JPS6210415A - Evaporative cooling apparatus of internal-combustion engine - Google Patents

Evaporative cooling apparatus of internal-combustion engine

Info

Publication number
JPS6210415A
JPS6210415A JP14781485A JP14781485A JPS6210415A JP S6210415 A JPS6210415 A JP S6210415A JP 14781485 A JP14781485 A JP 14781485A JP 14781485 A JP14781485 A JP 14781485A JP S6210415 A JPS6210415 A JP S6210415A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
water jacket
lower tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14781485A
Other languages
Japanese (ja)
Inventor
Yoshimasa Hayashi
義正 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14781485A priority Critical patent/JPS6210415A/en
Publication of JPS6210415A publication Critical patent/JPS6210415A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To enable air coming into a system to be discharged automatically by normally communicating the lower part of a reservoir tank provided outside an airtight refrigerant circulating system with one part of the lower tank of a condenser located higher than a refrigerant outlet through an auxiliary refrigerant passage. CONSTITUTION:In the case of the apparatus stated in the title, liquid-phase refrigerant stored up to the specified level in a water jacket 2 is heated during the operation of an internal-combustion engine 1, and the internal-combustion engine 1 is cooled by taking heat away when the refrigerant is boiled and vaporized. Then, the produced refrigerant vapor is cooled and condensed in a condenser 3, stored in a lower tank 18, and forced to flow back to the water jacket 2 by the operation of a refrigerant supply pump 4. In this case one end of an auxiliary refrigerant passage 25 is connected to one part of the lower tank 18 located higher than a refrigerant outlet 18a, and the other end is connected to a reservoir tank 23 open to the atmosphere. Also, a cooling fan 19 is provided adjoiningly to the condenser 3, and is controlled to operate according to the output of a temperature switch 20 mounted on the lower tank 18.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ウォータジャケット内の所定レベルまで液
相冷媒を貯留しておき、その沸騰気化により内燃機関各
部の冷却を行う内燃機関の沸騰冷却装置に関し、特に暖
機運転時(こ冷媒備環系内から不凝縮気体である空気が
自然に排出されるようlこした沸騰冷却装置に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a boiling cooling device for an internal combustion engine that stores liquid phase refrigerant up to a predetermined level in a water jacket and cools various parts of the internal combustion engine by boiling and vaporizing the liquid phase refrigerant. In particular, the present invention relates to a boiling cooling device in which air, which is a non-condensable gas, is naturally discharged from the refrigerant ring system during warm-up operation.

従来の技術 自動車用機関等の冷却装置として、冷媒の沸騰・凝縮の
サイクルを利用した沸騰冷却装置が種々提案されている
。この種の冷却装置lこおいて最も大きな課題は、不凝
縮気体である空気を如何にして系内から除去し、かつそ
の侵入を阻止するかということにある。
2. Description of the Related Art Various boiling cooling devices that utilize a cycle of boiling and condensing a refrigerant have been proposed as cooling devices for automobile engines and the like. The biggest problem in this type of cooling system is how to remove air, which is a non-condensable gas, from the system and prevent its intrusion.

例えば特公昭47−5019号公報lこ記載の装置は、
第2図1こ示すようにウォータジャケット31の上壁面
にコンデンサ32を立設し、ウォータジャケット31か
ら立ち上がった発生蒸気がコンデンサ32Iこ自然lこ
流入し、かつ凝縮した液相冷媒がそのママウォータジャ
ケット31ζこ滴下するように構成するとともζこ、コ
ンデンサアッパタンク33と外部の冷媒容器34とを冷
媒通路35にて常時連通させた構成となっている。すな
わち、系内に残存していた空気は上記冷媒通路35を介
して自然に排出され、かつ内部の圧力が上昇してコンデ
ンサ32から冷媒容器34へ液相冷媒が押し出されると
、それだけコンデンサ32の上部に空気を含まない蒸熾
空間が形成されること(こなる。
For example, the device described in Japanese Patent Publication No. 47-5019 is
As shown in Fig. 2, a condenser 32 is installed upright on the upper wall of the water jacket 31, and the generated steam rising from the water jacket 31 naturally flows into the condenser 32I, and the condensed liquid phase refrigerant flows into the mother water. Although the jacket 31ζ is configured to drip, the condenser upper tank 33 and the external refrigerant container 34 are always in communication through the refrigerant passage 35. That is, the air remaining in the system is naturally discharged through the refrigerant passage 35, and as the internal pressure rises and the liquid phase refrigerant is pushed out from the condenser 32 to the refrigerant container 34, the condenser 32 is Formation of a steaming space in the upper part that does not contain air.

