JPS614815A - Boiling/cooling device for engine - Google Patents

Boiling/cooling device for engine

Info

Publication number
JPS614815A
JPS614815A JP12615284A JP12615284A JPS614815A JP S614815 A JPS614815 A JP S614815A JP 12615284 A JP12615284 A JP 12615284A JP 12615284 A JP12615284 A JP 12615284A JP S614815 A JPS614815 A JP S614815A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
condenser
engine
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12615284A
Other languages
Japanese (ja)
Inventor
Yoshimasa Hayashi
義正 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12615284A priority Critical patent/JPS614815A/en
Publication of JPS614815A publication Critical patent/JPS614815A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2285Closed cycles with condenser and feed pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To ensure excellent radiating action of a capacitor, by a method wherein, in a device which effects cooling of an engine by means of the evaporated latent heat of a cooling solution, a lower tank, storing a liquefied coolant therein, is formed to the lower part of a capacitor, and a steam passage is connected to the tank. CONSTITUTION:In a titled device, a capacitor 26 is located so that a core part 27 is somewhat inclined, and a number of tubes 28, through which coolant steam is guided to the core part 27, are formed in a manner that a passage 31 (forming a liquid collecting part) on the back side 30 of the core is somewhat increased in a cross section. A lower tank 32, in which a liquefied coolant, radiated and condensed by each tube 28, is temporarily stored, is formed to the lower part of a capacitor 26, and a storing part 33 is connected to a water jacket 2 of an engine body 1 through a coolant passage 12 provided with a 3-way electromagnetic valve 34 and a feed pump 13. Further, a steam passage 35 is connected to the upper part of the water jacket 2, and the passage 35 is formed in a manner that it falls halfway therealong, and the other end is connected to the lower tank 32.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷u1液の気化潜熱を利用したエンジンの
沸i冷1.11 jl・冒こ)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to engine cooling using the latent heat of vaporization of cold liquid.

(従来の技術) 冷却液をつ71−クジVケット内にてNli tilt
!蒸発させ、その気化潜熱によりエンジンの冷却を効率
良く行なうようにした8111P冷却装胃が本出願人よ
り提案されている(特願昭58−145467号等)こ
れを第7図にS11づいて説明すると、1はエンジン本
体、2 +Lシリンダブロック3 a3よびシリンダヘ
ッド4゛にかiJ T形成されたつl−タジャヶッ]へ
、5はウォータジャケット2の上部に所定の空間部を残
してf51:Tlされた冷却液(冷媒)である。
(Prior art) Nli tilt the coolant in the 71-kuji V-ket.
! The present applicant has proposed an 8111P cooling system in which the latent heat of vaporization is used to efficiently cool the engine (Japanese Patent Application No. 145467/1983), which will be explained with reference to S11 in Fig. 7. Then, 1 is attached to the engine body, 2 +L cylinder block 3a3 and the cylinder head 4 are attached to the l-taja, and 5 is attached to the upper part of the water jacket 2, leaving a predetermined space at f51:Tl. It is a cooling liquid (refrigerant).

この冷却液!5は、エンジンの熱を吸収して所定の温度
に達づイ)とtJc騰し始め、気化潜熱を奪いながら蒸
発する6、−で−して、この蒸発冷却液(蒸気)はつを
−クジ1Tクツ1〜2の上部に接続する蒸気通路6を介
して熱交換用のコンデンサ7に導かれる。
This coolant! 5 absorbs the heat of the engine and reaches a predetermined temperature (a), and tJc begins to rise, and evaporates while taking away the latent heat of vaporization. The steam is led to a heat exchange condenser 7 through a steam passage 6 connected to the upper part of the shoes 1 and 2.

コンデンサ7には冷?Jl風を送る冷却ファン(電動フ
ァン)8が取付けられ、その風量に応じて蒸発冷却液は
外ΔISに放熱し冷却され、もとの液体に凝縮された後
、ロワタンク9に貯溜される。
Is there cold in condenser 7? A cooling fan (electric fan) 8 that sends Jl air is attached, and the evaporative cooling liquid is cooled by radiating heat to the outside ΔIS according to the air volume, and after being condensed to the original liquid, it is stored in the lower tank 9.

