refrigerant in the refrigerant jacket fluctuates, and the engine temperature tends to become unstable.
また車両運転状況によつて、例えば旋回時等に
はロワータンク内液相冷媒に横Gが加わり液面が
片寄つた場合或いはコンデンサの冷却性異常等で
例えば機関高速高負荷運転時又は走行風が不足す
る機関アイドリング運転時に、コンデンサ内の凝
縮液化能力が低下し、気相冷媒がロワータンク内
にまで侵入しリザーバタンク内へ放出されるよう
な場合、ロワータンク内の気相冷媒を供給ポンプ
が吸い込み、一時的に液相冷媒の供給ができなく
なるといつたように冷媒供給が不安定になり易
い。 Depending on vehicle driving conditions, for example, when turning, lateral G is applied to the liquid phase refrigerant in the lower tank, causing the liquid level to become uneven, or due to an abnormality in the cooling performance of the condenser, for example, when the engine is operated at high speed and under high load, or when there is insufficient running air. When the engine is idling, if the condensation and liquefaction capacity in the condenser decreases and gaseous refrigerant enters the lower tank and is released into the reservoir tank, the supply pump will suck in the gaseous refrigerant in the lower tank and temporarily The refrigerant supply tends to become unstable, as in the case where the supply of liquid phase refrigerant becomes impossible.
そのため前者の装置の簡素化を図ることを目的
として本出願人は新しく特願昭60−147813号を提
案した。これを第2図により説明するが、このも
のでもやはり後者の不都合を除去できないでお
り、更には新たな他の不都合も発生している。 Therefore, with the aim of simplifying the former device, the present applicant proposed a new Japanese Patent Application No. 147813/1983. This will be explained with reference to FIG. 2, but even with this method, the latter problem cannot be eliminated, and other new problems have also occurred.
即ち第2図に示す沸騰冷却装置は、暖機が完了
した通常運転時には、冷媒は冷媒ジヤケツト1内
で沸騰気化し、その際の気化潜熱で各部を冷却し
た後、コンデンサ2に流入して凝縮し、ロワータ
ンク3に貯留される。冷媒供給ポンプ4は、冷媒
ジヤケツト1に配設された温度スイツチ5が検出
する冷媒温度に基づいて、ロワータンク3から冷
媒ジヤケツト1に連続的に液相冷媒を供給する。
冷媒ジヤケツト1の余剰冷媒排出口6から溢れ出
た液相冷媒はオーバーフロー通路7を通して、高
低差ならびに若干の圧力差によりロワータンク3
に自然に戻される。この結果、冷媒ジヤケツト1
内の冷媒液面は常に所定レベルに維持される。リ
ザーバタンク8内の冷媒は、機関停止時等に系内
の圧力低下に伴つて系内に流入し、最終的には系
全体が液相冷媒で満たされる。機関始動後は、冷
媒ジヤケツト1内で沸騰が開始する結果、系内の
圧力が上昇して液相冷媒がリザーバタンク8に自
然に押し出され、系上部に必要な蒸気空間が確保
される。ここで、冷媒供給ポンプ4は、所定の暖
機完了温度に達するまで停止しているので、冷媒
ジヤケツト1内の冷媒は滞留状態に保たれ、速や
かな暖機の進行を図る。 That is, in the boiling cooling device shown in FIG. 2, during normal operation after warm-up is completed, the refrigerant boils and vaporizes within the refrigerant jacket 1, and after cooling each part with the latent heat of vaporization at that time, it flows into the condenser 2 and condenses. and is stored in the lower tank 3. The refrigerant supply pump 4 continuously supplies liquid phase refrigerant from the lower tank 3 to the refrigerant jacket 1 based on the refrigerant temperature detected by a temperature switch 5 disposed in the refrigerant jacket 1.
The liquid phase refrigerant overflowing from the surplus refrigerant outlet 6 of the refrigerant jacket 1 passes through the overflow passage 7 and flows into the lower tank 3 due to the difference in height and slight pressure difference.
returned to nature. As a result, refrigerant jacket 1
The refrigerant liquid level inside the tank is always maintained at a predetermined level. The refrigerant in the reservoir tank 8 flows into the system as the pressure in the system decreases when the engine is stopped, and eventually the entire system is filled with liquid phase refrigerant. After the engine is started, boiling begins within the refrigerant jacket 1, and as a result, the pressure within the system increases, and the liquid phase refrigerant is naturally pushed out into the reservoir tank 8, securing the necessary vapor space in the upper part of the system. Here, since the refrigerant supply pump 4 is stopped until the predetermined warm-up completion temperature is reached, the refrigerant in the refrigerant jacket 1 is maintained in a stagnation state, and warm-up is proceeded quickly.
