JPS60132026A - Inter-cooler device for engine with supercharger - Google Patents

Inter-cooler device for engine with supercharger

Info

Publication number
JPS60132026A
JPS60132026A JP58239326A JP23932683A JPS60132026A JP S60132026 A JPS60132026 A JP S60132026A JP 58239326 A JP58239326 A JP 58239326A JP 23932683 A JP23932683 A JP 23932683A JP S60132026 A JPS60132026 A JP S60132026A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
cooler body
engine
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58239326A
Other languages
Japanese (ja)
Inventor
Yasunari Hoshino
星野 泰成
Tadahiko Kimizuka
君塚 忠彦
Masuo Ozawa
小澤 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58239326A priority Critical patent/JPS60132026A/en
Publication of JPS60132026A publication Critical patent/JPS60132026A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To eliminate the need for using a pump for circulating a refrigerant and reduce power for driving a cooling fan by connecting a cooler body to a refrigerant condenser through an upper vapor pipe for allowing a refrigerant vapor to flow and a lower return pipe for allowing a condensed refrigerant to return and forming them into a closed circuit. CONSTITUTION:Immediately after the starting of an engine, a vacuum pump 27 is driven in accordance with the signal of a vacuum sensor 30, setting the pressure in a cooling circuit at a certain pressure (approximately 72mm.Hg). When a hot intake air heated by a supercharger passes through the air passage 16 of a cooler body 15, a refrigerant in the cooler body is heated. When the temperature reaches about 45 deg.C, the refrigerant begins boiling, flows from the vapor reservoir 18 of the cooler body 15 to a condenser 22 through a vapor pipe 20, is cooled by blast from a cooling fan, and condensed into the former liquid body. The refrigerant, which is condensed and liquefied, falls in the collecting chamber 26 of the condenser 22, and is returned to the cooler body 15 through the return pipe 21.

Description

【発明の詳細な説明】 (技術分野) この発明は、液体の気化潜熱を利用して過給機付エンジ
ンの加圧吸気を冷却する工うにしたインタクーラ装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an intercooler device that cools pressurized intake air of a supercharged engine using latent heat of vaporization of a liquid.

(従来技術) 内燃機関の高出力化を図るものとして、排気ガスのエネ
ルギに1リタービンを駆動し、これと連動するコンプレ
ッサに↓り機関に吸入される空気全過給するターボ過給
機等が知られている。
(Prior art) In order to increase the output of internal combustion engines, there are turbo superchargers, etc., which use exhaust gas energy to drive a returbin, and a compressor that is linked to this drives all of the air sucked into the engine. Are known.

このような過給機では、自然吸気に比較して多量の空気
をシリンダ内に押し込むので、その分だけ燃料の増量が
可能となり1機関上大型化することなく出力全増大する
ことができるのである。
This kind of supercharger forces a large amount of air into the cylinder compared to a naturally aspirated engine, so it is possible to increase the amount of fuel by that amount, making it possible to increase the total output without making the engine larger. .

ところが、この過給機によって吸入空気を圧縮する際に
吸気温度が上昇し、これ會そのまま機関し供給する場合
には、空気密度の低下に工V実質的な吸気充填効率はそ
れほど高まらず、またガソリン機関では吸気温度の上昇
に伴いノッキングが生じやすくなるという問題が派生し
、このため圧縮比を下げmり、点点火時期遅遅せfcり
していた。
However, when the intake air is compressed by this supercharger, the intake air temperature rises, and if this engine is used to supply the intake air as it is, the actual intake air filling efficiency will not increase much due to the decrease in air density. In gasoline engines, a problem arises in that knocking is more likely to occur as the intake air temperature increases, so the compression ratio has been lowered and the ignition timing has been delayed.

そこで、このような問題?解消し、過給機のもつ優れた
機能を保つために、従来温度の上昇した吸入空気?シリ
ンダに吸入される前に冷却するようにしたインタクーラ
が実用化されている。
So, is this a problem? In order to eliminate the problem and maintain the excellent functions of a supercharger, is the intake air temperature raised? Intercoolers have been put into practical use that cool the air before it is sucked into the cylinder.

第1図は空冷式のインタクーラ上水すもので(自動車工
学−Vol、32.N[L9・P86〜88 昭和58
年9月発行参照〕、過給機1で加圧された吸気は長い吸
気通路2全通って、車両3の前端に設置されたり一う本
体4に流入し、ここから再び吸気通路2全通って図示し
ない吸気マニホールドに接続するスロットルチャンバ5
へと送られる。
Figure 1 shows an air-cooled intercooler water supply (Automotive Engineering-Vol. 32.N [L9, P86-88 1978
[Refer to issue published in September 2017], the intake air pressurized by the supercharger 1 passes through the entire long intake passage 2, is installed at the front end of the vehicle 3, or flows into the main body 4, from where it passes through the entire intake passage 2 again. A throttle chamber 5 connected to an intake manifold (not shown)
sent to.

