JPH02248613A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine

Info

Publication number
JPH02248613A
JPH02248613A JP6849789A JP6849789A JPH02248613A JP H02248613 A JPH02248613 A JP H02248613A JP 6849789 A JP6849789 A JP 6849789A JP 6849789 A JP6849789 A JP 6849789A JP H02248613 A JPH02248613 A JP H02248613A
Authority
JP
Japan
Prior art keywords
cooling water
refrigerant
internal combustion
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6849789A
Other languages
Japanese (ja)
Inventor
Masato Itakura
正人 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP6849789A priority Critical patent/JPH02248613A/en
Publication of JPH02248613A publication Critical patent/JPH02248613A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2214Condensers
    • F01P2003/2228Condensers of the upflow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2278Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To obviate a thermostat valve in a cooling water flow passage by installing a thermo siphon portion which consists of an evaporating portion brought into contact with cooling water of an internal combustion engine and a condensing portion for radiating heat through corrugated fins. CONSTITUTION:When the temperature of cooling water is higher than a setting one, a control valve 27 which receives the signal of a temperature sensor 26 communicates the port A with the port B of a three-way switching valve 25, and the pressure in a thermo siphon 15 is reduced to make the saturated temperature of refrigerant lower than a setting one fully. Therefore, the temperature of cooling water and refrigerant are almost the same, so the refrigerant in a refrigerant tank 16 takes away the heat of the cooling water in a cooling water chamber 13 and at the same time, begins to evaporate. This vapor flows into a tube 18, and is cooled and condensed by actions of corrugated fins 19 and a fan 21. The condensed refrigerant is dropped by gravity and flows into the refrigerant tank 16. By repeating this, the heat generated by an engine 11 is radiated to the outside with the phase change of the refrigerant in the siphon portion 15.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、内燃機関の冷却装置に関するものである。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a cooling device for an internal combustion engine.

(従来の技術) 本発明に係わる従来技術としては、実開昭56−660
18号、実公昭59−30283号、特開昭60−19
0615号公報に記載されたものがる。
(Prior art) As a prior art related to the present invention, Utility Model Application No. 56-660
No. 18, Publication No. 59-30283, Japanese Patent Application Publication No. 1988-1983
The one described in Publication No. 0615 is included.

特開昭60−190615号公報に開示されるように、
従来の内燃機関の冷却装置は冷却水の流路をサーモスタ
ット弁により切り換えることで、ラジェターの放熱能力
を制御して内燃機関の冷却を制御していた。
As disclosed in Japanese Patent Application Laid-Open No. 60-190615,
Conventional internal combustion engine cooling systems control the cooling of the internal combustion engine by controlling the heat dissipation capacity of the radiator by switching the flow path of the cooling water using a thermostatic valve.

このサーモスタット弁の一例は、実公昭59−3028
3号公報に開示されるとおりである。
An example of this thermostatic valve is
As disclosed in Publication No. 3.

この従来技術で明らかなとおり、サーモスタット弁は開
弁時においてもその冷却水連通路は非常に狭(、その通
水抵抗はこの水系路全体の約30%を占めている。従っ
て、必要通水量を確保するために必要なウォーターポン
プの吐出容量は大きなものとなり、キャビチーシコンの
発生する危険度が増大するといった問題点を有している
As is clear from this prior art, even when the thermostatic valve is open, its cooling water communication path is extremely narrow (and its water flow resistance accounts for approximately 30% of the entire water system path. Therefore, the required water flow rate is The discharge capacity of the water pump required to ensure this is large, which poses the problem of increasing the risk of cavities occurring.

(発明が解決しようとする課題) 元来このような通水抵抗の高いサーモスタット弁を使用
せざるをえない原因は、ラジェターの構造にある。この
ラジェターの従来技術の一例は、実開昭56−6601
8号公報に開示されるとおりである。
(Problem to be Solved by the Invention) The reason why such a thermostatic valve with high water flow resistance has to be used originally lies in the structure of the radiator. An example of the conventional technology for this radiator is Utility Model Application No. 56-6601
As disclosed in Publication No. 8.