〈発明が解決しようとする問題点〉
しかしながら、上記の如き制御系統並びに全体
構成を簡素化した沸騰冷却装置によると、冷媒供
給ポンプ4は冷媒ジヤケツト1内の冷媒温度が所
定値以上に上昇したときに作動して、ロワータン
ク3内の凝縮冷媒を冷媒ジヤケツト1内に圧送す
るから、該冷媒圧送量はコンデンサ2の放熱能力
即ちロワータンク3内の冷媒レベルに無関係とな
る。従つて、車両が横Gを受けてロワータンク3
内の液相冷媒に偏りが生じたり、コンデンサ2が
放熱性異常等を生じコンデンサ2にて完全に気相
冷媒が凝縮液化せずリザーバタンク8に気相冷媒
が出てしまうような場合、ロワータンク3内の液
相冷媒量が少ないため短時間のうちに機関へ液相
冷媒の供給ができなくなる。然も新たに冷媒ジヤ
ケツト1内の液面制御にオーバーフロー通路7を
設けて全体装置を簡略化しようと試みたから、冷
媒ジヤケツト1からの加熱された冷媒のオーバー
フロー流がロワータンク3内の冷媒レベルを変動
させて上記不都合を更に助長させる結果となり、
また高熱冷媒によ冷媒供給ポンプ4がキヤビテー
シヨンを生じるおそれが発生し易いという新たな
問題点を提起されるようになつた。<Problems to be Solved by the Invention> However, according to the evaporative cooling device with a simplified control system and overall configuration as described above, the refrigerant supply pump 4 is activated when the refrigerant temperature in the refrigerant jacket 1 rises above a predetermined value. Since the condensed refrigerant in the lower tank 3 is pumped into the refrigerant jacket 1, the amount of refrigerant pumped is independent of the heat dissipation capacity of the condenser 2, that is, the refrigerant level in the lower tank 3. Therefore, the vehicle receives lateral G and the lower tank 3
If the liquid phase refrigerant in the lower tank becomes uneven or the condenser 2 has a heat dissipation abnormality and the gas phase refrigerant does not completely condense and liquefy in the condenser 2 and the gas phase refrigerant comes out into the reservoir tank 8, Since the amount of liquid phase refrigerant in 3 is small, it becomes impossible to supply liquid phase refrigerant to the engine within a short time. However, since an attempt was made to simplify the overall system by newly providing an overflow passage 7 to control the liquid level in the refrigerant jacket 1, the overflow flow of heated refrigerant from the refrigerant jacket 1 caused fluctuations in the refrigerant level in the lower tank 3. This results in further aggravating the above-mentioned inconvenience.
In addition, a new problem has arisen in that the refrigerant supply pump 4 is susceptible to cavitation due to high-temperature refrigerant.
本発明は上記に鑑み、機関への液相冷媒供給を
常に安定させ、コンデンサ冷却不良或いは車両旋
回という問題が起きてもこれにより直ちに機関へ
の液相冷媒供給が不能となることのないようにす
ることを目的とする。 In view of the above, the present invention always stabilizes the supply of liquid phase refrigerant to the engine so that even if problems such as poor condenser cooling or vehicle turning occur, the supply of liquid phase refrigerant to the engine does not become impossible immediately. The purpose is to
〈問題点を解決するための手段〉
そのために本発明に係る内燃機関の沸騰冷却装
置では上部に蒸気出口を有しかつ所定レベルにま
で液相冷媒が貯留される冷媒ジヤケツトと、該冷
媒ジヤケツト内の適正レベル位置に設けられ液相
冷媒と気相冷媒とを区別して検出する液面検出手
段と、前記冷媒ジヤケツトから発生した気相冷媒
が上部に導入され下部から凝縮液相冷媒が取り出
されるコンデンサと、前記凝縮液相冷媒を一時貯
溜する大気開放型のリザーバタンクと、前記液面
検出手段が気相冷媒を検出した信号に基づいて作
動され、リザーバタンク内の液相冷媒を前記冷媒
ジヤケツトに圧送する冷媒供給ポンプと、を備え
て構成する。<Means for Solving the Problems> For this purpose, the evaporative cooling device for an internal combustion engine according to the present invention includes a refrigerant jacket that has a vapor outlet at the top and stores a liquid phase refrigerant up to a predetermined level, and a liquid level detection means for distinguishing and detecting liquid phase refrigerant and gas phase refrigerant, and a condenser from which the gas phase refrigerant generated from the refrigerant jacket is introduced into the upper part and the condensed liquid phase refrigerant is taken out from the lower part. a reservoir tank that is open to the atmosphere and temporarily stores the condensed liquid phase refrigerant; and the liquid level detection means is activated based on a signal indicating that the gas phase refrigerant is detected, and the liquid phase refrigerant in the reservoir tank is transferred to the refrigerant jacket. A refrigerant supply pump for pressure-feeding the refrigerant.
