JP2751337B2 - Internal combustion engine cooling system - Google Patents

Internal combustion engine cooling system

Info

Publication number
JP2751337B2
JP2751337B2 JP1056778A JP5677889A JP2751337B2 JP 2751337 B2 JP2751337 B2 JP 2751337B2 JP 1056778 A JP1056778 A JP 1056778A JP 5677889 A JP5677889 A JP 5677889A JP 2751337 B2 JP2751337 B2 JP 2751337B2
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
refrigerant
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1056778A
Other languages
Japanese (ja)
Other versions
JPH02238117A (en
Inventor
正人 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1056778A priority Critical patent/JP2751337B2/en
Publication of JPH02238117A publication Critical patent/JPH02238117A/en
Application granted granted Critical
Publication of JP2751337B2 publication Critical patent/JP2751337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2214Condensers
    • F01P2003/2228Condensers of the upflow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2278Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、内燃機関の冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a cooling device for an internal combustion engine.

(従来の技術) 本発明に係わる従来技術としては、実開昭56−66018
号、実公昭59−30283号、特開昭60−190615号公報に記
載されたものがる。
(Prior Art) As a prior art relating to the present invention, there is Japanese Utility Model Application Laid-Open No. 56-66018.
And JP-A-59-30283 and JP-A-60-190615.

特開昭60−190615号公報に開示されるように、従来の
内燃機関の冷却装置は冷却水の流路をサーモスタツト弁
により切り換えることで内燃機関の冷却を制御してい
た。
As disclosed in Japanese Patent Application Laid-Open No. 60-190615, a conventional cooling device for an internal combustion engine controls the cooling of the internal combustion engine by switching the flow path of cooling water by a thermostat valve.

このサーモスタツト弁の一例は、実公昭59−30283号
公報に開示されるとおりである。この従来技術で明らか
なとおり、サーモスタツト弁は開弁時においてもその冷
却水連通路は非常に狭く、その通水抵抗はこの水系路全
体の約30%を占めている。従つて、必要通水量を確保す
るためにウオーターポンプの吐出容量を大きくする必要
があり、これによつてキヤビテーシヨンの発生の危険が
増加するといつた問題点を有している。
An example of the thermostat valve is as disclosed in Japanese Utility Model Publication No. 59-30283. As is apparent from the prior art, the cooling water communication passage of the thermostat valve is very narrow even when the valve is opened, and its water flow resistance occupies about 30% of the entire water system. Therefore, it is necessary to increase the discharge capacity of the water pump in order to secure the required water flow, which causes a problem that the risk of occurrence of cavitation increases.

(発明が解決しようとする課題) 元来このような通水抵抗の高いサーモスタツト弁を使
用せざるをえない原因は、ラジエターの構造にある。こ
のラジエターの従来技術の一例は、実開昭56−66018号
公報に開示されるとおりである。このラジエターの構造
によれば、ラジエター内のチユーブを流れる冷却水は、
ラジエターのフインの放熱作用によつて必ず冷却されて
しまう。
(Problems to be Solved by the Invention) The reason that such a thermostat valve having a high water flow resistance must be used originally is the structure of the radiator. An example of the prior art of the radiator is as disclosed in Japanese Utility Model Laid-Open No. 56-66018. According to the structure of the radiator, the cooling water flowing through the tube in the radiator is:
The radiator fins are always cooled by the heat radiation effect.

従つて、冷間始動時の暖機やオーバークール防止のた
めに、サーモスタツト弁により冷却水のラジエターへの
流れを制御する必要がある。
Therefore, it is necessary to control the flow of cooling water to the radiator by a thermostat valve in order to prevent warm-up and overcooling during cold start.