このラジェターの構造によれば、ラジェター内のチュー
ブを流れる冷却水は、ラジェターのフィンの放熱作用に
よって必ず冷却されてしまう。
According to this radiator structure, the cooling water flowing through the tubes in the radiator is always cooled by the heat dissipation action of the fins of the radiator.

従って、冷間始動時の暖機やオーバークール防止のため
に、サーモスタット弁により冷却水のラジェターへの流
れを制御する必要がある。
Therefore, in order to warm up the engine during a cold start and prevent overcooling, it is necessary to control the flow of cooling water to the radiator using a thermostatic valve.

そこで本発明では、冷却水の流路中のサーモスタット弁
を廃止することを、その技術的課題とする。
Therefore, the technical objective of the present invention is to eliminate the thermostatic valve in the cooling water flow path.

(発明の構成〕 (課題を解決するための手段) 上述した技術的課題を解決するために講じた本発明の技
術的手段は、冷媒が封入された空間の下部であり内燃機
関の冷却水と接する蒸発部と、該空間の上部であり波形
フィンにより放熱する凝縮部とにより構成されるサーモ
サイフオン部と、前記空間と負圧源とを連通ずる第1連
通管と、該第1連通管の途中に設けられた切換弁と、前
記蒸発室と接する冷却水室と、該冷却水室と内燃機関冷
却部とを連通ずる第2連通管とを有するようにしたこと
である。
(Structure of the Invention) (Means for Solving the Problems) The technical means of the present invention taken to solve the above-mentioned technical problems is that the lower part of the space in which the refrigerant is sealed is connected to the cooling water of the internal combustion engine. a thermosiphon section constituted by an evaporating section in contact with the space, a condensing section that is in the upper part of the space and radiates heat by means of corrugated fins, a first communicating pipe that communicates the space with a negative pressure source, and the first communicating pipe. , a cooling water chamber in contact with the evaporation chamber, and a second communication pipe that communicates the cooling water chamber with the internal combustion engine cooling section.

(作用) 上述した技術的手段によると、冷却水の流路中のサーモ
スタット弁を廃止することが可能となり流路におけるキ
ャビテーションの発生の防止や、ウォーターポンプの大
容量化が不必要となる。
(Function) According to the above-mentioned technical means, it is possible to eliminate the thermostatic valve in the cooling water flow path, and it becomes unnecessary to prevent cavitation from occurring in the flow path and to increase the capacity of the water pump.

(実施例) 以下、本発明の技術的課題を具体化した実施例について
添付図面に基づいてき説明する。但し以下においては、
蒸発部を冷媒タンク、凝縮部をチューブ、切換弁を三方
向切換弁、第1連通管をホース、第2連通管を流路と換
言する。
(Example) Hereinafter, an example embodying the technical problem of the present invention will be described based on the accompanying drawings. However, in the following,
The evaporating section is referred to as a refrigerant tank, the condensing section as a tube, the switching valve as a three-way switching valve, the first communicating pipe as a hose, and the second communicating pipe as a flow path.

第1図は、本発明第1実施例の内燃機関の冷却装置10
の構造の概略図を示す、第2図は、第1図の側断面の概
略図を示す。
FIG. 1 shows a cooling device 10 for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 shows a schematic view of the structure of FIG. 1 in side section.

エンジン11にば、その冷却水が流れる流路12が配設
されており、流路12の途中には冷却水室13及びウォ
ーターポンプ14が配設されている。冷却水はエンジン
11、波路12、冷却水室13及びウォーターポンプ1
4で構成される閉回路の水系を図示矢印方向に還流して
いる。
The engine 11 is provided with a channel 12 through which cooling water flows, and a cooling water chamber 13 and a water pump 14 are provided in the middle of the channel 12. The cooling water is supplied to the engine 11, the wave passage 12, the cooling water chamber 13, and the water pump 1.
The closed circuit water system consisting of 4 is refluxed in the direction of the arrow shown in the figure.