〈作用〉
上記構成によると、通常運転時は、冷媒ジヤケ
ツト内の冷媒は燃焼室壁から吸熱して沸騰し、そ
の気化潜熱により熱交換効率良く燃焼室壁を冷却
する。該冷却作用は局所的に高熱部分がある場合
はこの部分に激しく沸騰がなされて集中的に冷却
がなされ均一温度分布となる。気相冷媒(蒸気)
はコンデンサにおいて潜熱を大量に放熱して凝縮
するから熱交換効率が良くコンデンサの小型化が
図れる。凝縮液相冷媒は直接ではなく、大容量の
リザーバタンクに一旦貯留された後に液面スイツ
チの出力に基づいて冷媒ジヤケツト中の液相冷媒
レベルを一定レベルに保持すべく冷媒供給ポンプ
の作動により冷媒ジヤケツト内に還流されるので
車両走行状態によつて冷媒供給が不良となつたり
コンデンサ冷却性能異常等により直ちに液相冷媒
供給ができなくなるようなことがなく安定して供
給が可能となる。<Operation> According to the above configuration, during normal operation, the refrigerant in the refrigerant jacket absorbs heat from the combustion chamber wall and boils, and the latent heat of vaporization cools the combustion chamber wall with good heat exchange efficiency. The cooling effect is such that when there is a locally high temperature area, intense boiling occurs in this area, cooling is concentrated and uniform temperature distribution is achieved. Gas phase refrigerant (steam)
Since a large amount of latent heat is radiated and condensed in the condenser, heat exchange efficiency is high and the condenser can be made smaller. The condensed liquid phase refrigerant is not delivered directly, but after it is temporarily stored in a large capacity reservoir tank, the refrigerant is supplied to the refrigerant by operating a refrigerant supply pump to maintain the liquid phase refrigerant level in the refrigerant jacket at a constant level based on the output of a liquid level switch. Since the refrigerant is refluxed into the jacket, stable refrigerant supply is possible without the possibility that the refrigerant supply becomes defective depending on the driving condition of the vehicle or that the liquid phase refrigerant cannot be supplied immediately due to an abnormality in the cooling performance of the condenser.
冷媒ジヤケツト内の液相冷媒の沸騰温度即ち蒸
気圧力はリザーバタンクにかかる大気圧により決
まり、液相冷媒供給ポンプの作動にては沸騰温度
は変化せず常に冷媒沸騰温度を略一定に安定する
ことが可能となる。 The boiling temperature of the liquid refrigerant in the refrigerant jacket, that is, the vapor pressure, is determined by the atmospheric pressure applied to the reservoir tank, and the boiling temperature does not change when the liquid refrigerant supply pump operates, and the refrigerant boiling temperature is always stabilized at a substantially constant level. becomes possible.
〈実施例〉
以下に本発明の実施例を第1図に基づいて説明
する。<Example> An example of the present invention will be described below based on FIG. 1.
内燃機関11は冷媒が貯留される冷媒ジヤケツ
ト12を備えており、コンデンサ13は冷媒ジヤ
ケツト12から送られる気相冷媒を凝縮してその
凝縮液相冷媒を下部のロワータンク14内に貯留
する。ロワータンク14内の液相冷媒はリザーバ
タンク15に一旦貯留された後に冷媒供給ポンプ
16を介して前記冷媒ジヤケツト12内に還流さ
れる。冷媒供給ポンプ16は、冷媒ジヤケツト1
の所定高さ位置に設けられ気相冷媒と液相冷媒と
を区別して検出する液面検出手段としての液面ス
イツチ17の検出信号に基づいて作動及び作動停
止を行う。これ本発明の概略的構成である。 The internal combustion engine 11 includes a refrigerant jacket 12 in which refrigerant is stored, and a condenser 13 condenses the gas phase refrigerant sent from the refrigerant jacket 12 and stores the condensed liquid phase refrigerant in a lower tank 14 at the bottom. The liquid phase refrigerant in the lower tank 14 is once stored in the reservoir tank 15 and then returned to the refrigerant jacket 12 via the refrigerant supply pump 16. The refrigerant supply pump 16 is connected to the refrigerant jacket 1
Activation and deactivation are performed based on a detection signal from a liquid level switch 17, which is installed at a predetermined height position and serves as liquid level detection means for detecting gas phase refrigerant and liquid phase refrigerant separately. This is a schematic configuration of the present invention.
前記冷媒ジヤケツト12は、内燃機関11のシ
リンダ及び燃焼室の外周部を包囲するようにシリ
ンダブロツク18及びシリンダヘツド19の両者
に亘つて形成されたもので、通常気相空間となる
上部が各気筒で互いに連通していると共に、その
上部の適宜な位置に蒸気出口21が設けられてい
る。蒸気出口21は、接続管22及び蒸気通路2
3を介してコンデンサ13の上部入口13aに連
通しており、かつ上記接続管22には、冷媒循環
系の最上部から大気開放路24が上方に立ち上が
つた形で形成され、該大気開放路24に電磁弁2
5が介装されている。 The refrigerant jacket 12 is formed over both the cylinder block 18 and the cylinder head 19 so as to surround the outer periphery of the cylinder and combustion chamber of the internal combustion engine 11, and the upper part, which is normally a gas phase space, is connected to each cylinder. They communicate with each other, and a steam outlet 21 is provided at an appropriate position in the upper part. The steam outlet 21 connects the connecting pipe 22 and the steam passage 2
3 to the upper inlet 13a of the condenser 13, and the connecting pipe 22 is formed with an air release passage 24 rising upward from the top of the refrigerant circulation system. Solenoid valve 2 on path 24
5 is interposed.
また前記冷媒ジヤケツト12の所定レベル、具
体的にはシリンダヘツド19側の燃焼室上方の略
中間の高さ位置において、前記液面スイツチ17
が配設されている。尚、26は上記冷媒ジヤケツ
ト12にヒータ用通路27を介して接続された車
室28暖房用のヒータコアであり、その下流側
に、図示せぬヒータスイツチに連動して作動する
ヒータ用ポンプ29が設けられている。 Further, at a predetermined level of the refrigerant jacket 12, specifically at a height position approximately in the middle above the combustion chamber on the cylinder head 19 side, the liquid level switch 17 is activated.
is installed. Note that 26 is a heater core for heating the vehicle compartment 28, which is connected to the refrigerant jacket 12 through a heater passage 27, and on the downstream side thereof, a heater pump 29 that operates in conjunction with a heater switch (not shown) is installed. It is provided.