そこで本発明では、冷却水の流路中のサーモスタツト
弁を廃止することを、その技術的課題とする。
Therefore, in the present invention, an object of the present invention is to eliminate the thermostat valve in the cooling water flow path.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上述した技術的課題を解決するために講じた本発明の
技術的手段は、冷媒が封入され減圧された密封空間の下
部であり内燃機関の冷却水と接する蒸発部、該密封空間
の上部であり波形フインにより放熱する凝縮部、該凝縮
部の下方且つ前記蒸発部の上方にある冷媒溜まり、該冷
媒溜まりの底部と前記蒸発部を連通する給水管及び、該
給水管中に介装され冷却水温が設定温度未満のときには
閉状態にあり、冷却水温が設定温度以上のときに開状態
になる開閉弁から成るサーモサイフオン部と、前記蒸発
部と接する冷却水室と、該冷却水室と内燃機関冷却部と
を連通する連通管とから、当該内燃機関の冷却装置を構
成したことである。
(Means for Solving the Problems) The technical means of the present invention taken to solve the above-mentioned technical problems is that the refrigerant is filled in the lower part of the depressurized sealed space and is in contact with the cooling water of the internal combustion engine. Part, a condensing part which is the upper part of the sealed space and dissipates heat by the corrugated fin, a refrigerant pool below the condensing part and above the evaporating part, a water supply pipe communicating a bottom part of the refrigerant pool and the evaporating part, and A thermosiphon section comprising an on-off valve which is interposed in the water supply pipe and is closed when the cooling water temperature is lower than a set temperature and opened when the cooling water temperature is higher than the set temperature; and cooling water in contact with the evaporating section The cooling device for the internal combustion engine is constituted by the chamber, and a communication pipe communicating the cooling water chamber and the internal combustion engine cooling section.

(作用) 冷却水温が設定温度以上の時には、凝縮部及び冷媒溜
まりから開状態にある開閉弁及び給水管を通して蒸発部
に供給される液化冷媒が、蒸発部と接する冷却水室を流
れる冷却水の熱により気化されると同時にその気化熱に
より冷却水が冷却されて内燃機関冷却部へ供給され、冷
却水温が設定温度未満の時には、開閉弁が閉状態にあ
り、凝縮部により液化した冷媒は冷媒溜まりに溜まり、
蒸発部に供給されないため、蒸発部にて冷却水室の冷却
水との間で熱のやり取りが行われることなく、冷却水が
内燃機関冷却部へ供給される。これにより、従来のよう
に冷却水流路を切り換えることなく、開閉弁の開閉制御
により従来と同様に内燃機関の冷却装置の冷却能力が制
御される。
(Operation) When the cooling water temperature is equal to or higher than the set temperature, the liquefied refrigerant supplied to the evaporating section through the open / close valve and the water supply pipe from the condensing section and the refrigerant reservoir to the evaporating section flows through the cooling water flowing through the cooling water chamber in contact with the evaporating section. At the same time as the gas is vaporized by heat, the cooling water is cooled by the heat of vaporization and supplied to the internal combustion engine cooling unit.When the cooling water temperature is lower than the set temperature, the on-off valve is in a closed state, and the refrigerant liquefied by the condensing unit is a refrigerant. Accumulate in the pool,
Since the cooling water is not supplied to the evaporator, the cooling water is supplied to the internal combustion engine cooling unit without exchanging heat with the cooling water in the cooling water chamber in the evaporator. Thus, the cooling capacity of the cooling device of the internal combustion engine is controlled by the opening / closing control of the on-off valve in the same manner as in the related art without switching the cooling water flow path as in the related art.

(実施例) 以下、本発明の技術的課題を具体化した実施例につい
て添付図面に基づいて説明する。但し以下においては、
蒸発部を冷媒タンク、凝縮部をチユーブ、冷媒溜まりを
復水タンク、連通管を流路と換言する。
(Example) Hereinafter, an example that embodies the technical problem of the present invention will be described with reference to the accompanying drawings. However, in the following,
The evaporator is a refrigerant tank, the condenser is a tube, the refrigerant reservoir is a condensate tank, and the communication pipe is a flow path.