冷媒タンク16内部には冷却水室13が配設されており
、冷媒タンク16上方には、放熱部17が配設されてい
る。放熱部17は複数のチューブ18と、各チューブ1
8の間に配設されたコルゲートフィン19と、シュラウ
ド20及びファン21により構成されている。
A cooling water chamber 13 is provided inside the refrigerant tank 16, and a heat radiation section 17 is provided above the refrigerant tank 16. The heat dissipation section 17 includes a plurality of tubes 18 and each tube 1.
8, a shroud 20, and a fan 21.

チューブ18の上部はホース2.2を介して、バキュー
ムポンプ又はエンジンのインテークマニホールド等の負
圧s23と連通している。但し、ホース22の途中には
フィルター24及び三方向切換弁25が配設されている
。この三方向切換弁25のAポートはチューブ18と、
Bボートは負圧源23と、Cポートは外気と夫々連通し
ている。
The upper part of the tube 18 communicates via a hose 2.2 with a negative pressure s23, such as a vacuum pump or an intake manifold of the engine. However, a filter 24 and a three-way switching valve 25 are disposed in the middle of the hose 22. The A port of this three-way switching valve 25 is connected to the tube 18,
The B boat communicates with the negative pressure source 23, and the C port communicates with the outside air.

三方向切換弁25は、冷却水室13の出口側に設置され
た温度センサー26からの信号を受けて制御を行う制御
部27によって制御される。その制御方法は、エンジン
の冷却水の温度が設定温度未満の場合には、三方向切換
弁25のAボートとCボートとが連通し、チューブ18
は外気と連通する。また、エンジンの冷却水の温度が設
定温度以上の場合には、三方向切換弁25のAボートと
Bボートとが連通し、チューブ18は負圧源23と連通
する。
The three-way switching valve 25 is controlled by a control unit 27 that receives a signal from a temperature sensor 26 installed on the outlet side of the cooling water chamber 13 and performs control. The control method is such that when the temperature of the engine cooling water is lower than the set temperature, the A boat and C boat of the three-way switching valve 25 communicate with each other, and the tube 18
communicates with the outside air. Further, when the temperature of the engine cooling water is equal to or higher than the set temperature, the A boat and the B boat of the three-way switching valve 25 communicate with each other, and the tube 18 communicates with the negative pressure source 23 .

また、冷媒タンク16と複数のチューブ18とは液密的
に連通しており、その内部圧力は三方向切換弁25を制
御することにより可変である。即ち、三方向切換弁25
のAポートとBボートとが連通ずると、チューブ18は
負圧源23と連通するので、サーモサイフオン部15内
は減圧され、三方向切換弁25のAポートとCボートと
が連通ずると、チューブ18は外気と連通ずるのでサー
モサイフオン部15内は大気圧となる。
Further, the refrigerant tank 16 and the plurality of tubes 18 are in liquid-tight communication, and the internal pressure thereof is variable by controlling the three-way switching valve 25. That is, the three-way switching valve 25
When the A port of the three-way switching valve 25 communicates with the B boat, the tube 18 communicates with the negative pressure source 23, so the pressure inside the thermosiphon section 15 is reduced, and when the A port of the three-way switching valve 25 communicates with the C boat, Since the tube 18 communicates with the outside air, the inside of the thermosiphon section 15 is at atmospheric pressure.

以上に示すように、エンジンの冷却水とサーモサイフオ
ン部15内の冷媒とは異なる閉回路系の波路を循環する
As described above, the engine cooling water and the refrigerant in the thermosiphon section 15 circulate through different wave paths in a closed circuit system.