つを−タジャケット2には液面センサ10が設置され、
冷却液5の蒸発に伴い液面がある稈麿下がる′と、制御
回路11によ□リウォータジャケット2のもどり通路(
冷媒通路)12に介装した供給ポンプ13が駆動される
。このポンプ13により、ロワタンク9内の冷却液5を
電磁弁25を介してウォータジャケット2へと循環する
ようにして閉回路の冷却系を溝成する。
A liquid level sensor 10 is installed in the jacket 2,
When the liquid level drops as the coolant 5 evaporates, the control circuit 11 causes the return passage of the water jacket 2 (
A supply pump 13 installed in the refrigerant passage (12) is driven. The pump 13 circulates the coolant 5 in the lower tank 9 to the water jacket 2 via the electromagnetic valve 25 to form a closed circuit cooling system.

また、制御回路11は、冷却液温を検出する温度センサ
14ど、エンジン回転、アクセル開度、燃利供給最等を
検出する図示しない各センサからの信号に基づいて、前
記冷却ファン8を駆動制御し、エンジンの冷却温度を運
転条件に応じて最適値に設定する。つまり、冷却系内は
閉回路となっているため、系内の圧力を変化させること
により、冷却液の沸点を上下さけることができる。
The control circuit 11 also drives the cooling fan 8 based on signals from various sensors (not shown) that detect engine rotation, accelerator opening, fuel supply, etc., such as a temperature sensor 14 that detects the coolant temperature. control and set the engine cooling temperature to the optimum value according to operating conditions. In other words, since the inside of the cooling system is a closed circuit, the boiling point of the cooling liquid can be lowered or lowered by changing the pressure inside the system.

例えば、エンジンの発熱量が比較的少ない低負伺時には
、冷却ファン8の風量を減らしてコンデンサ7での放熱
、凝縮をある程度抑制し、冷却系内の圧力を大気圧以上
に高めることにより、冷却液5の沸点をnlめる。これ
により、エンジンの冷却液温度を高めに維持して(例え
ば120℃)、冷却損失の軽減を図る。
For example, when the engine is under low load, with relatively little heat generation, the air volume of the cooling fan 8 is reduced to suppress the heat dissipation and condensation in the condenser 7 to some extent, and the pressure within the cooling system is increased to above atmospheric pressure. Reduce the boiling point of liquid 5 by nl. This maintains the engine coolant temperature at a high level (for example, 120° C.) to reduce cooling loss.

これに対して、Jンジンの発熱量が多い高負荷時には、
冷却−ノノ・ン8の風量を増やしてコンデンサ7での放
熱、凝縮を促進し、すると系内の圧力が大気圧以下どな
り冷に1液5の沸点が下げられ、エンジンの冷却液温度
を低めに保ち(例えば90℃)、良姓な冷却状態を確保
する。
On the other hand, during high loads when the engine generates a lot of heat,
Cooling - Increase the air volume of NONO 8 to promote heat dissipation and condensation in condenser 7, and the pressure in the system will drop below atmospheric pressure, lowering the boiling point of liquid 5 and lowering the engine coolant temperature. (for example, 90°C) to ensure good cooling conditions.

冷却液5の?Jl: E気化潜熱は極めて大きく、また
蒸発冷却液によるコンデンサ7での放熱作用は充分に高
いことかぜも、少量の冷却液5でエンジンを効率良く冷
却リ−ることができると共に、その冷却温度を運転条イ
′1に応じて応答良く制御することが可能であり、した
がって優れた冷却機能が得られるのである。
Coolant 5? Jl: E The latent heat of vaporization is extremely large, and the heat dissipation effect of the evaporative coolant in the condenser 7 is sufficiently high.Even in cold weather, the engine can be efficiently cooled with a small amount of coolant 5, and its cooling temperature can be reduced. can be controlled responsively according to the operating condition A'1, and therefore an excellent cooling function can be obtained.

他方、このJ、うな装置では、エンジンを停止して冷却
液の濃+Etが常温近くまで下がった場合、それまで蒸
発していた冷却液が液化して系内の圧力がかなり低下し
、強い負圧を生じかねない。
On the other hand, in this J-type system, when the engine is stopped and the coolant concentration +Et drops to near room temperature, the coolant that had evaporated until then liquefies and the pressure in the system drops considerably, causing a strong negative impact. may cause pressure.

そのため、補助通路15.16J5よび電磁弁17.1
8を介してつを一タジャケッ1へ2に接続す圧との差圧
を利用して補助タンク19に貯え!、:補填用の冷却液
を、液面センサ20の検出レベルまで導入させる。
Therefore, the auxiliary passage 15.16J5 and the solenoid valve 17.1
It is stored in the auxiliary tank 19 using the pressure difference between the pressure connected to the jacket 1 and 2 through 8! , : The supplementary coolant is introduced to the detection level of the liquid level sensor 20.

また、系内圧力の低下により外部からウォータジャケッ
ト2に空気が入り込んだ場合、これを排除づるように、
前記蒸気通路6の上部に空気通路21と電磁弁22が設
けられ、例えばエンジン始動初期等に空気通路21、補
助通路16を聞くと共に供給ポンプ13を駆動し、補助
タンク19がら冷却液を強制的に送り込んで、余分の空
気をJJI出しつつ冷却液面を所定のレベルに合わせる
。この空気は補助タンク19の上部空気層に導かれ、フ
ィルタ23を介して外部に排出される。
In addition, if air enters the water jacket 2 from the outside due to a drop in the system pressure, it can be eliminated.
An air passage 21 and a solenoid valve 22 are provided in the upper part of the steam passage 6. For example, at the beginning of engine startup, the air passage 21 and the auxiliary passage 16 are monitored and the supply pump 13 is driven to forcibly drain the cooling liquid from the auxiliary tank 19. , and adjust the coolant level to the specified level while blowing out excess air. This air is led to the upper air layer of the auxiliary tank 19 and discharged to the outside via the filter 23.

そして、この状態において、エンジンの始動により冷k
I液の温度が上昇し所定の温度に達すると、冷却液は沸
騰、焦光を開始づるが、このどさ液面センサ10.2/
lの検出レベルに応じて補助通路15を開き、冷u1液
を大気圧下で沸騰、蒸発させ、その蒸発圧力によって補
填された分の冷却液を補助タンク19へど押し戻J′。
In this state, when the engine starts, the cold
When the temperature of the I liquid rises and reaches a predetermined temperature, the coolant starts to boil and focus, but the liquid level sensor 10.2/
The auxiliary passage 15 is opened in accordance with the detection level of l, the cold u1 liquid is boiled and evaporated under atmospheric pressure, and the evaporation pressure pushes the supplemented amount of cooling liquid back into the auxiliary tank 19 J'.

この場合、供給ポンプ13は液面センサ1oに応じて駆
動ざtl、ジャタ゛ット2内の液面を適正レベルに保つ
ようにロワタンク9がら冷却液を送り、ロワタンク9内
の液面が所定レベルになるど停止される。
In this case, the supply pump 13 is driven according to the liquid level sensor 1o, and the cooling liquid is sent from the lower tank 9 to maintain the liquid level in the jacket 2 at an appropriate level, so that the liquid level in the lower tank 9 reaches a predetermined level. It will be stopped.

これにより、蒸発圧力を大気圧に保ちながら、系内の冷
118& 6・適止mに復帰ならびに設定するのである
。したがって、系内に空気が入り込むようなことは防■
され、コンデンサ7での熱交換効率が良好に維持される
As a result, while maintaining the evaporation pressure at atmospheric pressure, the system is returned to and set to the appropriate cooling temperature of 118 & 6 m. Therefore, it is possible to prevent air from entering the system.
Therefore, the heat exchange efficiency in the condenser 7 is maintained well.

このようにIJ”C、常に沸騰冷却の的確な冷却作用が
得られ、ぞの高い冷却性能が維持されると共に、前記冷
却ノI・ン8のJ!l吊に応じて冷却液の沸点圧力を大
気/E以下に任意に下げることができ、前述したように
1−ンジンの高負荷時等に冷却温度を100℃以下(水
を用いた場合)に設定りることが可能となっている。
In this way, IJ"C can always obtain the accurate cooling effect of boiling cooling, maintain high cooling performance, and adjust the boiling point pressure of the coolant according to the J! It is possible to arbitrarily lower the cooling temperature to below atmospheric/E, and as mentioned above, it is possible to set the cooling temperature to below 100°C (when using water) when the engine is under high load. .

なお、上記装置では、少量の冷却液でエンジンの冷却を
行なえるから、ウォータジャケット2はもちろん、コン
デンサ7、供給ポンプ13等も小さくてすみ、冷却系の
小型化、軽小化を図れる。
In addition, in the above device, since the engine can be cooled with a small amount of coolant, not only the water jacket 2 but also the condenser 7, the supply pump 13, etc. can be made small, and the cooling system can be made smaller and lighter.