第1図は、本発明第1実施例の内燃機関の冷却装置10
の構造の概略図を示す。第2図は、第1図の側断面の概
略図を示す。
FIG. 1 shows a cooling device 10 for an internal combustion engine according to a first embodiment of the present invention.
1 shows a schematic diagram of the structure of FIG. FIG. 2 shows a schematic view of the side section of FIG.

エンジン11には、その冷却水が流れる流路12が配設さ
れており、流路12の途中には冷却水室13及びウオーター
ポンプ14が配設されている。
The engine 11 is provided with a flow channel 12 through which the cooling water flows, and a cooling water chamber 13 and a water pump 14 are provided in the flow channel 12.

冷却水室13の内部には、サーモサイフオン部15の冷媒
タンク16が配設されており、エンジンの冷却水は冷却水
室13の内周部と冷媒タンク16の外周部とにより形成され
る環状部13aを流れる。冷媒タンク16の上部には復水タ
ンク17と連通する蒸気導管18が配設されている。復水タ
ンク17上方には、放熱部19が配設されている。放熱部19
は復水タンク17と連通する複数のチユーブ20と、各チユ
ーブ20の間に配設されたコルゲートフイン21と、シユラ
ウド22及びフアン23により構成されている。
Inside the cooling water chamber 13, a refrigerant tank 16 of the thermosyphon unit 15 is provided, and the cooling water of the engine is formed by an inner peripheral part of the cooling water chamber 13 and an outer peripheral part of the refrigerant tank 16. It flows through the annular portion 13a. A vapor conduit 18 communicating with the condensate tank 17 is provided above the refrigerant tank 16. Above the condensate tank 17, a radiator 19 is provided. Radiator 19
Is composed of a plurality of tubes 20 communicating with the condensate tank 17, corrugated fins 21 arranged between the tubes 20, and shrouds 22 and fans 23.

冷媒タンク16と復水タンク17は蒸気導管18の他に、給
水管24とによつても連通しており、給水管24の途中には
エンジンの冷却水の温度によつて開閉を制御される開閉
弁25が配設されている。この開閉弁25はエンジンの冷却
水の温度が設定温度未満の場合には閉状態となつてお
り、設定温度以上の場合には開状態となる。この開閉弁
25の開閉制御方法は、開閉弁25に直接有する感温部によ
り行なつても良いし、別の水温センサーからの信号を受
けることにより行なつても良い。
The refrigerant tank 16 and the condensate tank 17 are communicated with not only the steam conduit 18 but also a water supply pipe 24, and the opening and closing of the water supply pipe 24 is controlled by the temperature of the engine cooling water in the middle of the water supply pipe 24. An on-off valve 25 is provided. The on-off valve 25 is closed when the temperature of the cooling water of the engine is lower than the set temperature, and is opened when the temperature of the cooling water is higher than the set temperature. This on-off valve
The open / close control method of 25 may be performed by a temperature sensing unit directly provided in the open / close valve 25, or may be performed by receiving a signal from another water temperature sensor.

また、冷媒タンク16と復水タンク17と複数のチユーブ
20とは液密的に連通しており、その内部は真空に近い状
態まで減圧されており、適量の冷媒(例えば水)が封入
されている。また、復水タンクの容量は封入された冷媒
を全量収容できる容量を有している。
The refrigerant tank 16 and the condensate tank 17 are connected to a plurality of tubes.
20 is communicated in a liquid-tight manner, the inside of which is depressurized to a state close to a vacuum, and an appropriate amount of refrigerant (for example, water) is sealed. Further, the capacity of the condensate tank has a capacity capable of accommodating the entire amount of the enclosed refrigerant.

以上に示すように、エンジンの冷却水とサーモサイフ
オン部15内の冷媒とは異なる閉回路系の流路を循環す
る。
As described above, the cooling water of the engine and the refrigerant in the thermosifon unit 15 circulate in a flow path of a closed circuit system different from that.