コンデンサ13は、上部入口13aを有するア
ツパタンク31と、上下方向に沿つた微細なチユ
ーブを主体としたコア部32と、このコア部32
で凝縮された液相冷媒を一時貯留するロワータン
ク14とから構成されたもので、例えば車両前部
など車両走行風を受け得る位置に設置され、更に
その前面或いは背面に、強制冷却用の電動式冷却
フアン33を備えている。 The capacitor 13 includes a hot tank 31 having an upper inlet 13a, a core portion 32 mainly consisting of a fine tube along the vertical direction, and this core portion 32.
The lower tank 14 temporarily stores liquid-phase refrigerant condensed in the lower tank 14, and is installed in a position where it can receive wind from the vehicle, such as at the front of the vehicle. A cooling fan 33 is provided.
ロワータンク14の比較的上部に冷媒循環通路
34の一端が接続されており、他端がリザーバタ
ンク15に連通接続されている。 One end of the refrigerant circulation passage 34 is connected to a relatively upper portion of the lower tank 14, and the other end is connected to the reservoir tank 15 in communication.
リザーバタンク15は、その上壁に通気性を有
する冷媒供給用キヤツプ35が着脱自由に設けら
れる。リザーバタンク15には、電磁弁25を開
弁した状態で、大気開放路24及びキヤツプ35
から空気が全体系内に入り込み、液相冷媒液面レ
ベルが均一になつて、冷媒ジヤケツト12内の液
面スイツチ17配設レベルに位置するような量の
冷媒が供給される。 The reservoir tank 15 is provided with a refrigerant supply cap 35 having air permeability on its upper wall and is freely attachable and detachable. The reservoir tank 15 is connected to the atmosphere opening passage 24 and the cap 35 with the solenoid valve 25 open.
Air enters the entire system from the refrigerant jacket 12 and supplies an amount of refrigerant such that the level of the liquid phase refrigerant becomes uniform and is located at the level at which the level switch 17 is located in the refrigerant jacket 12.
リザーバタンク15の底部には冷媒循環通路3
6の一端が接続されており、かつこの他端が冷媒
ジヤケツト12のシリンダブロツク18側に設け
た冷媒入口12aに接続され、中間部には、冷媒
供給ポンプ16が介装されている。冷媒供給ポン
プ16の冷媒流量は、高速高負荷時における最大
蒸気発生量及び液滴のまま冷媒ジヤケツト12か
ら持ち出される冷媒量を考慮して、最大に必要な
冷媒循環量を若干上回る程度に設定されている。 A refrigerant circulation passage 3 is provided at the bottom of the reservoir tank 15.
One end of the refrigerant 6 is connected to the refrigerant, and the other end is connected to a refrigerant inlet 12a provided on the cylinder block 18 side of the refrigerant jacket 12, and a refrigerant supply pump 16 is interposed in the intermediate portion. The refrigerant flow rate of the refrigerant supply pump 16 is set to a level that slightly exceeds the maximum required refrigerant circulation amount, taking into consideration the maximum amount of steam generated at high speed and high load and the amount of refrigerant taken out from the refrigerant jacket 12 in the form of droplets. ing.
前記電磁弁25は常閉型であり開閉は図示しな
いイグニツシヨンスイツチと連動しイグニツシヨ
ンスイツチオンでは、シリンダヘツド19内の冷
媒ジヤケツト12に設けた温度スイツチ41のオ
ン・オフに基づいて行われる。温度スイツチ41
は例えば45℃に設定され、該設定温度以下でオン
となり電磁弁25を開弁する。またイグニツシヨ
ンスイツチオフでは電磁弁25は常閉型であるの
で閉弁している。冷却フアン33はロワータンク
3内に設けた温度スイツチ42のオン・オフに基
づいて行われる。温度スイツチ42が設定値以上
であることを検出すると冷却フアン33を回転作
動させて、コンデンサ2の放熱作用を増大する。 The solenoid valve 25 is of a normally closed type, and is opened and closed in conjunction with an ignition switch (not shown). be exposed. Temperature switch 41
is set to, for example, 45° C., and is turned on below the set temperature, opening the solenoid valve 25. Further, when the ignition switch is turned off, the solenoid valve 25 is closed because it is a normally closed type. The cooling fan 33 is turned on and off based on a temperature switch 42 provided in the lower tank 3. When the temperature switch 42 detects that the temperature is higher than the set value, the cooling fan 33 is rotated to increase the heat dissipation effect of the condenser 2.
蒸気出口21には蒸気流とともに持ち出される
液相冷媒がコンデンサ2へ流入することを防ぐた
め、液相冷媒を回収するよう冷媒ジヤケツト12
に連結された液相冷媒回収通路43を設けた構造
となつている。 In order to prevent the liquid phase refrigerant carried out with the vapor flow from flowing into the condenser 2, a refrigerant jacket 12 is provided at the vapor outlet 21 to collect the liquid phase refrigerant.
The structure includes a liquid phase refrigerant recovery passage 43 connected to the refrigerant.
次に上記のように構成された沸騰冷却装置の作
動について説明する。 Next, the operation of the evaporative cooling device configured as described above will be explained.
先ず機関停止では電磁弁25は閉弁している。
そこから機関始動(イグニツシヨンスイツチオ
ン)すると、冷媒ジヤケツト12内の温度が45℃
以下の場合温度スイツチ41がオンとなるため電
磁弁25が開弁する。従つて循環系内には大気開
放路24及びリザーバタンク15のキヤツプ35
を通じて大気が導入され、リザーバタンク15、
コンデンサ13及び冷媒ジヤケツト12内に液面
レベルを同一として液相冷媒(例えばエチレング
リコール水溶液)が平衡する。 First, when the engine is stopped, the solenoid valve 25 is closed.
When the engine is started (ignition switch is turned on), the temperature inside the refrigerant jacket 12 reaches 45°C.
In the following cases, the temperature switch 41 is turned on and the solenoid valve 25 is opened. Therefore, in the circulation system, there is an atmosphere opening passage 24 and a cap 35 of the reservoir tank 15.
Atmospheric air is introduced through the reservoir tank 15,
The liquid level in the condenser 13 and the refrigerant jacket 12 is kept the same, and the liquid phase refrigerant (eg, ethylene glycol aqueous solution) is in equilibrium.
冷媒ジヤケツト12内冷媒は機関運転にともな
い吸熱し温度上昇する。この時冷媒ジヤケツト1
2内に余分な冷媒がない、即ち受熱容量がが少な
くかつ冷媒はただ留つているだけなので短時間で
暖機することができる。ヒータを使う低外気温状
態においても同様で極低温の場合には余分な冷媒
に熱を加えずかつ液相冷媒に接する冷媒ジヤケツ
ト12の壁面部分が少ないので外壁から放熱する
量も少なくヒータ性能の向上を図ることができ
る。また初期に入れた冷媒量が少なく電磁弁25
が開弁して平衡する位置が冷媒ジヤケツト12内
の液面スイツチ17より低位となると冷媒供給ポ
ンプ16が作動し冷媒を補給するので確実に燃焼
壁を冷却することができる。 The refrigerant in the refrigerant jacket 12 absorbs heat and rises in temperature as the engine operates. At this time, refrigerant jacket 1
Since there is no excess refrigerant in the chamber 2, that is, the heat receiving capacity is small and the refrigerant merely remains, it is possible to warm up in a short time. The same goes for when the heater is used in low outside temperature conditions.In extremely low temperatures, no heat is added to the excess refrigerant, and the wall portion of the refrigerant jacket 12 in contact with the liquid phase refrigerant is small, so the amount of heat radiated from the outer wall is small and the heater performance is improved. You can improve your performance. Also, the amount of refrigerant initially put in is small, solenoid valve 25
When the valve opens and the equilibrium position becomes lower than the liquid level switch 17 in the refrigerant jacket 12, the refrigerant supply pump 16 operates to replenish the refrigerant, so that the combustion wall can be reliably cooled.
暖機が進み冷媒ジヤケツト12内の液相冷媒が
45℃の設定温度を超えるようになると、電磁弁2
5が大気開放路24を閉鎖する。従つて冷媒循環
系はリザーバタンク15のキヤツプ35を通じて
のみ大気開放された閉ループ冷媒循環系となる。
冷媒温度が更に上昇すると、冷媒ジヤケツト12
内の冷媒がやがて沸騰を開始し、冷媒ジヤケツト
12の上部ならびにコンデンサ13上部に徐々に
気相冷媒領域が形成されていくとともに、沸騰に
よる内圧の上昇によつて系内から液相冷媒が冷媒
循環通路36を介してリザーバタンク15内に
徐々に押し出される。 As warming progresses, the liquid phase refrigerant in the refrigerant jacket 12
When the temperature exceeds the set temperature of 45℃, solenoid valve 2
5 closes the atmosphere opening path 24. Therefore, the refrigerant circulation system becomes a closed loop refrigerant circulation system that is opened to the atmosphere only through the cap 35 of the reservoir tank 15.
As the refrigerant temperature increases further, the refrigerant jacket 12
The refrigerant inside the system will eventually start to boil, and a gaseous refrigerant region will gradually form in the upper part of the refrigerant jacket 12 and the upper part of the condenser 13, and as the internal pressure increases due to boiling, the liquid refrigerant will circulate from within the system. It is gradually pushed out into the reservoir tank 15 through the passage 36.
ところで機関始動時に冷媒循環系上部に導入さ
れていた不凝縮気体である空気は冷媒沸騰後気相
冷媒に押されてコンデンサ13に導かれる。これ
によりコンデンサ13の放熱能力が低下するが、
空気は更に押し下げられ冷媒循環通路34を通つ
てリザーバタンク15に押し出される。つまり空
気は自然排出されるわけである。尚、空気と共に
若干の気相冷媒もリザーバタンク15内に流出す
るが、これは該タンク15内で凝縮して回収され
る。 By the way, air, which is a non-condensable gas, introduced into the upper part of the refrigerant circulation system when the engine is started, is pushed by the gas phase refrigerant and guided to the condenser 13 after the refrigerant boils. This reduces the heat dissipation ability of the capacitor 13, but
The air is further pushed down and forced out into the reservoir tank 15 through the refrigerant circulation passage 34. In other words, the air is naturally exhausted. Note that some gas phase refrigerant flows out into the reservoir tank 15 along with the air, but this is condensed and recovered within the tank 15.
このようにしてコンデンサ13の上部に気相冷
媒領域が拡大するに従つてコンデンサ13の放熱
能力が増大するので、この放熱量と気相冷媒圧力
即ち機関の発熱量(液相冷媒が激しく沸騰して蒸
気が多く発生すると冷媒ジヤケツト12内の冷媒
液面が低下しこれを検出した液面スイツチ17の
出力により冷媒供給ポンプ16が作動し、液相冷
媒を冷媒ジヤケツト12内に供給するが、結果的
に冷媒ジヤケツト12内の液相冷媒温度は上昇す
ることがなく略一定値に保持される)とが平衡し
た位置にコンデンサ13内の液面位置に定まり、
以後は、機関の負荷変動による発熱量の増大或い
は車両走行風、冷却フアン33の風量等に応じ
て、コンデンサ13内の液面位置が自然に上下動
しつつ系内温度を略一定に保つ。冷却フアン33
は、ロワータンク14内の冷媒温度が高まると温
度スイツチ42の検出信号により作動開始し、コ
ンデンサ13の強制冷却する。ロワータンク14
内の冷媒温度はコンデンサ13の使用度合の状況
(気相冷媒がコンデンサコア部32に占める割合)
を表し、坂道のように走行風が少なく機関発熱量
が大きい場合や、アイドリング時のように走行風
がない場合はロワータンク14内冷媒温度は高温
となる。ここでロワータンク14の温度スイツチ
42の作動温度設定をコンデンサ13の使用度合
が最大限となる温度(最大使用時のロワータンク
14液相冷媒温度は気相冷媒温度付近となる)90
℃〜100℃程度で冷却フアン33を作動させる。
従つて機関運転時のほとんどは冷却フアン33が
作動せず必要最小限の時のみ作動することになる
ので電気負荷の低減が可能となり騒音の低減も可
能となる。また、冷媒供給ポンプ16は液面スイ
ツチ17の検出信号に応じてリザーバタンク15
から冷媒ジヤケツト12へ液相冷媒を供給してお
り、冷媒ジヤケツト12内の冷媒液面は常に所定
レベルに確実に維持される。 In this way, as the gas phase refrigerant area expands above the condenser 13, the heat dissipation capacity of the condenser 13 increases. When a large amount of vapor is generated, the liquid level of the refrigerant in the refrigerant jacket 12 decreases, and the output of the liquid level switch 17 that detects this causes the refrigerant supply pump 16 to operate, supplying liquid phase refrigerant into the refrigerant jacket 12. The temperature of the liquid phase refrigerant in the refrigerant jacket 12 does not rise and is maintained at a substantially constant value).
Thereafter, the liquid level in the condenser 13 naturally moves up and down in response to an increase in heat generation due to changes in engine load, vehicle running wind, airflow from the cooling fan 33, etc., while keeping the system temperature approximately constant. cooling fan 33
When the temperature of the refrigerant in the lower tank 14 increases, the operation is started by a detection signal from the temperature switch 42, and the condenser 13 is forcibly cooled. Lower tank 14
The temperature of the refrigerant in the condenser 13 is determined by the degree of use of the condenser 13 (the proportion of the gas phase refrigerant in the condenser core 32).
The temperature of the refrigerant in the lower tank 14 becomes high when the vehicle is running on a slope, where there is little wind and the engine generates a large amount of heat, or when the vehicle is idling, where there is no wind. Here, the operating temperature of the temperature switch 42 of the lower tank 14 is set to the temperature at which the degree of use of the condenser 13 is maximized (the temperature of the liquid phase refrigerant of the lower tank 14 at the time of maximum use is near the temperature of the gas phase refrigerant) 90
The cooling fan 33 is operated at a temperature of about 100°C to 100°C.
Therefore, the cooling fan 33 does not operate most of the time when the engine is operating, and operates only when necessary, thereby reducing electrical load and reducing noise. In addition, the refrigerant supply pump 16 supplies the reservoir tank 15 according to the detection signal of the liquid level switch 17.
A liquid phase refrigerant is supplied from the refrigerant jacket 12 to the refrigerant jacket 12, and the refrigerant liquid level in the refrigerant jacket 12 is always maintained at a predetermined level.
ここにおいて本発明では上記の如くロワータン
ク14内の冷媒でなく、リザーバタンク15の冷
媒を冷媒ジヤケツト12に供給している。リザー
バタンク15はこの中の冷媒量がロワータンク1
4に比べて充分多いように構成されているので、
リザーバタンク15からの冷媒持ち出しはロワー
タンク14の液相冷媒量即ち冷媒液面に影響を与
えない。これにより車両が旋回して横Gを受けロ
ワータンク14内の液相冷媒レベルが傾いても、
或いは機関高速高負荷運転時又は走行風が不足す
る機関アイドリング運転時に、コンデンサ13の
冷却異常でコンデンサ13内の凝縮液化能力が低
下し、気相冷媒がロワータンク14内にまで侵入
しても、これはリザーバタンク15内へ放出され
るだけで、リザーバタンク15から冷媒ジヤケツ
ト12内への液相冷媒供給は安定してなされる。 Here, in the present invention, the refrigerant in the reservoir tank 15 is supplied to the refrigerant jacket 12 instead of the refrigerant in the lower tank 14 as described above. The amount of refrigerant in the reservoir tank 15 is the lower tank 1.