しかし、このような構成では、コンデンサ32の下方か
ら上昇して来る蒸気流によって、コンデンサ32内で凝
縮した液滴もコンデンサ32の外部へ押し出してしまう
虞れがある、などウォータジャケット31で保有する冷
媒量やコンデンサ32の放熱量などが非常ζこ不安定で
あり、従って高出力でかつ安定した冷却が必要な自動車
用機関などには到底適用できない。
However, in such a configuration, there is a risk that the vapor flow rising from below the condenser 32 may push out the liquid droplets condensed inside the condenser 32 to the outside of the condenser 32. The amount of refrigerant and the amount of heat dissipated by the condenser 32 are extremely unstable, and therefore it cannot be applied to automobile engines that require high output and stable cooling.

これlこ対し、本出願人は、ウォータジャケットとコン
デンサと冷媒供給ポンプとを主体として閉ループ状の冷
媒循環系を形成し、ウォータジャケットで発生した冷媒
蒸気をコンデンサに導いて凝縮させた後、液面上ンサの
検出に基づく冷媒供給ポンプの作動によって再度ウォー
タジャケットへ補給するようlこした沸騰冷却装置を種
々提案しでいる。この装置では、系最上部に電磁弁を備
えた空気排出通路を接続してあり、始動直後等に系外の
りザーバタンクから冷媒供給ポンプを用いて系内に液相
冷媒を強制的に導入し、かつ同時に上記電磁弁を用いて
、系内tこ残存していた22スの排出を行うようにして
いる。(例えば特開昭60−36712号公報、特開昭
60−36715号公報等)。
In response to this, the present applicant has formed a closed-loop refrigerant circulation system mainly consisting of a water jacket, a condenser, and a refrigerant supply pump, and after guiding the refrigerant vapor generated in the water jacket to the condenser and condensing it, the refrigerant vapor is condensed. Various boiling cooling devices have been proposed in which the refrigerant is resupplied to the water jacket by operating a refrigerant supply pump based on the detection of the surface sensor. In this device, an air exhaust passage equipped with a solenoid valve is connected to the top of the system, and liquid phase refrigerant is forcibly introduced into the system from a reservoir tank outside the system using a refrigerant supply pump immediately after startup. At the same time, the electromagnetic valve described above is used to discharge the remaining 22 gases in the system. (For example, JP-A-60-36712, JP-A-60-36715, etc.).

発明が解決しようとする問題点 しかし、上記のような冷媒供給ポンプを用いた冷媒の強
制導入により空気を押し出す方式では、冷媒供給ポンプ
の前後に流路切換機構となる複数の電磁弁が必要である
とともに、空気排出通路のtm弁をも含めて複雑な制御
を行わねばならず、装置の簡素化、低コスト化が困難で
あった。
Problems to be Solved by the Invention However, in the method described above in which air is forced out by forced introduction of refrigerant using a refrigerant supply pump, multiple solenoid valves serving as flow path switching mechanisms are required before and after the refrigerant supply pump. In addition, complicated control including the tm valve of the air exhaust passage must be performed, making it difficult to simplify the device and reduce costs.