また、エンジンの暖機時間を短縮することが可能になる
と共に、コンデンサ7での放熱効率が良好なことから、
冷却ファン8の駆動動力を低減でき、騒音ならびに燃費
の改善が図れるという利点がある。
In addition, since it is possible to shorten the warm-up time of the engine and the heat dissipation efficiency in the condenser 7 is good,
This has the advantage that the driving power of the cooling fan 8 can be reduced, and noise and fuel efficiency can be improved.

(発明が解決しようとする問題点) しかしながら、このような冷却装置にあっては、つA−
タジャケット2内で沸騰した蒸気が、そのまま蒸気通路
6を介してコンデンサ7に流れ込む構造となっていたた
め、その蒸気に伴ってまだ蒸発していない冷却液がジャ
ケット2から流出し、コンデンサ7に流れ込むことがあ
る。
(Problems to be solved by the invention) However, in such a cooling device, there are two problems.
Since the structure was such that the steam boiled in the jacket 2 directly flows into the condenser 7 via the steam passage 6, the coolant that has not yet evaporated flows out of the jacket 2 along with the steam and flows into the condenser 7. Sometimes.

例えば、エンジンが高負荷で運転されている場合には、
沸騰が活発に行なわれることから、沸騰蒸気と共に冷ム
11液が流出しやすく、]コンデンサへと流れ込ん(・
シまうのである。
For example, when the engine is operating under high load,
Since boiling occurs actively, the cold 11 liquid is likely to flow out together with the boiling steam and flow into the condenser.
It will happen.

コンデンサi Fは、蒸気による放熱を行なうので、熱
伝達Cが^く放熱効率が極めて良好であるが、これに液
体の冷却液が入り込むと、液体により熱伝達率が悪化す
ると共に、蒸気の放熱面積が減少するよ)になり、その
ため放熱効率が茗しく低下するという問題を生じていた
Since the condenser i F dissipates heat through steam, it has extremely good heat transfer C^ and heat dissipation efficiency.However, when a liquid coolant enters the condenser, the heat transfer rate deteriorates due to the liquid, and the heat dissipation efficiency of the vapor decreases. This caused the problem that the heat dissipation efficiency deteriorated considerably.

この発明1、■、蒸発前の冷却液がコンデンサに流れ込
まない、J、−)にして、上記問題点の解決を図ること
を目的どしている。
The purpose of this invention is to solve the above-mentioned problems by (1), (1) the coolant before evaporation does not flow into the condenser, (J, -).

(問題点を解決りるための手段) この発明は、大部分を液相冷媒で満たしたエンジンウォ
ータジャケットと内部を気相状に保ったコンデンサとを
、上部の冷媒蒸気を流す蒸気通路とコンデンサ゛からの
液化冷媒を供給ポンプを介して戻す冷媒通路とで連通し
て冷媒が循環づる閉回路を形成し、ニー1ンデンサに強
制冷却風を供給する冷却ファンを設けると共に、液相冷
媒を貯溜した補助タンクを弁手段を介して前記閉回路に
接続したエンジンの沸騰冷却装置において、前記コンデ
ンサの下部に液化冷媒を一時貯溜するロワタンクを形成
し、このロワタンクに冷媒の貯溜液面よりも上方に前記
蒸気通路を接続する。
(Means for Solving the Problems) The present invention connects an engine water jacket that is mostly filled with liquid phase refrigerant and a condenser whose interior is kept in a gas phase to a vapor passage through which refrigerant vapor flows in the upper part and a condenser. A closed circuit is formed in which the refrigerant circulates by communicating with the refrigerant passage that returns the liquefied refrigerant from the pump through the supply pump, and a cooling fan is installed to supply forced cooling air to the knee 1 Densor, and the liquid phase refrigerant is stored. In an engine boiling cooling system in which an auxiliary tank is connected to the closed circuit through a valve means, a lower tank for temporarily storing liquefied refrigerant is formed below the condenser, and the lower tank is provided with the liquefied refrigerant above the refrigerant storage level. Connect the steam passage.

(作用) したがって、ウォータジャケラ1〜からの冷媒蒸気は蒸
気通路を介していったんロワタンクに導かれ、ここから
上昇してコンデンサへと流入づると共に、この蒸気に伴
って蒸発前の冷媒がウォータジャケットから蒸気通路に
流出しても、]ンデン舎す側に入り込むことはなく、ロ
ワタンクに直接流入するのである。
(Function) Therefore, the refrigerant vapor from the water jackets 1 to 1 is once led to the lower tank via the vapor passage, rises from there and flows into the condenser, and along with this vapor, the refrigerant before evaporation flows into the water jacket. Even if it leaks into the steam passage, it does not enter the steam room, but flows directly into the lower tank.

(実施例) 第1図は本発明の実施例を示す構成断面図で、1はエン
ジン本体、2はウォータジャケラ1〜.26はコンデン
サを示す。
(Embodiment) FIG. 1 is a cross-sectional view showing an embodiment of the present invention, in which 1 is an engine body, 2 is a water jacket 1 to . 26 indicates a capacitor.

コンデンサ26は、第2図、第3図に示すようにコア部
27に冷媒蒸気せ導く多数のチューブ28が配列され、
各チューブ28の間に放熱フ7・ン29が取付Gノられ
る。
As shown in FIGS. 2 and 3, the condenser 26 has a large number of tubes 28 arranged in a core portion 27 for guiding refrigerant vapor.
A heat dissipation fan 7/29 is installed between each tube 28.

コンデン+J 26はコア面がある程度傾斜するように
設置され、各チューブ28は第4図に示すようにコア背
面側30の通路(集液部となる)31の断面がいくらか
大きくなるように形成される。
The condenser +J 26 is installed so that the core surface is inclined to some extent, and each tube 28 is formed so that the cross section of the passage 31 (which becomes the liquid collection part) on the back side of the core is somewhat larger, as shown in Fig. 4. Ru.

各チューブ28Iよ、この場合第5図に示すように集液
部30の幅が大きい断面形状もしくは第6図に示すよう
に全体の幅をいくらか大きくするように形成して6良い
In this case, each tube 28I may be formed to have a cross-sectional shape in which the width of the liquid collection portion 30 is large as shown in FIG. 5, or the overall width may be somewhat increased as shown in FIG.

一方、コンノ“ンリ26の下部には各チューブ28にて
放熱、凝縮された液化冷媒を一時貯溜するロワタンク3
2が形成され、容積の大きい貯溜部33がロワタンク3
2の一端に設けられる。
On the other hand, in the lower part of the refrigerant 26, a lower tank 3 temporarily stores the liquefied refrigerant that has been radiated and condensed through each tube 28.
2 is formed, and the storage portion 33 with a large volume is the lower tank 3.
provided at one end of 2.

この貯溜部33が、途中に電磁弁(三方電磁弁)34、
供給ポンプ13を介装した冷媒通路12を介してつA−
タジレケット2に接続される。
This reservoir 33 has a solenoid valve (three-way solenoid valve) 34,
A-
Connected to Tajireket 2.

そして、つA−タジャケット2の上部に蒸気通路35が
接続りるが、この蒸気通路35は途中で立下がるように
形成され、その他端が前記ロワタンク32の側面に接続
される。
A steam passage 35 is connected to the upper part of the tank jacket 2, but this steam passage 35 is formed so as to fall down in the middle, and the other end is connected to the side surface of the lower tank 32.

蒸気通路35は、この場合ロワタンク32の中央部でロ
ワタンク32の貯溜部33にりも上方つまりロワタンク
32に貯溜される冷媒液面よりも上方となる位置に接続
される。
In this case, the steam passage 35 is connected to a central portion of the lower tank 32 above the storage portion 33 of the lower tank 32, that is, above the refrigerant liquid level stored in the lower tank 32.

蒸気通路35とロワタンク32との接続部36は、その
通路断面がロワタンク32に治っである程度長くなるよ
うに偏平ダクト状に形成される。
A connecting portion 36 between the steam passage 35 and the lower tank 32 is formed in the shape of a flat duct so that the cross section of the passage extends to a certain extent within the lower tank 32.

また、コンデンサ26の上部に各チューブ28と連通す
る室37が形成され、この室37は空気抜き川の連通路
38を介してウォータシトウッド2近傍の蒸気通路35
と接続される。
Further, a chamber 37 is formed in the upper part of the condenser 26 and communicates with each tube 28, and this chamber 37 is connected to a steam passage 37 near the water seat wood 2 via a communication passage 38 of an air vent river.
connected to.

なお、その伯の構成ならびに機能については第7図と同
様であり、同一符号を付して詳しい説明は省略する。
Note that the configuration and function of the part are the same as those in FIG. 7, so the same reference numerals are given and detailed explanation will be omitted.

このように構成したため、ウォータジャケット2内で沸
騰した冷媒5の蒸気は、蒸気通路35を介してロワタン
ク32に導かれるが、この蒸気は軽いため、ロワタンク
32に入ると上昇してコンデンサ26のチューブ28内
に流入し、ここで放熱、凝縮される。
With this configuration, the vapor of the refrigerant 5 boiled in the water jacket 2 is guided to the lower tank 32 via the vapor passage 35, but since this vapor is light, it rises when it enters the lower tank 32 and flows into the tube of the condenser 26. 28, where the heat is radiated and condensed.

そして、液化された冷媒は、コンデンサ26が傾斜して
HQ fiFlされているため、チューブ28内の集液
部31を通−)でロワタンク32へと滴下する。
Since the condenser 26 is tilted and HQ fiFl is applied, the liquefied refrigerant drips into the lower tank 32 through the liquid collecting section 31 in the tube 28 (-).

他方、つA−タジトり一ット2内での冷媒の沸騰および
その蒸気の流れに伴ってまだ蒸発してない冷媒が蒸気通
路35に流出することがあるが、この液状の冷奴番ま蒸
気通路35からロワタンク32へと流入し、コンデンサ
26に入り込むようなことはない。
On the other hand, due to the boiling of the refrigerant in the tank 2 and the flow of its vapor, the refrigerant that has not yet evaporated may flow into the steam passage 35. It does not flow into the lower tank 32 from the passage 35 and enter the condenser 26.

特に、エンジンの高負荷運転時には、沸騰が活発となり
液状冷媒が流出しやすいが、このようなときでもコンー
I゛ンサ26への流入は確実に防止される。
In particular, when the engine is operated under high load, boiling becomes active and the liquid refrigerant tends to flow out, but even at such times, it is reliably prevented from flowing into the condenser 26.

このようにし′(、コンデンサ26での放熱作用を良好
にFIL )% FJることができ、さらにはコンデン
サ26にて凝縮された液状冷媒がチューブ2B内の1か
所を過つ′C滴下するため、コンデンサ26の一層高い
放熱効率が確保されるのである。この結果、沸騰冷+、
II装置として常に安定で優れた冷却性能を発揮するこ
とかできる。
In this way, the heat dissipation effect in the condenser 26 can be improved, and furthermore, the liquid refrigerant condensed in the condenser 26 passes through one place in the tube 2B and drips. Therefore, even higher heat dissipation efficiency of the capacitor 26 is ensured. As a result, boiling cold +
As a II device, it can always exhibit stable and excellent cooling performance.

なお、エンジン停止中には系内に補助タンク19からの
冷媒を導入するが、コンデンサ26の上部に空気抜き用
の連通路38を形成しているため、]ンデンザ26内に
空気が入り込むことがあっても、蒸気通路35、空気通
路21を介して確実に排出覆ることができる。
Note that while the engine is stopped, refrigerant is introduced into the system from the auxiliary tank 19, but since a communication passage 38 for air venting is formed above the condenser 26, air may enter the condenser 26. However, the steam can be reliably discharged through the steam passage 35 and the air passage 21.

(発明の効果) ウォータジャケットから液状冷媒が沸騰蒸気に4伴って
流出してもコンデンサに入り込むことがなく、コンアン
1ノでの良好な放熱作用を保って高い冷却性能を維持す
ることができる。
(Effects of the Invention) Even if liquid refrigerant flows out from the water jacket along with boiling steam, it does not enter the condenser, and good heat dissipation in the condenser can be maintained to maintain high cooling performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示?j構成断面図、第2図、
第3図はそのコンデンサ部の立面図と側面断面図、第4
図は第3図のX−X線に沿う−)ンデンサチューブの断
面図、第5図、第6図は]ンテンザヂューブの他の実施
例を示づ一断面図、第7図は先願例の構成断面図である
。 2・・・つA−タジャケット、8・・・冷却ファン、1
1・・・制御回路、12・・・冷媒通路、13・・・供
給ポンプ、17・・・電磁弁、19・・・補助タンク、
26・・・コンデンサ、32・・・L】ワタンク、34
・・・電磁弁、35・・・蒸気通路、1 特許出願人   1」産自動車株式会社代理人 弁理士
 後 藤 政 喜!  。
FIG. 1 shows an embodiment of the present invention? jConstruction sectional view, Figure 2,
Figure 3 is an elevational view and side sectional view of the capacitor section, and Figure 4 is
The figure is a sectional view of the densifying tube taken along the line X-X in FIG. 3, FIGS. It is a configuration sectional view. 2... Two A-ta jackets, 8... Cooling fans, 1
DESCRIPTION OF SYMBOLS 1... Control circuit, 12... Refrigerant path, 13... Supply pump, 17... Solenoid valve, 19... Auxiliary tank,
26... Capacitor, 32... L] Watank, 34
...Solenoid valve, 35...Steam passage, 1 Patent applicant 1" San Jidosha Co., Ltd. Representative Patent attorney Masaki Goto! .

Claims (1)

【特許請求の範囲】[Claims] 大部分を液相冷媒で満たしたエンジンウォータジャケッ
トと内部を気相状に保ったコンデンサとを、上部の冷媒
蒸気を流す蒸気通路とコンデンサからの液化冷媒を供給
ポンプを介して戻す冷媒通路とで連通して冷媒が循環す
る閉回路を形成し、コンデンサに強制冷却風を供給する
冷却ファンを設けると共に、液相冷媒を貯溜した補助タ
ンクを弁手段を介して前記閉回路に接続したエンジンの
沸騰冷却装置において、前記コンデンサの下部に液化冷
媒を一時貯溜するロワタンクを形成し、このロワタンク
に冷媒の貯溜液面よりも上部に前記蒸気通路を接続した
ことを特徴とするエンジンの沸騰冷却装置。
The engine water jacket, which is mostly filled with liquid-phase refrigerant, and the condenser, which maintains the interior in a gas phase, are connected by a vapor passage in the upper part through which the refrigerant vapor flows, and a refrigerant passage, in which the liquefied refrigerant from the condenser is returned via a supply pump. A closed circuit in which refrigerant circulates is formed, and a cooling fan is provided to supply forced cooling air to the condenser, and an auxiliary tank storing liquid phase refrigerant is connected to the closed circuit via a valve means. A boiling cooling device for an engine, characterized in that a lower tank for temporarily storing liquefied refrigerant is formed below the condenser, and the vapor passage is connected to the lower tank above the level of the stored refrigerant.
JP12615284A 1984-06-19 1984-06-19 Boiling/cooling device for engine Pending JPS614815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12615284A JPS614815A (en) 1984-06-19 1984-06-19 Boiling/cooling device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12615284A JPS614815A (en) 1984-06-19 1984-06-19 Boiling/cooling device for engine

Publications (1)

Publication Number Publication Date
JPS614815A true JPS614815A (en) 1986-01-10

Family

ID=14927960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12615284A Pending JPS614815A (en) 1984-06-19 1984-06-19 Boiling/cooling device for engine

Country Status (1)

Country Link
JP (1) JPS614815A (en)

Similar Documents

Publication Publication Date Title
JPS60164614A (en) Boiling-cooling device for engine with supercharger
JPH0530965B2 (en)
JPS6210414A (en) Evaporative cooling apparatus of internal-combustion engine
JPS6143213A (en) Evaporative cooling device of internal-combustion engine
JPS62162716A (en) Evaporative cooling device for internal combustion engine
JPS614815A (en) Boiling/cooling device for engine
JPS6125910A (en) Boiling medium cooling device in engine
JP2751337B2 (en) Internal combustion engine cooling system
JPS6161908A (en) Evaporative cooling device of internal-combustion engine
JPH0113770Y2 (en)
JPS6116222A (en) Evaporative cooling device for engine
JPS6165010A (en) Evaporative-cooling device for engine
JPS6183434A (en) Condenser for evaporative cooling type engine
JPH0324827Y2 (en)
JPH0452430Y2 (en)
JPH0248664Y2 (en)
JPH0324825Y2 (en)
JPS618419A (en) Evaporating cooling device of internal-combustion engine
JPH0248659Y2 (en)
JPH0350259Y2 (en)
US3414051A (en) Heating and cooling system
JPH0324826Y2 (en)
JPH0519546Y2 (en)
JPH0580564B2 (en)
JPH0415932Y2 (en)