このクーラ本体4は、エンジンのラジェータ(図示しな
い)と同じ↓うな構造で、車両3の走行時に車両3の前
方から流れ込む走行風により内部を通る吸気上冷却する
ようになっており、例えばインタクーラの無い場合に比
較して吸気温度は第2図に示すように下げられる。
This cooler body 4 has the same structure as an engine radiator (not shown), and is designed to be cooled by the air flowing in from the front of the vehicle 3 when the vehicle 3 is running.For example, an intercooler Compared to the case without this, the intake air temperature is lowered as shown in FIG.

しかし、このような空冷式のインタクーラでは。However, with an air-cooled intercooler like this.

クーラ本体4の設置場所の関係刀)ら吸気通路2が〃\
なり長くな9.その通路容積も相当大きくならざるを得
す、このためエンジン加速時等の過給応答じ遅れが生じ
やすいという問題があった。また、空冷式のインタクー
ラは熱交換率が低り、シたがって吸気温度を第2図のよ
うに下げるにはクーラ本体4としてη)なり大型のもの
2用いなければならないという問題があった。
Regarding the installation location of the cooler body 4, the intake passage 2 is
9. It's long. The volume of the passage must also be considerably large, which poses a problem in that a delay in supercharging response is likely to occur when the engine is accelerated. Furthermore, the air-cooled intercooler has a low heat exchange rate, and therefore, in order to lower the intake air temperature as shown in FIG. 2, there is a problem that a large cooler body 4 of η) must be used.

これに対して、第3図に示すものは水冷式のインタクー
ラで、クーラ本体6は過給機7とスロットルチャンバ8
との間の吸気通路9に介装され、ここでエンジン10に
過給される空気がクーラ本体6円の冷却水と熱交換し冷
却される。
On the other hand, the intercooler shown in FIG.
The air supercharged to the engine 10 exchanges heat with the cooling water in the cooler body and is cooled.

このクーラ本体6もエンジンのラジェータとほぼ同様の
構造で、その冷却水は電動ポンプ12に↓り放熱器13
に送られると共に、この放熱器13に冷却ファン等から
送風され、放熱後の冷却水がクーラ本体6に循環される
↓うになっている。 1このような水冷式のインタクー
ラにあっては。
This cooler body 6 also has almost the same structure as the radiator of the engine, and the cooling water is sent to the electric pump 12 and then to the radiator 13.
At the same time, air is blown to this heat radiator 13 from a cooling fan or the like, and the cooling water after heat radiation is circulated to the cooler body 6. 1.For water-cooled intercoolers like this.

吸気通路9がそれほど長くなるようなことはなく。The intake passage 9 is not so long.

また水と空気との熱交換であるから比較的良好彦冷却効
率が得られ、したがって前述しに空冷式のものと較べて
安定した過給応答が確保されると共にクーラ本体6等が
割合小型になるという利点がある。
In addition, since heat exchange is performed between water and air, relatively good cooling efficiency can be obtained, and as a result, compared to the air-cooled type mentioned above, a more stable supercharging response is ensured, and the cooler body 6 etc. can be made relatively smaller. It has the advantage of being

して1しながら、このような水冷式のインタクーラでは
、冷却水’(127)なり多量に循環することが必要で
、そのためボンデ12の駆動動力が大きくなり、バッテ
リ等の負担が増加することが避けられないという問題が
あった。また、吸気温度を第2図ぐらいの温度に下げる
のが精一杯で、さらに下げようとすると、クーラ本体6
や放熱器13等會それほど小型化することはできず、ま
だまだ期待したほどの冷却性能を得ることはできなかっ
た。
However, in such a water-cooled intercooler, it is necessary to circulate a large amount of cooling water (127), which increases the driving power of the bonder 12 and increases the burden on the battery, etc. There was an unavoidable problem. In addition, the intake air temperature can only be lowered to about the temperature shown in Figure 2, and if you try to lower it further, the cooler body 6
It was not possible to reduce the size of the radiator 13, and the cooling performance as expected was still not achieved.

(発明の目的ン この発明は、このような従来の問題点を解決し、小型で
優れた冷却性能を有するインタクーラ装置を提供するこ
とを目的としている。
(Object of the Invention) An object of the present invention is to solve such conventional problems and provide an intercooler device that is small and has excellent cooling performance.

(発明の構成ならびに作用) この発明は、過給機付エンジンのインタクーラ装置にお
いて、過給機下流の吸気通路に所定の空間部(蒸発空間
)を残して液状の冷媒が充填されたクーラ本体(蒸発器
)が介装される。
(Structure and operation of the invention) The present invention provides an intercooler device for a supercharged engine, in which a cooler body ( evaporator) is installed.

そして、このクーラ本体と冷媒の凝縮器とを。And this cooler body and refrigerant condenser.

上部の冷媒蒸気を流す蒸気管と下部の凝縮冷媒を戻す戻
り管とで連通して閉ループの冷却回路を形成すると共に
、この冷却回路内の圧力全減圧する手段が設けられる。
A vapor pipe through which refrigerant vapor flows in the upper part and a return pipe which returns condensed refrigerant in the lower part communicate with each other to form a closed-loop cooling circuit, and a means is provided for completely reducing the pressure within this cooling circuit.

このクーラ本体に充填された冷媒は、過給機〃)らの加
圧吸気がクーラ本体全血る際に加圧吸気から熱を奪い沸
騰蒸発し、その蒸気が蒸気管を介して凝縮器へと流入す
る。
The refrigerant filled in the cooler body absorbs heat from the pressurized intake air when it enters the cooler body, boiling and evaporating, and the vapor flows through the steam pipe to the condenser. and inflow.

凝縮器では、流入した蒸気が例えば冷却ファン等〃為ら
の送風量に応じて冷却凝縮され、もとの液体となった冷
媒が戻り管を介してポンプもしくは凝縮器との位置の高
低差によりクーラ本体へと戻される。
In the condenser, the incoming steam is cooled and condensed according to the air flow rate from a cooling fan, etc., and the refrigerant, which has become a liquid, returns to the pump or condenser due to the height difference between the pump and the condenser. It is returned to the cooler body.

このような冷媒の沸騰気化潜熱は極めて大きく。The latent heat of boiling and vaporization of such refrigerants is extremely large.

しかも冷媒の沸点は冷却回路内の圧力會減圧することで
任意に下げられるηλら、冷媒は所定低温下で沸騰し、
このため加圧吸気力Aら十分に熱全奪うことができる。
Moreover, the boiling point of the refrigerant can be lowered arbitrarily by reducing the pressure in the cooling circuit, and the refrigerant boils at a predetermined low temperature.
Therefore, all of the heat can be sufficiently removed from the pressurized intake force A.

他方、蒸気にLる凝縮器での放熱作用は著しく高り、シ
タがって少敏の冷媒で加圧吸気?効率良く所定の温度に
的確に冷却することが可能となる。
On the other hand, the heat dissipation effect in the condenser that flows into the steam is significantly increased, making it difficult to pressurize intake air with a low-temperature refrigerant. It becomes possible to efficiently and accurately cool to a predetermined temperature.

これに工9、装置全体の小型化が図れ、またポンプを用
いた場合にもその動力は極めて小さくなり、インタクー
ラとしての優れた性能が確保されるのである。
In addition, the entire device can be made smaller, and even when a pump is used, the power required is extremely small, ensuring excellent performance as an intercooler.

(実施例) 第4図は本発明のインタクーラ装置の笑施例會示す構成
断面図で、過給機(図示しない)により加圧された吸気
をエンジンのスロットルチャンバ(図示しない)へと導
く吸気通路14の途中に略箱形のクーラ本体15が介装
される。
(Embodiment) Fig. 4 is a cross-sectional view of the structure of an intercooler device according to an embodiment of the present invention, showing an intake passageway that guides intake air pressurized by a supercharger (not shown) to a throttle chamber (not shown) of an engine. A substantially box-shaped cooler body 15 is interposed in the middle of the cooler body 14 .

このクーラ本体15は、第5図に示すように内部に方形
パイプ状の空気通路16が間隔をおいて多数配列され、
この空気通路16がクーラ本体15前後の吸気通路14
と接続される。
As shown in FIG. 5, this cooler main body 15 has a large number of rectangular pipe-shaped air passages 16 arranged at intervals inside it.
This air passage 16 is the intake passage 14 before and after the cooler main body 15.
connected to.

この空気通路16の内壁には多数の伝熱フィン17が突
設され、空気通路16を除くクーラ本体15の内部は吸
気通路14やクーラ本体15外と隔成するように形成さ
れる。
A large number of heat transfer fins 17 are protruded from the inner wall of the air passage 16, and the inside of the cooler body 15 except for the air passage 16 is formed to be separated from the intake passage 14 and the outside of the cooler body 15.

そして、この空気通路16の上方と下方のクーラ本体1
5内部に、いくら〃・の空間を設けて蒸気留部18と液
留部19とが形成され、蒸気留部18全残してクーラネ
体15内部に所足址の冷媒が充填される。
The cooler main body 1 above and below this air passage 16
5, a vapor reservoir section 18 and a liquid reservoir section 19 are formed with a space of a certain amount.

この冷媒は、水と不凍液と葡混合した通常のエンジン冷
却液で良く、この場合空気1tll路16が最大蒸発時
蕗出しない程度に充填される。
This refrigerant may be a normal engine coolant that is a mixture of water, antifreeze, and water, and in this case, 1 tll of air is filled in the passage 16 to the extent that it does not leak out at the time of maximum evaporation.

他方、蒸気留部18にはクーラ本体15の上方より比較
的径の大きい蒸気管20が、液留部19にはクーラ本体
15の側方↓9小径の戻り管21がそれぞれ開口接続し
、クーラ本体15と反対側の位置の蒸気管20と戻!l
l管21との間に冷媒の凝縮器22が配設される。
On the other hand, a steam pipe 20 with a relatively larger diameter than above the cooler main body 15 is connected to the vapor reservoir 18, and a small-diameter return pipe 21 on the side of the cooler main body 15 is connected to the liquid reservoir 19. Return to the steam pipe 20 on the opposite side of the main body 15! l
A refrigerant condenser 22 is disposed between the l pipe 21 and the refrigerant condenser 22 .

この凝縮622は、エンジンのラジェータとほぼ同じよ
うな構造で、そのほぼ全面にわたって例えば冷却ファン
(図示しない)刀・ら送られる冷却風や走行風が通過す
る多数の冷却空気通路23が形成され、この通路23の
外壁に多数の放熱フィン24を設けている。
This condenser 622 has a structure similar to that of an engine radiator, and has a large number of cooling air passages 23 formed over almost its entire surface, through which cooling air sent from a cooling fan (not shown) or running air passes. A large number of radiation fins 24 are provided on the outer wall of this passage 23.

凝縮器220内部は冷却空気通路23等と隔成。The inside of the condenser 220 is separated from the cooling air passage 23 and the like.

密閉され、その上部と下部に集合室25.26が形成さ
れる。
It is sealed, and gathering chambers 25 and 26 are formed at its upper and lower parts.

そして、この集合室25に前記蒸気管20が、集合室2
6に戻り管21がそれぞれ開口接続し、この凝縮器22
と蒸気管20と戻ジ管21とクーラ本体15とで閉ルー
プの冷却(ロ)路が形成される。
The steam pipe 20 is connected to the gathering chamber 25.
A return pipe 21 is open connected to each of the condensers 22 and 6.
A closed loop cooling path is formed by the steam pipe 20, return pipe 21, and cooler main body 15.

この場合、凝縮器22は集合室26がクーラ本体15↓
り高い位置となるように設置され1例えば大型車等に適
用するときには運転室の上部等に設置しても良い。
In this case, in the condenser 22, the gathering chamber 26 is the cooler main body 15↓
For example, when applied to a large vehicle, it may be installed in the upper part of the driver's cab.

一方、前記冷却回路内の圧力2減圧する手段として真空
ポンプ27が設けられ、その吸込側が配管28會介して
凝縮器22の上部の集合室25に連通される。
On the other hand, a vacuum pump 27 is provided as a means for reducing the pressure in the cooling circuit by 2, and its suction side communicates with the collecting chamber 25 above the condenser 22 via a pipe 28.

この真空ボンデ27は電動式のもので、制御回路29に
エフ駆動制御され、この制御回路29には、凝縮器22
の集合室25内に設置されたバキュームセンサ(圧力セ
ンサ) 30 >らの圧力信号と、エンジンの始動キー
32のON 、OFF信号が入力される。
This vacuum bonder 27 is an electric type, and is F-driven and controlled by a control circuit 29.
Pressure signals from a vacuum sensor (pressure sensor) 30 installed in the gathering chamber 25 and ON/OFF signals of the engine start key 32 are input.

そして、制御回路29は、これらの信号に基づいてエン
−)/の始動直後から冷却回路内の圧力を所定の圧力に
減圧するように、真空ポンプ27會駆動制御する。
Based on these signals, the control circuit 29 controls the vacuum pump 27 so as to reduce the pressure in the cooling circuit to a predetermined pressure immediately after the engine starts.

この場合、冷却回路内の圧力は例えば第6図に示す↓う
に72txrmHf位まで減圧され、これに、c!ll
クーラ本体15内に充填された冷媒の沸点全豹45℃に
設定するようになっている。
In this case, the pressure in the cooling circuit is reduced to, for example, 72txrmHf as shown in Figure 6, and c! ll
The boiling point of the refrigerant filled in the cooler body 15 is set at 45°C.

この工うに構成され1次にその作用を説明する。The system is constructed in this way, and its operation will be explained first.

エンジンの始動直後には、バキュームセンサ30の信号
に応じて真空ボンデ27が駆動され、冷却回路内の圧力
が所定の圧力(約72 ttanHf )に設定される
Immediately after starting the engine, the vacuum bonder 27 is driven in response to a signal from the vacuum sensor 30, and the pressure in the cooling circuit is set to a predetermined pressure (approximately 72 ttanHf).

この状態において、過給機で加圧された高温の吸気がク
ーラ本体15の空気通路16iIffiると、その吸気
〃)らの熱でクーラ本体15円に充填されている冷媒が
加熱される。
In this state, when high-temperature intake air pressurized by the supercharger enters the air passage 16iIffi of the cooler main body 15, the refrigerant filled in the cooler main body 15 is heated by the heat from the intake air.

そして、これに伴い冷媒の温度が上昇するが。As a result, the temperature of the refrigerant increases.

このとき冷却回路内の圧力に応じて定まる温度(約45
℃)K達すると、冷媒は沸騰し始め、吸気から気化潜熱
を奪しながら蒸発を始めるのである。
At this time, the temperature (approximately 45
When the temperature reaches K), the refrigerant begins to boil and evaporates while taking latent heat of vaporization from the intake air.

即ち、冷却回路内の圧力會低圧にしたことで。In other words, by lowering the pressure inside the cooling circuit.

所定低温下で冷媒を沸騰させることができ、したがって
極めて大きな沸騰気化酷熱により吸気から十分に熱を奪
うことが可能となる。
The refrigerant can be boiled at a predetermined low temperature, and therefore, it is possible to sufficiently remove heat from the intake air through extremely large boiling and vaporizing heat.

そして、この沸騰蒸気は軽いため、クーラ本体15の蒸
気留部18η)ら蒸気管20會介して凝縮器22へとス
ムーズに流入し、ここで冷却ファン等からの通風により
放熱し冷却され、もとの液体に凝縮される。
Since this boiling steam is light, it smoothly flows from the steam distillation section 18η) of the cooler main body 15 through the steam pipe 20 to the condenser 22, where it is cooled by radiating heat by ventilation from a cooling fan, etc. is condensed into a liquid.

この蒸気による凝縮器22での放熱効率は極めて良好で
、このため比較的弱い通風でも蒸気の冷却、凝縮は十分
に促進される。
The heat dissipation efficiency of this steam in the condenser 22 is extremely good, and therefore even relatively weak ventilation can sufficiently promote cooling and condensation of the steam.

そして、ここで凝縮液化された冷媒は、凝縮器22の集
合室26vCW下し、戻り管21’i介して集合室26
.C!Qも低位置にあるクーラ本体15にく十分に冷却
することができ、したがって少量の冷媒で加圧吸気?的
確に所定の温度まで5例えば50℃まで容易に下げるこ
とが可能になる。
Then, the refrigerant condensed and liquefied here is sent down to the collecting chamber 26vCW of the condenser 22, and passes through the return pipe 21'i to the collecting chamber 26vCW.
.. C! Q can also sufficiently cool the cooler body 15 which is located at a low position, and therefore pressurized intake air can be cooled with a small amount of refrigerant. It becomes possible to easily lower the temperature to a predetermined temperature, for example, 50°C.

この結果、装置全体の小型化が図れ、冷媒全循環するポ
ンプが不要となり、さらには冷却ファンの駆動動力も少
なくてすみ、インタクーラとして優れた性能が確保され
るのである。
As a result, the entire device can be made smaller, a pump for completely circulating the refrigerant is no longer required, and the driving power for the cooling fan is also reduced, ensuring excellent performance as an intercooler.

なお、真空ポンプ27はバキュームセンサ30の信号に
応じて駆動されるので、冷却(ロ)路内の圧力がリーク
にエリ上昇した場合には所定圧に迄戻され運転時には常
に装置の正常な動作が維持されるようにするがハンチン
グ防止の為ヒステリシスを待たせるのが好ましい。
The vacuum pump 27 is driven in accordance with the signal from the vacuum sensor 30, so if the pressure in the cooling path rises due to a leak, it will be returned to the predetermined pressure and the device will always operate normally during operation. is maintained, but it is preferable to wait for hysteresis to prevent hunting.

第7図は本発明の池の実施例で1乗用車等に適用される
に好適のもので、凝縮器22がクーラ本体15と同じ高
さもしくはこれ按Jニジ低い位置に設置される工うなと
きに、エンジン冷却水温センサ31と、凝縮器22とク
ーラ本体15と全接続する戻り管21の途中に供給ポン
プ(電動ボンデ)33を設置し、このボンデ33にニジ
凝縮器22からの液化冷媒をクーラ本体15へと送るよ
うにしたものである。
FIG. 7 shows an embodiment of the pond according to the present invention, which is suitable for application to a passenger car, etc., when the condenser 22 is installed at the same height as the cooler body 15 or at a position slightly lower than this. A supply pump (electric bonder) 33 is installed in the middle of the return pipe 21 that connects the engine cooling water temperature sensor 31, the condenser 22, and the cooler main body 15, and the liquefied refrigerant from the rainbow condenser 22 is supplied to the bonder 33. The water is sent to the cooler main body 15.

そして、この場合第8図に示す↓うにクーラ本体15の
側面に開口する液面制御手段としてのオーバーフロー管
34が設ffられ、このオーバーフロー管34が戻り管
21と並列に設けられたドレーン管35ケ介して凝縮器
22の下部に接続される。
In this case, as shown in FIG. 8, an overflow pipe 34 is installed as a liquid level control means that opens on the side surface of the sea urchin cooler main body 15, and this overflow pipe 34 is connected to a drain pipe 35 provided in parallel with the return pipe 21. It is connected to the lower part of the condenser 22 through the pipe.

凝縮器22の液化冷媒は供給ボンデ33にエフクーラ本
体15へと送られるが、このときクーラ本体15の冷媒
液面がオーバーフロー管34の画さを越えると、その冷
媒はオーバーフロー管34゜ドレーン管35により凝縮
器22へと戻され、したがってクーラ本体15の冷媒液
面は常に適正レベルに保たれるのである。
The liquefied refrigerant in the condenser 22 is sent to the supply bond 33 to the F-cooler main body 15, but at this time, if the refrigerant liquid level in the cooler main body 15 exceeds the width of the overflow pipe 34, the refrigerant flows through the overflow pipe 34 and the drain pipe 35. The refrigerant is returned to the condenser 22, and therefore the refrigerant liquid level in the cooler body 15 is always maintained at an appropriate level.

マタ、ドレーン管35は、オーバーフロー管34と分岐
してクーラ本体15の下部の液留部19に開口し、その
途中に′イ磁弁36が介装される。
The main drain pipe 35 branches off from the overflow pipe 34 and opens into the liquid storage section 19 at the lower part of the cooler main body 15, and an electromagnetic valve 36 is interposed therebetween.

この電磁弁36は、供給ポンプ33お工び冷却回路内の
圧力を減圧する真空7J5ンデ27と共に制御回路37
に、、c!ll駆動制御され、エンジンの停止時および
エンジンの冷却水温が低い暖機時にのみ開〃)れる。
This solenoid valve 36 is connected to the control circuit 37 together with the vacuum 7J5 cylinder 27 that reduces the pressure in the supply pump 33 and the cooling circuit.
ni,,c! ll drive control, and is opened only when the engine is stopped or when the engine is warmed up when the cooling water temperature is low.

即ち、エンジンの停止時から始動後の暖機時に〃≧けて
、電磁弁36?!1″開くことでクーラネ体15内の冷
媒音凝縮器22に貯留させ、ターラネ体15円葡空状態
に保つ。このため、過給機がほとんど作動しない暖機運
転時等に吸気を冷却することは回避され、暖機性能なら
びに冷間始動性能が大幅に向上される。
That is, from when the engine is stopped to when it is warmed up after starting, the solenoid valve 36? ! By opening 1", the refrigerant sound is stored in the condenser 22 inside the cooler body 15, and the cooler body 15 is kept in an empty state. Therefore, the intake air can be cooled during warm-up operation when the supercharger hardly operates. is avoided, and warm-up performance and cold start performance are greatly improved.

尚、始動キーがオンされ7c揚合エンジン冷却水温が例
えば60℃以上ある↓うなときは暖機再始動と判断し、
電磁弁36はすぐ閉じられる。
In addition, when the start key is turned on and the 7c engine cooling water temperature is 60℃ or higher, for example, it is determined that the engine should be warmed up and restarted.
The solenoid valve 36 is immediately closed.

他方、供給ボンデ33は、電磁弁36が閉じた後に駆動
され、前述し′fc↓うに冷媒音クーラ本体15に送る
が、この場合過給機からの吸気の圧力が低いとき1例え
ば大気圧以下となる条件では吸気の冷却を必要としない
から、その駆動を停止させるようにすれば、駆動動力の
低減が図れる。なお、この実施例においても前記実施例
と同様小皺の冷媒で効率良く吸気?冷却できる〃1ら、
このようにポンプ33葡用いてももともとその谷言およ
び動力は極めて小さくてすみ1例えば第3図のものと較
べてお工そし□。となる。
On the other hand, the supply bond 33 is driven after the solenoid valve 36 is closed and sends the refrigerant to the sound cooler main body 15 as described above. Under these conditions, there is no need to cool the intake air, so if the drive is stopped, the drive power can be reduced. In addition, in this example as well, as in the previous example, air can be drawn in efficiently using a small wrinkled refrigerant. Can be cooled〃1 etc.
Even if the pump 33 is used in this way, its output and power are originally extremely small compared to, for example, the one in Fig. 3. becomes.

ところで、クーラ本体15内の冷媒はその液面が上昇す
ると5オーバーフロー管34〃為ら凝縮器22へと戻さ
れ、このため凝縮器22側の冷媒とクーラ本体15側の
冷媒は常に混流した状態にある。したがって、冷媒に水
と不凍液との混合液ケ用いた場合、水だけが蒸発してそ
の蒸気が蒸気管20〃)ら凝縮器22へと流入するが、
凝縮器22側の冷媒の不凍液の磯贋のみが下がるような
ことはなく、良好な防錆効果が保たれる。
By the way, when the liquid level of the refrigerant in the cooler main body 15 rises, it is returned to the condenser 22 through the overflow pipe 34, so that the refrigerant on the condenser 22 side and the refrigerant on the cooler main body 15 side are always in a mixed flow state. It is in. Therefore, when a mixture of water and antifreeze is used as a refrigerant, only water evaporates and its vapor flows into the condenser 22 from the steam pipe 20.
The quality of the antifreeze liquid in the refrigerant on the condenser 22 side does not deteriorate, and a good rust prevention effect is maintained.

なお1図中38はバキュームタンクで、その一方が真空
ポンプ27に(真空ポンプ27の排気1H口に)接続し
、他方が逆止弁39葡介して図示しないエンジンの絞弁
下流の吸気マニホールド等に接続されている。過給機が
作動しないアイドリング時等に、バキュームタンク38
Vc絞弁の下流にて発生した強い吸入負圧が蓄えられ、
この負圧にニジ真空ボンデ27の駆動を補う。これによ
り、真空ボンデ27の圧力比を小さくすることができ。
Note that 38 in Figure 1 is a vacuum tank, one of which is connected to the vacuum pump 27 (to the exhaust 1H port of the vacuum pump 27), and the other is connected to the intake manifold, etc. downstream of the throttle valve of the engine (not shown) via the check valve 39. It is connected to the. When idling, etc. when the supercharger does not operate, the vacuum tank 38
The strong suction negative pressure generated downstream of the Vc throttle valve is stored,
This negative pressure is supplemented with the drive of the rainbow vacuum bonder 27. Thereby, the pressure ratio of the vacuum bonder 27 can be reduced.

例えば小型で簡単なダイヤフラム式等のポンプが使用可
能となる。
For example, a small and simple diaphragm type pump can be used.

(発明の効果) 冷媒の沸点を下げ、冷媒の大きな沸騰気化潜熱に、Cり
、過給機からの加圧吸気全効率良く冷却することができ
、小型で優れた冷却性能のインタクーラが得られるとい
う効果がある。
(Effect of the invention) The boiling point of the refrigerant is lowered, and the large latent heat of boiling and vaporization of the refrigerant is used to cool the pressurized intake air from the supercharger with full efficiency, resulting in a compact intercooler with excellent cooling performance. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概略構成図、第2図はその冷却作用を
示すグラフ、第3図は他の従来例の構成断面図、第4図
は本発明の実施例を示す構成断面図、第5図はそのA−
AM断面図、第6図は回路内圧力の設定例を示すグラフ
、第7図は本発明の他の実施例を示す構成断面図、第8
図はそのB−BWB断面図である。 14・・・吸気通路% 15・・・クーラ本体、20・
・・蒸気管、21・・・戻9管、22・・・凝縮器、2
7・・・真空ボンデ、29・・・制御回路、30・・・
バキュームセンサ、31・・・冷却水温センサ、32・
・・始動キー。 33・・・供給ポンプ、34・・・オーバーフロー管。 36・・・電磁弁、37・・・制御回路、38・・・バ
キュームタンク。 特許出願人 日産自動車株式会社 第1図 第2図 第4図 3229 3O27 2528 224 2/ A 26 °/8 /6.2 4 19・ 第6図 も 天 ン4トサ工の3列5〆ヒ、 。C 2119/7 /b
FIG. 1 is a schematic configuration diagram of a conventional example, FIG. 2 is a graph showing its cooling effect, FIG. 3 is a sectional view of another conventional example, and FIG. 4 is a sectional view of a configuration of an embodiment of the present invention. Figure 5 shows the A-
AM sectional view, FIG. 6 is a graph showing an example of setting the pressure in the circuit, FIG. 7 is a configuration sectional view showing another embodiment of the present invention, and FIG.
The figure is a B-BWB sectional view thereof. 14... Intake passage % 15... Cooler body, 20.
...Steam pipe, 21... Return 9 pipe, 22... Condenser, 2
7... Vacuum bonder, 29... Control circuit, 30...
Vacuum sensor, 31...Cooling water temperature sensor, 32...
・Start key. 33... Supply pump, 34... Overflow pipe. 36... Solenoid valve, 37... Control circuit, 38... Vacuum tank. Patent applicant: Nissan Motor Co., Ltd. Figure 1 Figure 2 Figure 4 3229 3O27 2528 224 2/ A 26 °/8 /6.2 4 19. . C 2119/7 /b

Claims (1)

【特許請求の範囲】 1、 過給機から吸気通路を介して機関本体に送られる
加圧吸気全冷却する過給機付エンジンのインタクーラ装
置において、過給機下流の吸気通路に上部に所定の空間
部を残して液状の冷媒が充填されたクーラ本体全介装し
、このクーラ本体と冷媒の凝縮器とを、上部の冷媒蒸気
を流す蒸気管と下部の凝縮冷媒會戻す戻り管とで連通し
て閉回路を形成すると共に、この閉回路内の圧力全減圧
する手段を設けたことを特徴とする過給機付エンジンの
インタクーラ装置。 2、上記減圧手段は、上記空間部と連通ずる通路に設け
に真空ポンプである特許請求の範囲第1項記載の過給機
付エンジンのインタクーラ装置。 3、上記減圧手段は、閉ループ内の圧力と、エンジン始
動キーに応じて作動する特許請求の範囲第1項t7Cは
第2項記載の過給機付エンジンのインタクーラ装置。
[Claims] 1. In an intercooler device for a supercharged engine that completely cools pressurized intake air sent from the supercharger to the engine main body via the intake passage, there is a predetermined upper part in the intake passage downstream of the supercharger. The entire cooler body is filled with liquid refrigerant, leaving a space, and the cooler body and the refrigerant condenser are connected through a steam pipe in the upper part through which the refrigerant vapor flows and a return pipe in the lower part to return the condensed refrigerant. 1. An intercooler device for a supercharged engine, characterized in that the intercooler device forms a closed circuit, and further comprises means for completely reducing the pressure within the closed circuit. 2. The intercooler device for a supercharged engine according to claim 1, wherein the pressure reducing means is a vacuum pump provided in a passage communicating with the space. 3. The pressure reducing means operates according to the pressure in the closed loop and the engine start key.Claim 1 (t7C) is an intercooler device for a supercharged engine according to claim 2.
JP58239326A 1983-12-19 1983-12-19 Inter-cooler device for engine with supercharger Pending JPS60132026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239326A JPS60132026A (en) 1983-12-19 1983-12-19 Inter-cooler device for engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239326A JPS60132026A (en) 1983-12-19 1983-12-19 Inter-cooler device for engine with supercharger

Publications (1)

Publication Number Publication Date
JPS60132026A true JPS60132026A (en) 1985-07-13

Family

ID=17043051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239326A Pending JPS60132026A (en) 1983-12-19 1983-12-19 Inter-cooler device for engine with supercharger

Country Status (1)

Country Link
JP (1) JPS60132026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248613A (en) * 1989-03-21 1990-10-04 Aisin Seiki Co Ltd Cooling device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248613A (en) * 1989-03-21 1990-10-04 Aisin Seiki Co Ltd Cooling device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS60164614A (en) Boiling-cooling device for engine with supercharger
US4598687A (en) Intercooler for supercharged internal combustion engine
JPS61275522A (en) Evaporative cooling device for engine
EP0141363B1 (en) Intercooler for supercharged internal combustion engine or the like
US20020116927A1 (en) Intercooler system for internal combustion engine
WO2011136717A1 (en) Arrangement for cooling of compressed air and/or recirculating exhaust gases which are led to a combustion engine
JPH0144888B2 (en)
CN105351071B (en) A kind of engine-cooling system
JPS6143213A (en) Evaporative cooling device of internal-combustion engine
JPS60132026A (en) Inter-cooler device for engine with supercharger
JPS6052290B2 (en) Intake air cooler for internal combustion engine with supercharger
CN105156196B (en) A kind of engine-cooling system
CN105201627B (en) A kind of engine-cooling system
US10830122B2 (en) Intake and charge air cooling system
JP2001173520A (en) Liquefied gas engine
JPS6165016A (en) Intake device of engine with supercharger
US11680515B1 (en) Intake and charge air cooling system with passive variable charge enabler
JPS60132027A (en) Inter-cooler device for engine with supercharger
JPH0520563B2 (en)
JPS6258018A (en) Intercooler device for engine with supercharger
JP4566473B2 (en) Fuel cooling method in internal combustion engine
JPS62276218A (en) Inter cooler device for engine provided with supercharger
KR100213552B1 (en) Apparatus for cooling intake air in automobiles
JP2001152848A (en) Internal combustion engine
JPH0350259Y2 (en)