問題点を解決するための手段 この発明は上記の問題点を解決するために、密閉した冷
媒循環系の外部tこ大気開放されたリザーバタンクを設
け、このリザーバタンクの下部とロアタンクの冷媒取出
口より上部とを補助冷媒通路を介して常時連通させた構
成であって、更に構成の簡素化を図るために、冷媒供給
ポンプを液面スイッチに連動させ、かつ冷却ファンをロ
アタンクの温度スイッチに連動させた構成となっている
Means for Solving the Problems In order to solve the above problems, the present invention provides a reservoir tank that is open to the atmosphere outside the closed refrigerant circulation system, and connects the lower part of the reservoir tank and the refrigerant outlet of the lower tank. In order to further simplify the configuration, the refrigerant supply pump is linked to the liquid level switch, and the cooling fan is linked to the temperature switch of the lower tank. The configuration is as follows.

作用 通常運転時Iこけ、系内の冷媒はウォータジャケットで
沸騰気化し、かつコンデンサで凝縮するというサイクル
を繰り返しつつ循環する。ここで冷媒供給ポンプは液面
スイッチに連動してON・OFF作動し、ウォータジャ
ケット内の冷媒液面を所定レベルに保つ。また冷却ファ
ンはロアタンク内の冷媒温度が所定温度tこ達すると作
動し、コンデンサを強制冷却する。
Function During normal operation, the refrigerant in the system is circulated, repeating the cycle of boiling and vaporizing in the water jacket and condensing in the condenser. Here, the refrigerant supply pump is turned on and off in conjunction with the liquid level switch to maintain the refrigerant liquid level in the water jacket at a predetermined level. Further, the cooling fan operates when the temperature of the refrigerant in the lower tank reaches a predetermined temperature t, and forcibly cools the condenser.

一方、上述のように冷媒の沸騰・凝縮が行われる系内に
、何らかの原因で空気が侵入していたとすると、その空
気は蒸気流によってコンデンサ下部lこ自然に集められ
、かつここから補助冷媒通路を通して蒸気に押し出され
る形で系外に排出される。ロアタンクの冷媒取出口は補
助冷媒通路の接続部よりも下方に位置するので、冷媒供
給ポンプが空気を吸い込むことはない。
On the other hand, if air were to enter the system where the refrigerant boils and condenses as described above for some reason, the air would be naturally collected in the lower part of the condenser by the steam flow, and from there it would flow into the auxiliary refrigerant passage. It is expelled from the system as steam through the Since the refrigerant outlet of the lower tank is located below the connection part of the auxiliary refrigerant passage, the refrigerant supply pump does not suck in air.

また機関停止後は、リザーバタンクとロアタンクとが常
時連通しているので、系内の温度低下つまり圧力低下に
伴ってリザーバタンクから系内に液相冷媒が流入し、最
終的には系全体が液相冷媒で満たされた状態となって空
気侵入が防止される。
In addition, after the engine is stopped, the reservoir tank and lower tank are always in communication, so as the temperature or pressure in the system drops, liquid phase refrigerant flows from the reservoir tank into the system, and eventually the entire system is It is filled with liquid phase refrigerant to prevent air from entering.

そして始動後は、ウォータジャケット内で沸騰が開始す
る結果、系内から液相冷媒がリザーバタンクに自然に押
し出され、系上部lこ必要な蒸気空間が確保される。
After startup, boiling begins within the water jacket, and as a result, liquid phase refrigerant is naturally pushed out from the system into the reservoir tank, securing the necessary vapor space in the upper part of the system.

実施例 第1図はこの発明に係る沸騰冷却装置の一実施例を示す
もので、同図において、1はウオークジャケット2を備
えてなる内燃機関、3は気相冷媒を凝縮するためのコン
デンサ、4は電動式の冷媒供給ポンプを夫々示している
Embodiment FIG. 1 shows an embodiment of the evaporative cooling device according to the present invention, in which 1 is an internal combustion engine equipped with a walk jacket 2, 3 is a condenser for condensing a gas phase refrigerant, Reference numeral 4 indicates an electric refrigerant supply pump.