Since it is configured to have a sufficiently large number compared to 4,
Taking out the refrigerant from the reservoir tank 15 does not affect the amount of liquid refrigerant in the lower tank 14, that is, the refrigerant liquid level. As a result, even if the vehicle turns and receives lateral G and the liquid phase refrigerant level in the lower tank 14 is tilted,
Alternatively, if the condensation and liquefaction capacity in the condenser 13 decreases due to a cooling abnormality in the condenser 13 during engine high-speed, high-load operation or engine idling operation with insufficient running air, the gas phase refrigerant may enter the lower tank 14. is simply discharged into the reservoir tank 15, and the liquid phase refrigerant is stably supplied from the reservoir tank 15 into the refrigerant jacket 12.
また機関停止(イグニツシヨンスイツチオフ)
後は電磁弁25は弁閉となり系内の放熱温度低下
による蒸気圧力低下に伴つて、リザーバタンク1
5から系内に液相冷媒が移動し最終的には系内が
満水状態となる。これにより始動時に導入した空
気が排出されてコンデンサ13の内面が腐食する
ことはない。この段階において液相冷媒温度が45
℃以上にてホツトリスタートをする場合には急速
暖機をする必要がないので電磁弁25は弁閉のま
まとするが、冷間時で液相冷媒温度が45℃以下で
は電磁弁25を弁開とし再び系内に空気を導入し
急速暖機を行うようにする。 Also, the engine stops (ignition switch off)
After that, the solenoid valve 25 is closed, and as the steam pressure decreases due to the decrease in the heat radiation temperature in the system, the reservoir tank 1
The liquid phase refrigerant moves into the system from 5, and eventually the system becomes full of water. This prevents the air introduced during startup from being exhausted and corroding the inner surface of the capacitor 13. At this stage, the liquid phase refrigerant temperature is 45
When performing a hot restart at temperatures above ℃, there is no need for rapid warm-up, so the solenoid valve 25 remains closed, but when the liquid phase refrigerant temperature is below 45 ℃ when cold, the solenoid valve 25 is closed. Open the valve and introduce air into the system again to perform rapid warm-up.
上記のように本実施例では系内に積極的に空気
を導入するようにしたことからリザーバタンク1
5内の冷媒量を少なくできひいてはリザーバタン
ク15を小型化できる。 As mentioned above, in this embodiment, air is actively introduced into the system, so the reservoir tank 1
The amount of refrigerant in the tank 5 can be reduced, and the reservoir tank 15 can be downsized.
また冷媒ジヤケツト12に冷媒を供給するのに
リザーバタンク15から冷媒を取り出すようにし
たから、コンデンサ13のロワータンク14を実
質的に省略しても、冷媒供給ポンプ16の作動に
よりコンデンサ13内の液相冷媒レベル制御に悪
影響を及ぼさない。従つてコンデンサ13は極め
て小型化することが可能となる。 Furthermore, since the refrigerant is taken out from the reservoir tank 15 to supply the refrigerant to the refrigerant jacket 12, even if the lower tank 14 of the condenser 13 is substantially omitted, the liquid phase inside the condenser 13 is Does not adversely affect refrigerant level control. Therefore, the capacitor 13 can be made extremely small.
〈発明の効果〉
以上の説明で明らかなように、この発明に係る
内燃機関の沸騰冷却装置によれば、複雑な制御回
路や多数の電磁弁等を用いながら極めて簡単な構
成でもつて、冷媒の沸騰・凝縮サイクルを利用し
た冷却効率や温度の均一性等に優れた冷却を実現
できる。<Effects of the Invention> As is clear from the above explanation, the boiling cooling device for an internal combustion engine according to the present invention can effectively cool refrigerant even with an extremely simple configuration using a complicated control circuit, a large number of solenoid valves, etc. It is possible to achieve cooling with excellent cooling efficiency and temperature uniformity using a boiling/condensing cycle.
また冷媒ジヤケツトにリザーバタンクから冷媒
を供給するようにしたため機関冷却に最も大切な
液相冷媒の冷媒ジヤケツトへの補給を常に安定し
て行うことができる。更に機関始動時には冷媒ジ
ヤケツト内に冷却に必要最小限の液相冷媒しか貯
留されないため、急速暖機が可能であり、かつ空
気の侵入に対しても格別の作動を行うことなく自
然的に排出でき信頼性及び安全性に優れたものと
なる。また冷却フアンの作動もコンデンサを十分
活用した状態で行なえることから冷却フアンの依
存度が少なく省電力低騒音化が可能となる。 Furthermore, since the refrigerant is supplied to the refrigerant jacket from the reservoir tank, the refrigerant jacket can always be replenished with liquid phase refrigerant, which is most important for cooling the engine, in a stable manner. Furthermore, since only the minimum amount of liquid phase refrigerant required for cooling is stored in the refrigerant jacket when the engine is started, rapid warm-up is possible, and air can be naturally discharged without any special action. It has excellent reliability and safety. Furthermore, since the cooling fan can be operated while making full use of the capacitor, there is less dependence on the cooling fan, making it possible to save power and reduce noise.
第1図は本発明の一実施例を示す概略構成説明
図、第2図は従来例の概略構成説明図である。
11…内燃機関、12…冷媒ジヤケツト、13
…コンデンサ、15…リザーバタンク、16…冷
媒供給ポンプ、17…液面スイツチ、23…蒸気
通路、34,36…冷媒循環通路。
FIG. 1 is a schematic structural explanatory diagram showing one embodiment of the present invention, and FIG. 2 is a schematic structural explanatory diagram of a conventional example. 11... Internal combustion engine, 12... Refrigerant jacket, 13
...Condenser, 15...Reservoir tank, 16...Refrigerant supply pump, 17...Liquid level switch, 23...Steam passage, 34, 36...Refrigerant circulation passage.
Claims (1)
液相冷媒が貯留される冷媒ジヤケツトと、 該冷媒ジヤケツト内の適正レベル位置に設けら
れ液相冷媒と気相冷媒とを区別して検出する液面
検出手段と、 前記冷媒ジヤケツトから発生した気相冷媒が上
部に導入され下部から凝縮液相冷媒が取り出され
るコンデンサと、 前記凝縮液相冷媒を一時貯溜する大気開放型の
リザーバタンクと、 前記液面検出手段が気相冷媒を検出した信号に
基づいて作動され、リザーバタンク内の液相冷媒
を前記冷媒ジヤケツトに圧送する冷媒供給ポンプ
と、 を備えたことを特徴とする内燃機関の沸騰冷却装
置。[Scope of Claims] 1. A refrigerant jacket having a vapor outlet at the top and storing a liquid phase refrigerant up to a predetermined level, and a refrigerant jacket provided at an appropriate level position within the refrigerant jacket to carry the liquid phase refrigerant and the gas phase refrigerant. A liquid level detecting means for detecting the liquid level separately; a condenser into which the gaseous refrigerant generated from the refrigerant jacket is introduced into the upper part and the condensed liquid refrigerant is taken out from the lower part; and an air-opened reservoir which temporarily stores the condensed liquid refrigerant. An internal combustion engine characterized by comprising: a tank; and a refrigerant supply pump that is activated based on a signal from which the liquid level detection means detects a gaseous refrigerant and pumps the liquid refrigerant in the reservoir tank to the refrigerant jacket. Engine boiling cooling system.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23542885A JPS6296722A (en) | 1985-10-23 | 1985-10-23 | Evaporative cooling device for internal combustion engine |
DE8686114221T DE3681395D1 (en) | 1985-10-15 | 1986-10-14 | COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE. |
US06/918,052 US4721071A (en) | 1985-10-15 | 1986-10-14 | Cooling system for automotive engine or the like |
EP86114221A EP0219099B1 (en) | 1985-10-15 | 1986-10-14 | Cooling system for an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23542885A JPS6296722A (en) | 1985-10-23 | 1985-10-23 | Evaporative cooling device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6296722A JPS6296722A (en) | 1987-05-06 |
JPH0580564B2 true JPH0580564B2 (en) | 1993-11-09 |
Family
ID=16985962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23542885A Granted JPS6296722A (en) | 1985-10-15 | 1985-10-23 | Evaporative cooling device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6296722A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6428483B2 (en) * | 2015-05-19 | 2018-11-28 | トヨタ自動車株式会社 | Rankine cycle system |
-
1985
- 1985-10-23 JP JP23542885A patent/JPS6296722A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6296722A (en) | 1987-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6210414A (en) | Evaporative cooling apparatus of internal-combustion engine | |
JPH0580565B2 (en) | ||
JPH073172B2 (en) | Boiling cooling device for internal combustion engine | |
JPS62162716A (en) | Evaporative cooling device for internal combustion engine | |
JPS6181219A (en) | Car heater of evaporative cooling type internal-combustion engine | |
JPH0830412B2 (en) | Boiling cooling device for internal combustion engine | |
JPH0580564B2 (en) | ||
JPS61123712A (en) | Evaporative cooling apparatus for internal-combustion engine | |
JPS6125910A (en) | Boiling medium cooling device in engine | |
JPH0223781Y2 (en) | ||
JPH032670Y2 (en) | ||
CN1174283A (en) | Water Cooling system for steam-condensing internal combustion engine | |
JPH01170708A (en) | Cooling structure of engine | |
JPS6161908A (en) | Evaporative cooling device of internal-combustion engine | |
JPS60175728A (en) | Evaporative cooling device in engine | |
JPS618419A (en) | Evaporating cooling device of internal-combustion engine | |
JPS6260916A (en) | Evaporative cooling device for internal combustion engine | |
JPH0343366Y2 (en) | ||
JP2000073899A (en) | Fuel supply device for automobile | |
KR200163178Y1 (en) | Cooling apparatus without coolant supply | |
JPS6183415A (en) | Evaporative cooling apparatus of internal-combustion engine for car | |
JPS6296721A (en) | Evaporative cooling device for internal combustion engine | |
JPS6210415A (en) | Evaporative cooling apparatus of internal-combustion engine | |
JPH034726B2 (en) | ||
JPS6183436A (en) | Evaporative cooling device for internal-combustion engine |