以上の構成において、冷却水の水温がある設定温度(例
えば85℃)よりも高い時には、温度センサー26の信
号を受けた制御部27は三方向切換弁25のAポートと
Bポートとを連通させ、サーモサイフオン部15内は減
圧され、冷媒の飽和温度は設定温度より十分に低くなる
。従って、冷却水と冷媒の温度はほぼ同一なので、冷媒
タンク16内の冷媒は冷却水室13内の冷却水の熱を奪
いながら蒸発を開始する。この蒸気はチューブ18へと
流れ込み、コルゲートフィン19及びファン21の作用
により冷却され凝縮する。凝縮した冷媒は重力によって
落下し冷媒タンク16へ流れ込む、この繰り返しによっ
てエンジン11で発生した熱は、サーモサイフオン部1
5内の冷媒の相変化を伴って外気へ放熱される。
In the above configuration, when the temperature of the cooling water is higher than a certain set temperature (for example, 85° C.), the control section 27 receives a signal from the temperature sensor 26 and connects the A port and the B port of the three-way switching valve 25. The pressure inside the thermosiphon section 15 is reduced, and the saturation temperature of the refrigerant becomes sufficiently lower than the set temperature. Therefore, since the temperature of the cooling water and the refrigerant are almost the same, the refrigerant in the refrigerant tank 16 begins to evaporate while taking away the heat of the cooling water in the cooling water chamber 13. This steam flows into the tube 18 and is cooled and condensed by the action of the corrugated fins 19 and the fan 21. The condensed refrigerant falls by gravity and flows into the refrigerant tank 16. As this process is repeated, the heat generated in the engine 11 is transferred to the thermosiphon section 1.
Heat is radiated to the outside air along with a phase change of the refrigerant in the refrigerant.

一方、冷却水の水温が設定温度よりも低い時には、温度
センサー26の信号を受けた制御部27は三方向切換弁
25のAポートとCポートとを連通させ、サーモサイフ
オン部15内は大気圧となるので、冷媒の飽和温度は大
気圧における飽和温度(100℃)となる、従って、冷
媒タンク16内の冷媒は蒸発を停止し、冷却水室16の
冷却水の熱を奪うことができず冷却水は冷却されない。
On the other hand, when the temperature of the cooling water is lower than the set temperature, the control section 27 that receives the signal from the temperature sensor 26 connects the A port and the C port of the three-way switching valve 25, so that the inside of the thermosiphon section 15 becomes large. Atmospheric pressure, so the saturation temperature of the refrigerant becomes the saturation temperature at atmospheric pressure (100°C). Therefore, the refrigerant in the refrigerant tank 16 stops evaporating and can take away the heat of the cooling water in the cooling water chamber 16. The cooling water is not cooled.

次に、本発明第2実施例の内燃機関の冷却装置について
説明するが、第1実施例とは冷媒タンクと冷却水室の形
状が異なるだけであるので、その他の部分については第
1実施例と同一の番号符号を付すことによって省略する
。第3図は、本発明第2実施例の内燃機関の冷却装置3
0の側断面の概略図を示す。
Next, a cooling device for an internal combustion engine according to a second embodiment of the present invention will be described. Since the only difference from the first embodiment is the shape of the refrigerant tank and the cooling water chamber, the other parts will be similar to those of the first embodiment. It will be omitted by giving the same number code as . FIG. 3 shows a cooling device 3 for an internal combustion engine according to a second embodiment of the present invention.
0 shows a schematic side cross-sectional view of the

この第2実施例では、冷却水室31内にサーモサイフオ
ン部15の冷媒タンク32が配設されており、エンジン
の冷却水は冷却水室31の内周部と冷媒タンク32の外
周部とにより形成される環状部31aを流れる。動作原
理等については第1実施例とは何ら変わるところがなく
説明を省略する。
In this second embodiment, the refrigerant tank 32 of the thermosiphon section 15 is disposed within the cooling water chamber 31, and the engine cooling water is distributed between the inner peripheral part of the cooling water chamber 31 and the outer peripheral part of the refrigerant tank 32. It flows through an annular portion 31a formed by. As there is no difference in the operating principle and the like from the first embodiment, a description thereof will be omitted.