上記ウォータジャケット2は、内′P機関1のシリンダ
および燃焼室の外周部を包囲するようにシリンダブロッ
ク5およびシリンダヘッド60両者(こ亘って形成され
たもので、通常気相空間となる上部が各党筒で互いに連
通しているとともに、その上部の適宜な位置に蒸気量ロ
アが設けられている。この蒸気量ロアは、接続管8およ
び蒸気通路9を介してコンデンサ3の上部人口3aに連
通しており、かつ上記接続管8には、冷媒循環系の最上
部となる冷媒注入部8aが上方に立ち上がった形で形成
されているとともに、その上部開口をキャップ10が密
閉している。
The water jacket 2 is formed by both the cylinder block 5 and the cylinder head 60 (the upper part, which is normally a gas phase space), so as to surround the outer periphery of the cylinder and combustion chamber of the inner engine 1. Each cylinder communicates with each other, and a steam lower is provided at an appropriate position above the cylinder.This steam lower is connected to the upper part 3a of the condenser 3 via a connecting pipe 8 and a steam passage 9. The connecting pipe 8 is formed with a refrigerant injection part 8a, which is the uppermost part of the refrigerant circulation system, in an upwardly erected shape, and the upper opening thereof is sealed by a cap 10.

また上記ウォータジャケット2の所定レベル、具体的に
はシリンダヘッド6側の略中間の高さ位fに、液相冷媒
の有無によって開閉作動する液面スイッチ11が配設さ
れており、冷媒供給ポンプ4はこの液面スイッチ11を
介して′+1を源EC接続されている。
Further, a liquid level switch 11 is disposed at a predetermined level of the water jacket 2, specifically at a height f approximately in the middle of the cylinder head 6 side, and is operated to open and close depending on the presence or absence of liquid phase refrigerant. '+1 is connected to the source EC via this liquid level switch 11.

尚、12は上記ウォータジャケット2にヒータ用通路1
3を介して接続された車室14暖房用のヒータコアであ
り、その下流側lこ、図示せぬヒータスイッチに連動し
て作動するヒータ用ポンプ15が設けられている。
In addition, 12 is a heater passage 1 in the water jacket 2.
A heater core for heating the passenger compartment 14 is connected through a heater core 3, and a heater pump 15 that operates in conjunction with a heater switch (not shown) is provided downstream of the heater core.

コンデンサ3は、上記人口3aを有するアッパタンク1
6と、上下方向に沿った微細な千ユーブを主体としたコ
ア部17と、このコア部17で凝縮された液相冷媒を一
時貯留するロアタンク18とから構成されたもので、例
えば車両前部など車両走行風を受は得る位置ζこ設置さ
れ、更にその曲面あるいは背面に、強制冷却用の電動式
冷却ファン19が臨設されている。この冷却ファン19
は、ロアタンク18に配設した温度スイッチ20を介し
て電源に接続され、所定温度以上のときに作動する構成
となっている。尚、温度スイッチ20の作動温度は、高
地における冷媒沸点よりも若干低い温度、例えば83℃
程度ζこ設定されている。
The capacitor 3 is connected to the upper tank 1 having the population 3a described above.
6, a core part 17 mainly composed of fine 1,000-tubes along the vertical direction, and a lower tank 18 that temporarily stores the liquid phase refrigerant condensed in this core part 17. A cooling fan 19 for forced cooling is installed on the curved surface or back side of the cooling fan 19, which receives wind from the vehicle running. This cooling fan 19
is connected to a power source via a temperature switch 20 disposed in the lower tank 18, and is configured to operate when the temperature is higher than a predetermined temperature. The operating temperature of the temperature switch 20 is a temperature slightly lower than the boiling point of the refrigerant at high altitudes, for example, 83°C.
It is set to a certain degree.