以上の構成において、冷却水の水温が設定温度よりも
高い時には、開閉弁25は開状態であるため、復水タンク
17内の冷媒は給水管24を通つて冷媒タンク16に流入す
る。この冷媒はその雰囲気圧力が真空に近い状態である
ため、冷媒の飽和温度は設定温度よりも十分に低いため
環状部13aを流れる冷却水の熱を奪つて、冷媒が蒸発を
開始する。この蒸気は蒸気導管18を通つて復水タンク17
からチユーブ20へと流れ込み、コルゲートフイン21及び
フアン23の作用により冷却され凝縮する。凝縮した冷媒
は、重力によつて落下し復水タンク17に戻り、再び給水
管24を通つて冷媒タンク16へ流れ込む。この繰り返しに
よつてエンジン11で発生した熱は、サーモサイフオン部
15内の冷媒の相変化を伴つて外気へ放熱される。
In the above configuration, when the temperature of the cooling water is higher than the set temperature, the on-off valve 25 is in the open state.
The refrigerant in 17 flows into the refrigerant tank 16 through the water supply pipe 24. Since the ambient pressure of the refrigerant is close to vacuum, the saturation temperature of the refrigerant is sufficiently lower than the set temperature, so that the refrigerant takes heat of the cooling water flowing through the annular portion 13a, and the refrigerant starts to evaporate. This steam passes through a steam conduit 18 and enters a condensate tank 17
Flows into the tube 20, and is cooled and condensed by the action of the corrugated fin 21 and the fan 23. The condensed refrigerant drops due to gravity, returns to the condensate tank 17, and flows into the refrigerant tank 16 again through the water supply pipe 24. The heat generated by the engine 11 due to this repetition is transferred to the thermosyphon section.
Heat is released to the outside air with the phase change of the refrigerant in 15.

一方、冷却水の水温が設定温度よりも低い時には、開
閉弁25は閉状態であるため、復水タンク17から冷媒タン
ク16への冷媒の流れは遮断される。従つて、蒸発した冷
媒が放熱部19で凝縮した後は、全ての冷媒が復水タンク
17の底部に溜まり、冷媒タンク16は空となるために冷却
水の熱を奪うことができず冷却水は冷却されない。
On the other hand, when the temperature of the cooling water is lower than the set temperature, the flow of the refrigerant from the condensate tank 17 to the refrigerant tank 16 is shut off because the on-off valve 25 is in the closed state. Therefore, after the evaporated refrigerant is condensed in the radiator 19, all the refrigerant is condensed in the condensing tank.
Since the refrigerant tank 16 is accumulated at the bottom of the cooling water tank 17 and becomes empty, the heat of the cooling water cannot be removed and the cooling water is not cooled.

次に、本発明第2実施例の内燃機関の冷却装置につい
て説明するが、第1実施例とは冷媒タンクと冷却水室の
形状が異なるだけであるので、その他の部分については
第1実施例と同一の番号符号を付すことによつて省略す
る。第3図は、本発明第2実施例の内燃機関の冷却装置
30の側断面の概略図を示す。
Next, a description will be given of a cooling device for an internal combustion engine according to a second embodiment of the present invention. However, since only the shapes of the refrigerant tank and the cooling water chamber are different from those of the first embodiment, the other portions are the same as those of the first embodiment. The description is omitted by assigning the same reference numerals as in FIG. FIG. 3 shows a cooling device for an internal combustion engine according to a second embodiment of the present invention.
1 shows a schematic diagram of a side section of 30.

この第2実施例では、冷媒タンク31内に冷却水室32が
配設されており、動作原理等については第1実施例とは
何ら変わるところがなく説明を省略する。
In the second embodiment, a cooling water chamber 32 is provided in a refrigerant tank 31, and the operation principle and the like are not different from those of the first embodiment, and the description is omitted.

以上に述べたように、開閉弁25の開閉を制御すること
により、本発明の内燃機関の冷却装置10の冷却能力を制
御することが可能となる。
As described above, by controlling the opening and closing of the on-off valve 25, it is possible to control the cooling capacity of the internal combustion engine cooling device 10 of the present invention.