以上に述べたように、サーモサイフオン部内の圧力を制
御することにより、本発明の内燃機関の冷却装置10の
冷却能力を制御することが可能となる。
As described above, by controlling the pressure within the thermosiphon section, it is possible to control the cooling capacity of the internal combustion engine cooling device 10 of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によると、内燃機関の冷却装置の冷却能力を制御
するのに、従来のように冷却水流路を切り換えて制御す
ることによるのではなく、ラジェターの放熱能力を制御
することによっている。従って、従来必要であったバイ
パス回路及び流路切り換え用のサーモスタット弁が不必
要となり、冷却水系の通水抵抗は大幅に減少する。従っ
て、ウォーターポンプの容量を小さくでき、それに伴う
エンジンの馬力損失も低下できる。また、キャビテーシ
ョンの発生が防止され、冷却装置の信頼性も向上する。
According to the present invention, the cooling capacity of the cooling device for an internal combustion engine is controlled not by switching and controlling the cooling water flow path as in the prior art, but by controlling the heat dissipation capacity of the radiator. Therefore, a bypass circuit and a thermostatic valve for switching flow paths, which were conventionally necessary, are no longer necessary, and water flow resistance in the cooling water system is significantly reduced. Therefore, the capacity of the water pump can be reduced, and the engine horsepower loss associated with it can also be reduced. Furthermore, cavitation is prevented from occurring, and the reliability of the cooling device is also improved.

更には、バイパス回路及びサーモスタット弁が不必要と
なることにより、設計時に冷却水系の配管の自由度が高
くなる0例えば、冷却水系の配管とその他のエンジン補
機類との干渉が無くなる。
Furthermore, by eliminating the need for a bypass circuit and a thermostat valve, the degree of freedom in designing the piping of the cooling water system increases; for example, interference between the piping of the cooling water system and other engine accessories is eliminated.

以上のように、本発明は従来の内燃機関の冷却装置の諸
問題点を解決した、極めて高い効果を有するものである
As described above, the present invention solves various problems of conventional cooling devices for internal combustion engines, and has extremely high effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明第1実施例の内燃機関の冷却装置の構
造の概略図を示す。 第2図は、第1図の側断面の概略図を示す。 第3図は、本発明第2実施例の内燃機関の冷却装置の側
断面の概略図を示す。 10.30・・・内燃機関の冷却装置、12・・・波路
(第2連通管)、 13.32・・・冷却水室、 15・・・サーモサイフオン部、 16.31・・・冷媒タンク(蒸発部)、20・・・チ
ューブ(凝縮部)、 22・・・ホース(第2連通管)、 23 ・ ・負圧源、 25 ・ ・三方向切換弁 (切換弁)
FIG. 1 shows a schematic diagram of the structure of a cooling device for an internal combustion engine according to a first embodiment of the present invention. FIG. 2 shows a schematic side cross-sectional view of FIG. 1. FIG. FIG. 3 shows a schematic side cross-sectional view of a cooling device for an internal combustion engine according to a second embodiment of the present invention. 10.30... Cooling device for internal combustion engine, 12... Wave path (second communication pipe), 13.32... Cooling water chamber, 15... Thermosiphon part, 16.31... Refrigerant Tank (evaporation section), 20...Tube (condensing section), 22...Hose (second communication pipe), 23. Negative pressure source, 25. Three-way switching valve (switching valve)

Claims (3)

【特許請求の範囲】[Claims] (1)冷媒が封入された空間の下部であり内燃機関の冷
却水と接する蒸発部と、該空間の上部であり波形フィン
により放熱する凝縮部とにより構成されるサーモサイフ
オン部と、前記空間と負圧源とを連通する第1連通管と
、該第1連通管の途中に設けられた切換弁と、前記蒸発
室と接する冷却水室と、該冷却水室と内燃機関冷却部と
を連通する第2連通管とを有する内燃機関の冷却装置。
(1) A thermosiphon section consisting of an evaporation section that is the lower part of a space filled with refrigerant and is in contact with the cooling water of the internal combustion engine, and a condensation section that is the upper part of the space that radiates heat through corrugated fins; and a negative pressure source, a switching valve provided in the middle of the first communication pipe, a cooling water chamber in contact with the evaporation chamber, and a cooling water chamber and an internal combustion engine cooling section. A cooling device for an internal combustion engine having a second communicating pipe.
(2)前記切換弁は、内燃機関の冷却水の温度を感知す
る温度センサーと、該温度センサーの信号を前記切換弁
に送る制御部とにより制御されることを特徴とする請求
項(1)記載の内燃機関の冷却装置。
(2) Claim (1) characterized in that the switching valve is controlled by a temperature sensor that senses the temperature of the cooling water of the internal combustion engine, and a control section that sends a signal from the temperature sensor to the switching valve. Cooling device for the internal combustion engine described.
(3)前記切換弁は、前記冷却水の温度が前記温度セン
サーの設定温度より高い場合は前記空間と前記負圧源と
を連通させ、前記冷却水の温度が前記温度センサーの設
定温度より低い場合は前記空間と外気とを連通させるこ
とを特徴とする請求項(2)記載の内燃機関の冷却装置
(3) The switching valve communicates the space with the negative pressure source when the temperature of the cooling water is higher than the set temperature of the temperature sensor, and the switching valve connects the space and the negative pressure source when the temperature of the cooling water is lower than the set temperature of the temperature sensor. 3. The cooling device for an internal combustion engine according to claim 2, wherein the space is communicated with outside air in the case where the space is cooled.
JP6849789A 1989-03-21 1989-03-21 Cooling device for internal combustion engine Pending JPH02248613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6849789A JPH02248613A (en) 1989-03-21 1989-03-21 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6849789A JPH02248613A (en) 1989-03-21 1989-03-21 Cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH02248613A true JPH02248613A (en) 1990-10-04

Family

ID=13375393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6849789A Pending JPH02248613A (en) 1989-03-21 1989-03-21 Cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02248613A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132026A (en) * 1983-12-19 1985-07-13 Nissan Motor Co Ltd Inter-cooler device for engine with supercharger
JPS60190615A (en) * 1984-03-09 1985-09-28 Nissan Motor Co Ltd Engine cooling water circulating structure in automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132026A (en) * 1983-12-19 1985-07-13 Nissan Motor Co Ltd Inter-cooler device for engine with supercharger
JPS60190615A (en) * 1984-03-09 1985-09-28 Nissan Motor Co Ltd Engine cooling water circulating structure in automobile

Similar Documents

Publication Publication Date Title
US6196168B1 (en) Device and method for cooling and preheating
JPS62247113A (en) Cooling system control device for internal combustion engine
US2369937A (en) Carburetor intake air heater
JPH02238117A (en) Cooling device for internal combustion engine
JPH02248613A (en) Cooling device for internal combustion engine
JPS62271922A (en) Exhaust heat recovery device for internal combustion engine
JP2023529662A (en) Vacuum system device and method
US5355846A (en) Cooling device for use in engine
US4979472A (en) Internal combustion engine having a hermetically sealed heat exchanger tube system
JPH0157269B2 (en)
JPS641451Y2 (en)
US3230945A (en) Automatic choke mechanism
JPH04287710A (en) Heat exchanger
JPH051616Y2 (en)
SU848917A1 (en) System for temperature controlling of object
JPS593279Y2 (en) Onsuidanbouki no nouriyokuseigiyosouchi
JP2626313B2 (en) Boiling cooling system for internal combustion engine
JPH01170708A (en) Cooling structure of engine
JPH03495Y2 (en)
JPH06200759A (en) Cooler for heat engine
JPH0452430Y2 (en)
JPH061727U (en) Water temperature control structure for automobile engine
WO1991005148A1 (en) Cooling engines
SU1629578A1 (en) Internal combustion engine cooling system
RU1779757C (en) Internal combustion engine cooling system