また上記ロアタンク18の底部の冷媒取出口181Lに
冷媒循環通路21の一端が接続されており、かつこの冷
媒循環通路21の他端が上記ウォータジャケット2のシ
リンダブロック5側lこ設けた冷媒人口2aに接続され
ている。そして、上記冷媒循環通路21の中間部には、
上記の冷媒供給ポンプ4が介装されている。22ば、上
記ロアタンク■8とウォータジャケット2とを連通した
冷媒混合用通路であり、比較的少量の液相冷媒がウォー
タジャケット2からロアタンク18に流れるように通路
断面積等が設定されている。
Further, one end of a refrigerant circulation passage 21 is connected to the refrigerant outlet 181L at the bottom of the lower tank 18, and the other end of this refrigerant circulation passage 21 is connected to the refrigerant population 2a provided on the cylinder block 5 side of the water jacket 2. It is connected to the. In the middle part of the refrigerant circulation passage 21,
The refrigerant supply pump 4 described above is interposed. 22 is a refrigerant mixing passage that communicates the lower tank 8 with the water jacket 2, and the cross-sectional area of the passage is set so that a relatively small amount of liquid phase refrigerant flows from the water jacket 2 to the lower tank 18.

以上のウォータジャケット2.コンデンサ3゜冷媒循環
通路21および冷媒供給ポンプ4によって、冷媒が沸騰
・凝縮のサイクルを繰り返しつつ循環する冷媒循環系が
構成されている。詔は、上記冷媒循環系の系外に設けら
れたリザーバタンクを示しており、これは通気機能を有
するキャップ24を介して大気lこ開放されているとと
もIこ、上記ウォータジャケット2と略等しい高さ位置
に設置されている。そして、補助冷媒通路25の一端が
上記リザーバタンク23の底部に接続され、かつ他端が
ロアタンク18の冷媒取出口18aより上部に接続され
ている。
Above water jacket 2. The condenser 3 degree refrigerant circulation passage 21 and the refrigerant supply pump 4 constitute a refrigerant circulation system in which the refrigerant circulates while repeating a cycle of boiling and condensation. The imperial edict indicates a reservoir tank provided outside the refrigerant circulation system, which is open to the atmosphere through a cap 24 having a ventilation function. installed at the same height. One end of the auxiliary refrigerant passage 25 is connected to the bottom of the reservoir tank 23, and the other end is connected above the refrigerant outlet 18a of the lower tank 18.

次lこ上記のようlこ構成された沸騰冷却装置の作動に
ついて説明する。
Next, the operation of the evaporative cooling system constructed as described above will be explained.

先ず機関の停止状態においては、冷媒循環系の全体が液
相冷媒(例えばエチレングリコール水溶液)で満たされ
ており、かつリザーバタンク23には多少の液相冷媒が
残存している。この状態で機関が始動すると、ウォータ
ジャケット2内の冷媒は浦留状態にあるので、速やかに
温度上昇し、やがて沸騰を開始する。
First, when the engine is stopped, the entire refrigerant circulation system is filled with liquid phase refrigerant (eg, ethylene glycol aqueous solution), and some liquid phase refrigerant remains in the reservoir tank 23. When the engine is started in this state, since the refrigerant in the water jacket 2 is in an uradome state, its temperature quickly rises and eventually begins to boil.

沸騰が始まると、発生蒸気圧によって系内の圧力が高ま
り、コンデンサ3のロアタンク18からリザーバタンク
23に余剰冷媒が徐々(こ押し出されて、ウォータジャ
ケット2の上部ならびにコンデンサ3の上部に気相冷媒
領域が拡大して行く。冷媒供給ポンプ4は、ウォータジ
ャケット2内の冷媒液面が液面スイッチ110レベル以
下tこ低下すると液面スイッチtttこ連動してON作
動し、コンデンサ3からウォータジャケット2へ液相冷
媒を間欠的に補給する。この結果、ウォータジャケット
2内の冷媒液面は常に所定レベル近傍lこ維持される。
When boiling begins, the pressure in the system increases due to the generated vapor pressure, and excess refrigerant is gradually pushed out from the lower tank 18 of the condenser 3 to the reservoir tank 23, causing vapor phase refrigerant to flow into the upper part of the water jacket 2 and the upper part of the condenser 3. When the refrigerant liquid level in the water jacket 2 falls below the level of the liquid level switch 110, the refrigerant supply pump 4 is turned on in conjunction with the liquid level switch ttt, and the refrigerant supply pump 4 is turned ON in conjunction with the liquid level switch ttt. As a result, the liquid level of the refrigerant in the water jacket 2 is always maintained near a predetermined level.

またコンデンサ3の上部に気相冷媒領緘が拡大するに従
ってコンデンサ3の放熱能力が増大するので、この放熱
能力と機関発熱量とが平衡した位置にコンデンサ3の液
面位置が定まり、以後は機関の負荷や車両走行風等に応
じてコンデンサ3の液面位置が自然に上下動しつつ系内
温度を略一定に保つ。冷却ファン19は、ロアタンク1
8内の冷媒温度が高まると作動開始し、コンデンサ3を
強制冷却する。
In addition, as the vapor phase refrigerant range expands above the condenser 3, the heat dissipation capacity of the condenser 3 increases, so the liquid level position of the condenser 3 is determined at a position where this heat dissipation capacity and the engine heat generation amount are balanced, and from then on the engine The liquid level in the capacitor 3 naturally moves up and down depending on the load on the system, the wind in which the vehicle is running, etc., while keeping the temperature within the system substantially constant. The cooling fan 19 is connected to the lower tank 1
When the temperature of the refrigerant in 8 rises, it starts operating and forcibly cools the condenser 3.

コンデンサ3の最大放熱能力は、機関発熱量を下層るこ
とのないように設定さ虹ているため、ロアタフ18とリ
ザーバタンク23とが常時連通していても蒸気の流出を
生じることはないが、系内?こ不凝縮気体である空気が
侵入していると、コンデンサ3の放熱能力が低下するこ
とがある。この場合、空気は冷媒蒸気に押されてコンデ
ンサ3の下方(こ滞留する傾向にあるから、コンデンサ
3の放熱能力の低下によりコンデンサ3内の冷媒液面が
下がったときに、補助冷媒通路25を通してリザーバタ
ンク23に押し出され、つまり自然に排出される。
The maximum heat dissipation capacity of the condenser 3 is set so as not to lower the engine heat generation value, so even if the lower tough 18 and the reservoir tank 23 are in constant communication, steam will not leak out. Within the system? If air, which is a non-condensable gas, enters, the heat dissipation ability of the condenser 3 may be reduced. In this case, air is pushed by the refrigerant vapor and tends to stay below the condenser 3, so when the refrigerant liquid level in the condenser 3 drops due to a decrease in the heat dissipation capacity of the condenser 3, it passes through the auxiliary refrigerant passage 25. It is pushed out to the reservoir tank 23, that is, it is naturally discharged.

尚、空気とともに若干の冷媒蒸気が流出するが。Note that some refrigerant vapor flows out along with the air.

これはリザーバタンク23内で凝縮して回収される。This condenses in the reservoir tank 23 and is recovered.

またロアタンク18の冷媒取出口18 aは補助冷媒通
路25の接続部より下方に位置するので、冷媒供給ポン
プ4に空気が吸い込まれる虞れはない。
Furthermore, since the refrigerant outlet 18a of the lower tank 18 is located below the connection part of the auxiliary refrigerant passage 25, there is no risk of air being sucked into the refrigerant supply pump 4.

冷媒循環系内で上記のような冷媒の沸騰・凝縮が繰り返
されると、コンデンサ3で凝縮される冷媒が殆ど純水に
近いものであることから、系内で不凍液成分の偏在を生
じる虞れがあるが、上記実施例では、冷媒混合用通路2
2を介してウォータジャケット2からロアタンク18に
適当量の液相冷媒が戻されるので、不凍液成分の均一化
が図れ、不凍液成分の偏在による沸点の変動を防止でき
る。
If boiling and condensation of the refrigerant as described above is repeated in the refrigerant circulation system, since the refrigerant condensed in the condenser 3 is almost pure water, there is a risk of uneven distribution of antifreeze components in the system. However, in the above embodiment, the refrigerant mixing passage 2
Since an appropriate amount of liquid phase refrigerant is returned from the water jacket 2 to the lower tank 18 via the water jacket 2, the antifreeze components can be made uniform, and fluctuations in the boiling point due to uneven distribution of the antifreeze components can be prevented.

また機関停止後は、系内の温度低下による圧力低下に伴
って、リザーバタンクnから系内に液相冷媒が移動し、
最終的には系内全体が液相冷媒で満たされた状態となっ
て停止中の空気の侵入が防止される。尚、上述のように
不凍液成分の偏在が防止されるので、敲寒地においても
コンデンサ3等の凍結の鷹れはない。
In addition, after the engine stops, the liquid phase refrigerant moves from the reservoir tank n into the system as the pressure decreases due to the temperature drop in the system.
Eventually, the entire system is filled with liquid phase refrigerant, preventing air from entering during the stoppage. As described above, since the antifreeze components are prevented from being unevenly distributed, the condenser 3 and the like do not freeze even in very cold regions.

発明の効果 以上の説明で明らかなようζこ、この発明に係る内燃機
関の沸騰冷却装置によれば、系内tこ何らかの原因で侵
入した空気を自動的に排出でき、冷媒供給ポンプにより
強制的に空気排出を行う場合のような多数の電磁弁や複
雑な制御が不要である。
Effects of the Invention As is clear from the above explanation, according to the boiling cooling device for an internal combustion engine according to the present invention, air that has entered the system for some reason can be automatically discharged, and the refrigerant supply pump can forcefully discharge the air that has entered the system for some reason. There is no need for numerous solenoid valves or complicated controls, which are required when discharging air.

そして、冷媒供給ポンプおよび冷却ファンが液面スイッ
チおよび温度スイッチに夫々単純に連動した構成である
から、複雑な制御回路を用いない極めて簡単な構成でも
って、冷媒の沸騰・凝縮サイクルを利用した冷却効率や
温度の均−性等に優れた冷却を実現できる。
Since the refrigerant supply pump and cooling fan are simply linked to the liquid level switch and temperature switch, the cooling system uses the boiling and condensing cycle of the refrigerant with an extremely simple configuration that does not require complicated control circuits. Cooling with excellent efficiency and temperature uniformity can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成説明図、第2図
は従来の沸騰冷却装置の一例を示す構成説明図である。 1・・・内燃機関、2・・・ウォータジャケット、3・
・・コンデンサ、4・・・冷媒供給ポンプ、11・・・
液面スイッチ、18・・・ロアタンク、18a・・・冷
媒取出口、19・・・冷却ファン、20・・・温度スイ
ッチ、22・・・冷媒混合用通路、23・・・リザーバ
タンク、25・・・補助冷媒通路。
FIG. 1 is a structural explanatory diagram showing one embodiment of the present invention, and FIG. 2 is a structural explanatory diagram showing an example of a conventional evaporative cooling device. 1... Internal combustion engine, 2... Water jacket, 3...
...Condenser, 4...Refrigerant supply pump, 11...
Liquid level switch, 18... Lower tank, 18a... Refrigerant outlet, 19... Cooling fan, 20... Temperature switch, 22... Refrigerant mixing passage, 23... Reservoir tank, 25... ...Auxiliary refrigerant passage.

Claims (1)

【特許請求の範囲】[Claims] (1)液面スイッチにより規定される所定レベルまで液
相冷媒が貯留されるウォータジャケットと、このウォー
タジャケットで発生した冷媒蒸気が導入され、かつ下部
のロアタンクに凝縮した液相冷媒が貯留されるコンデン
サと、上記液面スイッチに連動して作動し、上記ロアタ
ンク底部の冷媒取出口から取り出した液相冷媒を上記ウ
ォータジャケットへ補給する冷媒供給ポンプと、上記ウ
ォータジャケット、コンデンサおよび冷媒供給ポンプか
らなる密閉した冷媒循環系に対し、その外部に設けられ
た大気開放のリザーバタンクと、一端が上記リザーバタ
ンクの下部に、かつ他端が上記ロアタンクの冷媒取出口
より上部に夫々接続された補助冷媒通路と、上記コンデ
ンサに臨設され、かつロアタンクに設けた温度スイッチ
に連動して作動する冷却ファンとを備えてなる内燃機関
の沸騰冷却装置。
(1) A water jacket in which liquid refrigerant is stored up to a predetermined level determined by a liquid level switch, the refrigerant vapor generated in this water jacket is introduced, and the condensed liquid refrigerant is stored in the lower tank at the bottom. Consisting of a condenser, a refrigerant supply pump that operates in conjunction with the liquid level switch and replenishes the water jacket with liquid phase refrigerant taken out from the refrigerant outlet at the bottom of the lower tank, the water jacket, the condenser, and the refrigerant supply pump. A reservoir tank that is open to the atmosphere and is provided outside the sealed refrigerant circulation system, and an auxiliary refrigerant passage that has one end connected to the lower part of the reservoir tank and the other end connected to the upper part of the refrigerant outlet of the lower tank. and a cooling fan installed next to the condenser and operated in conjunction with a temperature switch provided in the lower tank.
JP14781485A 1985-07-05 1985-07-05 Evaporative cooling apparatus of internal-combustion engine Pending JPS6210415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14781485A JPS6210415A (en) 1985-07-05 1985-07-05 Evaporative cooling apparatus of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14781485A JPS6210415A (en) 1985-07-05 1985-07-05 Evaporative cooling apparatus of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6210415A true JPS6210415A (en) 1987-01-19

Family

ID=15438823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14781485A Pending JPS6210415A (en) 1985-07-05 1985-07-05 Evaporative cooling apparatus of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6210415A (en)

Similar Documents

Publication Publication Date Title
JPS6210414A (en) Evaporative cooling apparatus of internal-combustion engine
JPH0580565B2 (en)
JPS611818A (en) Boiling and cooling apparatus for engine
JPS62240417A (en) Evaporative cooling device for internal combustion engine
JPS62162716A (en) Evaporative cooling device for internal combustion engine
JPS6210415A (en) Evaporative cooling apparatus of internal-combustion engine
JPS6260916A (en) Evaporative cooling device for internal combustion engine
JPH032670Y2 (en)
JPH0223781Y2 (en)
JP2551982Y2 (en) Boiling cooling system for internal combustion engine
JPH0248661Y2 (en)
JPH034726B2 (en)
JPH0580564B2 (en)
JP2551983Y2 (en) Boiling cooling system for internal combustion engine
JPS63134811A (en) Cooling device of internal combustion engine
JPS6287606A (en) Evaporative cooling device
JPH0519546Y2 (en)
JPH0248660Y2 (en)
JPH0248659Y2 (en)
JPH0410331Y2 (en)
JPH0324826Y2 (en)
JPS62131912A (en) Evaporative cooling device for internal combustion engine
JPH0713459B2 (en) Boiling cooling device for internal combustion engine
JPS62271923A (en) Evaporative cooling apparatus for internal combustion engine
JPS6394016A (en) Evaporative cooling apparatus for internal combustion engine