〔発明の効果〕〔The invention's effect〕

以上の如く、本発明によれば、従来のように冷却水流
路を切り換えることなく、開閉弁の開閉制御により従来
と同様に内燃機関の冷却装置の冷却能力を制御すること
ができ、従来必要であったバイパス流路及びサーモスタ
ット弁を不要とすることができる。これにより、ウオー
ターポンプの容量を小さくすることができ、それに伴い
内燃機関の馬力損失を低減することができると共に、キ
ャビテーションの発生が防止され、当該冷却装置の信頼
性を向上することができる。
As described above, according to the present invention, it is possible to control the cooling capacity of the cooling device of the internal combustion engine in the same manner as before by controlling the opening and closing of the on-off valve without switching the cooling water flow path unlike the related art. The need for a bypass channel and a thermostat valve, which are required, can be eliminated. Thus, the capacity of the water pump can be reduced, the horsepower loss of the internal combustion engine can be reduced, cavitation can be prevented from occurring, and the reliability of the cooling device can be improved.

また、バイパス通路を不要とすることができるので、
冷却水系路の配管の自由度を高めることができ、内燃機
関への搭載性を向上することができる。
Also, since a bypass passage can be eliminated,
The degree of freedom of the piping of the cooling water passage can be increased, and the mountability to the internal combustion engine can be improved.

また、更に冷却水温度が設定温度以下では、開閉弁に
より冷媒は冷却水室と接する蒸発部に供給されることは
ないので、冷媒が冷却水の熱に曝される時間を短くする
ことができ、冷媒の熱劣化を防止することができる。
Further, when the cooling water temperature is equal to or lower than the set temperature, the refrigerant is not supplied to the evaporator in contact with the cooling water chamber by the on-off valve, so that the time during which the refrigerant is exposed to the heat of the cooling water can be shortened. In addition, thermal deterioration of the refrigerant can be prevented.

以上のように、本発明は従来の内燃機関の冷却装置の
諸問題点を解決した、極めて高い効果を有するものであ
る。
As described above, the present invention solves the problems of the conventional cooling device for an internal combustion engine and has an extremely high effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明第1実施例の内燃機関の冷却装置の構
造の概略図を示す。 第2図は、第1図の側断面の概略図を示す。 第3図は、本発明第2実施例の内燃機関の冷却装置の側
断面の概略図を示す。 10,30……内燃機関の冷却装置、 12……流路(連通管)、 13,32……冷却水室、 15……サーモサイフオン部、 16,31……冷媒タンク(蒸発部)、 17……復水タンク(冷媒溜まり) 20……チユーブ(凝縮部)
FIG. 1 is a schematic view of the structure of a cooling device for an internal combustion engine according to a first embodiment of the present invention. FIG. 2 shows a schematic view of the side section of FIG. FIG. 3 is a schematic side sectional view of a cooling device for an internal combustion engine according to a second embodiment of the present invention. 10,30 cooling system for internal combustion engine, 12 flow path (communication pipe), 13,32 cooling water chamber, 15 thermosyphon section, 16,31 refrigerant tank (evaporating section), 17… Condenser tank (coolant pool) 20 …… Tube (condensing part)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒が封入され減圧された密封空間の下部
であり内燃機関の冷却水と接する蒸発部、該密封空間の
上部であり波形フインにより放熱する凝縮部、該凝縮部
の下方且つ前記蒸発部の上方にある冷媒溜まり、該冷媒
溜まりの底部と前記蒸発部を連通する給水管及び、該給
水管中に介装され冷却水温が設定温度未満のときには閉
状態にあり、冷却水温が設定温度以上のときに開状態に
なる開閉弁から成るサーモサイフオン部と、前記蒸発部
と接する冷却水室と、該冷却水室と内燃機関冷却部とを
連通する連通管とを備えてなる内燃機関の冷却装置。
1. An evaporating section which is a lower part of a sealed space in which a refrigerant is filled and decompressed and is in contact with cooling water of an internal combustion engine, a condensing part which is an upper part of the sealed space and radiates heat by a corrugated fin, A refrigerant reservoir above the evaporator, a water supply pipe communicating the bottom of the refrigerant reservoir with the evaporator, and a closed state when the temperature of the cooling water interposed in the water supply pipe is lower than a set temperature, and the cooling water temperature is set. An internal combustion engine comprising: a thermosyphon section comprising an on-off valve that is opened when the temperature is equal to or higher than a temperature; a cooling water chamber in contact with the evaporating section; and a communication pipe that communicates the cooling water chamber with the internal combustion engine cooling section. Engine cooling system.
JP1056778A 1989-03-09 1989-03-09 Internal combustion engine cooling system Expired - Fee Related JP2751337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056778A JP2751337B2 (en) 1989-03-09 1989-03-09 Internal combustion engine cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056778A JP2751337B2 (en) 1989-03-09 1989-03-09 Internal combustion engine cooling system

Publications (2)

Publication Number Publication Date
JPH02238117A JPH02238117A (en) 1990-09-20
JP2751337B2 true JP2751337B2 (en) 1998-05-18

Family

ID=13036900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056778A Expired - Fee Related JP2751337B2 (en) 1989-03-09 1989-03-09 Internal combustion engine cooling system

Country Status (1)

Country Link
JP (1) JP2751337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106202A (en) * 2012-01-26 2014-10-15 西门子公司 Device for cooling a superconducting machine
US11008927B2 (en) 2019-04-10 2021-05-18 James Moore Alternative method of heat removal from an internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
RU2014150083A (en) * 2012-05-11 2016-07-10 Дантхерм Кулинг А/С VARIABLE CONDUCTIVITY THERMOSIPHONE
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190615A (en) * 1984-03-09 1985-09-28 Nissan Motor Co Ltd Engine cooling water circulating structure in automobile
JPS6170537U (en) * 1984-10-17 1986-05-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106202A (en) * 2012-01-26 2014-10-15 西门子公司 Device for cooling a superconducting machine
CN104106202B (en) * 2012-01-26 2017-07-14 西门子公司 Device for cooling down superconduction machine
US9728313B2 (en) 2012-01-26 2017-08-08 Siemens Aktiengesellschaft Device for cooling a superconducting machine
US11008927B2 (en) 2019-04-10 2021-05-18 James Moore Alternative method of heat removal from an internal combustion engine

Also Published As

Publication number Publication date
JPH02238117A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US4974667A (en) Thermal actuated switchable heat pipe
JPS61275522A (en) Evaporative cooling device for engine
EP0550748B1 (en) Solid/gas reaction cooling plant having a reactor equipped with cooling means
JP2751337B2 (en) Internal combustion engine cooling system
JPH0396614A (en) Method and apparatus for connecting and disconnecting heat exchanger
US5355846A (en) Cooling device for use in engine
JPS6183405A (en) Lubricating oil cooler
JP2009036103A (en) Exhaust heat recovery device
JP2005337336A (en) Liquefied gas evaporating device
JP2626313B2 (en) Boiling cooling system for internal combustion engine
US2269101A (en) Heat transfer system
US4572115A (en) Parts-arrangement in boiling liquid cooling system
JPH0324828Y2 (en)
JP2551982Y2 (en) Boiling cooling system for internal combustion engine
KR0130652Y1 (en) Small absorption type cooling/heating device by heat pipe
JPH0989407A (en) Absorption refrigerator
JP2551983Y2 (en) Boiling cooling system for internal combustion engine
JPH01170708A (en) Cooling structure of engine
JPS6024380B2 (en) Absorption chiller control device
JPS6183434A (en) Condenser for evaporative cooling type engine
JPH0526257Y2 (en)
JPH02248613A (en) Cooling device for internal combustion engine
JPH027689Y2 (en)
JPH0324829Y2 (en)
JPH05404Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees