JPS6260127B2 - - Google Patents

Info

Publication number
JPS6260127B2
JPS6260127B2 JP8300279A JP8300279A JPS6260127B2 JP S6260127 B2 JPS6260127 B2 JP S6260127B2 JP 8300279 A JP8300279 A JP 8300279A JP 8300279 A JP8300279 A JP 8300279A JP S6260127 B2 JPS6260127 B2 JP S6260127B2
Authority
JP
Japan
Prior art keywords
water
fibers
fiber
filter
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8300279A
Other languages
Japanese (ja)
Other versions
JPS567609A (en
Inventor
Koji Tanaka
Minoru Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP8300279A priority Critical patent/JPS567609A/en
Priority to GB8004476A priority patent/GB2044273B/en
Priority to DE19803005198 priority patent/DE3005198A1/en
Publication of JPS567609A publication Critical patent/JPS567609A/en
Priority to US06/351,363 priority patent/US4507204A/en
Publication of JPS6260127B2 publication Critical patent/JPS6260127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、特定の水膨潤性繊維を含有する繊維
が円筒状に形成されてなる液体類用除水フイルタ
ーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water removal filter for liquids in which fibers containing specific water-swellable fibers are formed into a cylindrical shape.

近年、高度の水膨潤性を有し、かつ水不溶性の
重合体(ヒドロゲル)が、おむつ、生理用品、土
壌改良材、軟質コンタクトレンズ等幅広い用途分
野に適用されつつある。
In recent years, highly water-swellable and water-insoluble polymers (hydrogel) are being applied to a wide range of fields such as diapers, sanitary products, soil improvement materials, and soft contact lenses.

一方、有機溶剤、潤滑油等の水と混和性を有さ
ない液体類中に混入する水を除去することによ
り、かかる液体類を再使用或は寿命延長せんとす
る要求は強く、かかる目的のために例えばシリカ
ゲル、ゼオライトの無機塩類の粒状物や一部で使
用されている。ところが、かかる無機塩類によつ
ても若干の除水が可能ではあるが、その除水能力
は極めて低く、更にかかる無機塩類は精製液体中
にある程度混入する本質的欠陥を内在しており、
以てその使用分野が制限されざるを得なかつた。
また、天然パルプ等のある程度吸湿性乃至吸水性
を有する繊維の使用が一部で試みられているが、
これとてもその除水能力は極めて低く、実用性の
乏しいものでしかなかつた。
On the other hand, there is a strong demand for reusing or extending the lifespan of liquids that are not miscible with water, such as organic solvents and lubricating oils, by removing water that is mixed in with them. For example, it is used in granules and some inorganic salts of silica gel and zeolite. However, although it is possible to remove some water with such inorganic salts, their water removal ability is extremely low, and furthermore, such inorganic salts have the inherent defect that they are mixed into purified liquids to some extent.
As a result, its field of use had to be restricted.
In addition, some attempts have been made to use fibers that have some degree of hygroscopicity or water absorption, such as natural pulp.
However, its water removal ability was extremely low, and it was of little practical use.

そこで、本発明者等は前記水膨潤性重合体(ヒ
ドロゲル)の瞬間多量吸水能力或はその水分保持
能力に着目し、かかるヒドロゲルの液体類用除去
水材としての利用可能性を検討してみた。ところ
が、粒状形態のヒドロゲルを使用する場合には、
優れた吸水性能を有するが故に瞬時に膨潤して目
詰りの起こし、極めて短時間で除水処理を停止せ
ざるを得なくなる欠点を内在することが判明し
た。そこで、かかる目詰りの改良のために、繊維
形態を有するヒドロゲルを使用してみたところ、
粒状ヒドロゲルに比べてある程度除水処理時間の
の延長が可能ではあるが、繊維の膨潤およびへた
りにより、やはり目詰りの問題を克服することは
できず、その吸水性能を発揮させることはできな
かつた。そこで、本発明者等は、特願昭54−
15786号明細書(特開昭55−106539号)において
提案したように、ヒドロゲル外層部とAN系重合
体および/または他の重合体内層部との多相構造
を有する水膨潤性繊維単一品または該繊維と他の
繊維との混用品を使用することにより、繊維のへ
たりがなく長時間の除水処理が可能となり、ヒド
ロゲルのもつ吸水性能を十分に発揮させ得ること
を見出した。
Therefore, the present inventors focused on the instantaneous large amount water absorption ability or water retention ability of the water-swellable polymer (hydrogel), and investigated the possibility of using such hydrogel as a water removal material for liquids. . However, when using hydrogels in particulate form,
Although it has excellent water absorption performance, it has been found that it has the disadvantage that it swells instantaneously and causes clogging, making it necessary to stop water removal treatment in an extremely short period of time. Therefore, in order to improve such clogging, we tried using a hydrogel with a fibrous form.
Although it is possible to extend the water removal treatment time to some extent compared to granular hydrogels, it is still not possible to overcome the problem of clogging due to swelling and settling of the fibers, and the water absorption performance cannot be fully utilized. Ta. Therefore, the inventors of the present invention proposed the following patent application:
As proposed in Specification No. 15786 (Japanese Unexamined Patent Publication No. 106539/1983), water-swellable fibers having a multiphase structure of an outer layer of hydrogel and an inner layer of AN polymer and/or other polymers, or It has been found that by using a mixture of these fibers and other fibers, water removal treatment can be carried out for a long time without the fibers becoming sag, and the water absorbing performance of the hydrogel can be fully demonstrated.

かかる状況下において本発明者等は、かかる知
見に基づき、前記特定の繊維状ヒドロゲルを使用
し、液体類用除水材として円筒状(ワインド)フ
イルターを提供すべく鋭意検討した結果少なくと
も繊維外層部の一部がヒドロゲルで構成され、か
つ残部がAN系重合体および/または他の重合体
で構成される水膨潤性繊維を含有する繊維集合体
が円筒状に形成されてなるフイルターが、円筒の
長さ方向の密度斑によるバイパスフローの問題或
は繊維のへたりもなく長時間の除水処理を可能に
し、ヒドロゲルの有する吸水性能を存分に発揮さ
せ得ることを見出し、本発明に到達した。
Under such circumstances, the inventors of the present invention, based on such knowledge, conducted intensive studies to provide a cylindrical (wind) filter as a water removal material for liquids using the above-mentioned specific fibrous hydrogel. A filter is formed by forming a cylindrical fiber aggregate containing water-swellable fibers, a part of which is composed of hydrogel, and the remainder of which is composed of AN polymer and/or other polymers. The present invention was achieved by discovering that water removal treatment can be performed for a long time without problems of bypass flow due to density unevenness in the length direction or fatigue of the fibers, and that the water absorption performance of hydrogel can be fully demonstrated. .

即ち、本発明の主要な目的は、成形が容易であ
り優れた除水能力を有する新規な液体類用除水フ
イルターを提供することにあり、本発明の目的
は、円筒の長さ方向の密度斑がなく、捲き密度お
よび円筒の厚みを任意に調節し得る除水フイルタ
ーを提供することにある。
That is, the main object of the present invention is to provide a novel water removal filter for liquids that is easy to mold and has excellent water removal ability. To provide a water removal filter which is free from spots and whose winding density and cylindrical thickness can be arbitrarily adjusted.

本発明の他の目的は、卓抜した吸水膨潤性能を
有し、へたり或は目詰りを起こすことがなく、以
て交換することなく長時間使用することができ、
また粒状無機塩類を使用する場合のように精製液
体中に除水材が混入することがなく、さらに交換
の容易な液体用除水フイルターを提供することに
あり、本発明の更に異なる目的は、以下に記載す
る本発明の具体的な説明により明らかとなろう。
Another object of the present invention is to have excellent water absorption and swelling performance, not to cause settling or clogging, and to be able to be used for a long time without replacement.
Another object of the present invention is to provide a water removal filter for liquids that does not mix water removal material into purified liquids as is the case when granular inorganic salts are used, and which is easy to replace. It will become clear from the detailed description of the present invention provided below.

上述した本発明の目的は、少なくとも繊維外層
部の一部がヒドロゲルで構成され、かつ残部が
AN系重合体および/または他の重合体で構成さ
れる水膨潤性繊維を含有する繊維集合体が複数個
の穴が穿設された中筒に捲回され円筒状に形成さ
れることにより、有利に達成することができる。
The above-mentioned object of the present invention is that at least a part of the fiber outer layer is made of hydrogel, and the remaining part is made of hydrogel.
By winding a fiber aggregate containing water-swellable fibers made of AN polymer and/or other polymers into a cylindrical shape, can be achieved advantageously.

ここにおいて、本発明に係る水膨潤性繊維と
は、吸水膨潤性能を発揮するヒドロゲル層と強伸
度等の繊維物性を分担するAN系重合体および/
または他の重合体層との多層構造を有する繊維の
総称である。かかる水膨潤性繊維の水膨潤度は、
2c.c./g以上、更に好ましくは2〜350c.c./gの
範囲内にあることが望ましく、また、ヒドロゲル
層の割合は、吸水膨潤性能と繊維物性との兼ね合
いで適宜設定されるべきであり一義的に規定する
ことは困難であるが、乾燥時における該繊維の全
体積を基準として概ね55%以下、更に好ましくは
5〜40%の範囲内にあることが望ましい。さら
に、繊維の水膨潤度は、架橋密度によつても影響
され繊維中の−COOX(X:アルカリ金属または
NH4)で示される塩型カルボキシル基量のみによ
つて支配されないが、該塩型カルボキシル基量が
一般に0.1〜4.0m mol/g、更に好ましくは0.5
〜3.5m mol/gの範囲内にあるものが水膨潤
度、繊維物性、柔軟性等の点で望ましい。
Here, the water-swellable fiber according to the present invention refers to a hydrogel layer that exhibits water absorption and swelling performance, and an AN-based polymer and/or that shares fiber physical properties such as strength and elongation.
It is also a general term for fibers that have a multilayer structure with other polymer layers. The degree of water swelling of such water-swellable fibers is
It is desirable that the amount is 2 c.c./g or more, more preferably within the range of 2 to 350 c.c./g, and the proportion of the hydrogel layer is appropriately set in consideration of water absorption and swelling performance and fiber physical properties. Although it is difficult to define it unambiguously, it is desirable that it be approximately 55% or less, more preferably within the range of 5 to 40%, based on the total volume of the fiber when dry. Furthermore, the degree of water swelling of fibers is also influenced by the crosslinking density, and -COOX (X: alkali metal or
Although not controlled solely by the amount of salt-type carboxyl groups represented by NH 4 ), the amount of salt-type carboxyl groups is generally 0.1 to 4.0 mmol/g, more preferably 0.5
A content in the range of ~3.5 mmol/g is desirable in terms of water swelling degree, fiber properties, flexibility, etc.

尚、上記AN系重合体とは、30重量%以上、好
ましくは50%以上のANを含有する重合体の総称
であり、AN単独重合体またはANと少なくとも1
種の他のエチレン系不飽和化合物との共重合体、
或はANと他の重合体、例えば澱粉、ポリビニル
アルコール等とのグラフト重合体等を挙げること
ができるが、前記AN含有率を満足する限り、AN
系重合体と他の重合体、例えばポリ塩化ビニル
系、ポリアミド系、ポリオレフイン系、ポリスチ
レン系、ポリビニルアルコール系、セルロース系
等との混合重合体を使用することもできる。
The above-mentioned AN-based polymer is a general term for polymers containing 30% by weight or more, preferably 50% or more of AN, and is an AN homopolymer or a polymer containing AN and at least 1% by weight.
copolymers with other ethylenically unsaturated compounds of the species,
Alternatively, graft polymers of AN and other polymers such as starch, polyvinyl alcohol, etc. can be mentioned, but as long as the above AN content is satisfied, AN
It is also possible to use a mixed polymer of this polymer and other polymers such as polyvinyl chloride, polyamide, polyolefin, polystyrene, polyvinyl alcohol, cellulose, etc.

また、前記水膨潤性繊維を含有する繊維集合体
とは、糸、ウエブ、織物、編物等中筒に円筒状に
捲回し得る形態の繊維の総称であり、水膨潤性繊
維単一品および該繊維と他の繊維との混用品を示
称することは勿論のこと、それら水膨潤性繊維を
含有する単一品および/または混用品と他の繊維
のみからなる繊維集合体との混用品をも意味し、
本発明に記載する糸とは、モノおよびマルチフイ
ラメントならびに梳毛式、スフ紡式、綿紡式、紡
毛式、オープンエンド式等の紡績糸を含むもので
ある。なお、他の繊維とは綿、羊毛等の天然繊
維;レーヨン、キユプラ等の半合成繊維;ポリビ
ニルアルコール系、ポリ塩化ビニル系、ポリアミ
ド系、ポリエステル系、ポリアクリロニトリル系
等の合成繊維等を意味し、また、かかる他の繊維
の混用率は、水膨潤性繊維の水膨潤度、最終的に
得られるフイルターの除水性能等により適宜選択
することができるが概ね95重量%以下の割合で使
用される。また、かかる水膨潤性繊維を含有する
繊維集合体の水膨潤度は、被処理液体中の含有水
分率、液体の粘度等により適宜設定することがで
き一義的に規定することは困難であるが概ね1〜
200c.c./g、更に好ましくは2〜100c.c./gの範囲
内にあることが望ましい。さらに、繊維集合体と
して糸形態のものを使用することが成形性等の点
で好ましく、かかる糸として特にいわゆるバルキ
ー糸を使用することにより、繊維の腰、へたり、
嵩高性等が顕著に改善され、以て最終的に得られ
るフイルターの除水能力を著しく改善することが
できるので望ましい。
In addition, the fiber aggregate containing water-swellable fibers is a general term for fibers in a form that can be wound into a cylindrical shape in a middle tube, such as yarn, web, woven fabric, knitted fabric, etc. It goes without saying that it refers to mixed products of water-swellable fibers and other fibers, but also refers to single products containing these water-swellable fibers and/or mixed products with fiber aggregates consisting only of other fibers. ,
The yarns described in the present invention include monofilament and multifilament yarns, as well as worsted yarns, double-spun yarns, cotton-spun yarns, woolen yarns, open-end yarns, and the like. In addition, other fibers include natural fibers such as cotton and wool; semi-synthetic fibers such as rayon and Kyupura; synthetic fibers such as polyvinyl alcohol, polyvinyl chloride, polyamide, polyester, and polyacrylonitrile. The mixing ratio of such other fibers can be appropriately selected depending on the degree of water swelling of the water-swellable fibers, the water removal performance of the final filter, etc., but it is generally used at a ratio of 95% by weight or less. Ru. Furthermore, the degree of water swelling of a fiber aggregate containing such water-swellable fibers can be appropriately set depending on the water content in the liquid to be treated, the viscosity of the liquid, etc., but it is difficult to define it unambiguously. Approximately 1~
It is desirable that the amount is within the range of 200 c.c./g, more preferably 2 to 100 c.c./g. Furthermore, it is preferable to use thread-shaped fiber aggregates from the viewpoint of formability, etc., and by using so-called bulky threads as such threads, stiffness of the fibers, sagging, etc.
This is desirable because the bulkiness and the like are significantly improved, thereby significantly improving the water removal ability of the final filter.

さらにまた、前記水膨潤性繊維を含有する繊維
集合体は、出発繊維或は繊維集合体の形態でヒド
ロゲル層ぐ導入されたものは勿論のこと、ヒドロ
ゲル化し得る繊維を含有する繊維集合体によつて
形成されたフイルター形態においてヒドロゲル層
が導入されたものであつても構わない。
Furthermore, the fiber aggregate containing water-swellable fibers may be introduced into a hydrogel layer in the form of starting fibers or fiber aggregates, or may be formed by a fiber aggregate containing hydrogel-formable fibers. A hydrogel layer may be introduced in the form of a filter.

尚、ヒドロゲル化方法に関しては、少なくとも
繊維外層部の一部にヒドロゲル層が導入され得る
限り何ら制約は認められず採用できるが、架橋反
応性単量体等の特定の組成を有する重合体からな
る繊維を出発物質として使用したり、予め架橋処
理を施したりすることなく加水分解処理工程のみ
によつて所望の水膨潤性能を有するヒドロゲル層
の導入された繊維を作製し得る工業的有利な方法
として、例えば下記の如き手段を好適に採用する
ことができる。即ち、AN系繊維を、AN系繊維を
含有する繊維集合体、或は該繊維集合体からなる
フイルターに、6.0mol/1000g溶液以上の高濃度
アルカリ金属水酸化物水性溶液を作用させる特開
昭53−80493号公報記載の方法、または0.5mol/
1000g溶液以上の濃度の塩化ナトリウム、芒硝、
硝酸ソーダ等の電解質塩を共存させた低濃度アル
カリ金属水酸化物水性溶液を作用させる特願昭53
−47974号公報記載の方法等を挙げることができ
る。
Regarding the hydrogel formation method, there are no restrictions and it can be adopted as long as a hydrogel layer can be introduced into at least a part of the outer layer of the fiber, but it is possible to use a hydrogel formation method that is made of a polymer having a specific composition such as a cross-linking reactive monomer. As an industrially advantageous method for producing fibers incorporating a hydrogel layer having desired water swelling performance through a hydrolysis treatment process alone, without using fibers as a starting material or subjecting them to crosslinking treatment in advance. For example, the following means can be suitably employed. That is, in JP-A-Sho, AN-based fibers are treated with a highly concentrated aqueous alkali metal hydroxide solution of 6.0 mol/1000 g or more on a fiber aggregate containing AN-based fibers or a filter made of the fiber aggregate. 53-80493, or 0.5mol/
Sodium chloride, mirabilite, at a concentration of 1000g or more solution
Patent application filed in 1973 for the action of a low concentration alkali metal hydroxide aqueous solution coexisting with an electrolyte salt such as sodium nitrate
Examples include the method described in Japanese Patent No. 47974.

上述の本発明に係る水膨潤性繊維を含有する繊
維集合体が中筒に捲回され円筒状に形成されてな
るフイルターの形態および捲き密度に関しては、
処理する液体の種類、粘度等により種々に変える
必要があり一義的に規定することは困難である
が、円筒の直径と高さとの比は一般に1:0.5〜
20、更に好ましくは1:1〜10、また捲き密度は
概ね0.1〜0.6g/cm3、更に好好しくは0.15〜0.4g/
cm3の範囲内にあることが望ましい。
Regarding the form and winding density of the filter formed into a cylindrical shape by winding the fiber aggregate containing the water-swellable fibers according to the present invention into a middle tube,
Although it is difficult to define it unambiguously as it needs to be varied depending on the type of liquid to be treated, viscosity, etc., the ratio of the diameter and height of the cylinder is generally 1:0.5 to 1:0.5.
20, more preferably 1:1 to 10, and the rolling density is approximately 0.1 to 0.6 g/cm 3 , more preferably 0.15 to 0.4 g/cm 3
It is desirable to be in the range of cm 3 .

なお、かかるフイルターは、被処理液体を円筒
の外側面または内側面のいずれの方向から供給し
て使用しても構わないが、被処理液体を円筒の外
側面から供給し、精製液体を内側面から取り出す
使用形態の方が、被処理液体と接触する繊維の表
面積が大きく処理効率を向上させることができ、
従つて、繊維集合体を捲回するための支持体であ
る中筒は、除水処理時におけるフイルターの形態
を保持する役割も果し、また被処理液体により腐
食或は溶解されないものである必要があるが、か
かる要求を満足する限りいかなる厚み、材質のも
のであつても使用することができる。また、かか
る中筒は、精製液体が通過するための複数個の穴
が穿設されたものであることが必要であり、かか
る複数個の穴は、液体の流れ、液体通過圧力等の
偏りを惹起させないよう、中筒全体に偏りなく穿
設されたものが望ましいことは言うまでもない。
さらに、本発明に係る円筒状除水フイルターの形
態は、いわゆる中空円柱状であることが望ましい
が、捲き方、中筒の形態等の選択により、所望に
より中空円錐台状に形成することもできる。
Note that such a filter may be used by supplying the liquid to be treated from either the outer or inner surface of the cylinder, but the liquid to be treated may be supplied from the outer surface of the cylinder and the purified liquid from the inner surface. The usage form in which the fibers are taken out from the fibers has a larger surface area in contact with the liquid to be treated, which can improve treatment efficiency.
Therefore, the inner tube, which is a support for winding the fiber aggregate, also plays the role of maintaining the shape of the filter during water removal treatment, and must not be corroded or dissolved by the liquid to be treated. However, any thickness and material can be used as long as it satisfies these requirements. In addition, the inner cylinder must have a plurality of holes for the purified liquid to pass through, and the plurality of holes must prevent unevenness in liquid flow, liquid passage pressure, etc. Needless to say, it is desirable that the holes be evenly drilled throughout the middle cylinder to prevent this from occurring.
Further, the shape of the cylindrical water removal filter according to the present invention is preferably a so-called hollow cylinder shape, but it can also be formed into a hollow truncated cone shape if desired by selecting the winding method, the shape of the inner cylinder, etc. .

ここにおいて、本発明に推奨する除水フイルタ
ーを適用する液体類とは、除水処理条件下におい
て液体であり、水と相分離を起こす(若干の相互
溶解を起こしていても相分離を起こしていれば良
い)ものの総称である。かかる性質を有するもの
としては石油エーテル、ペンタン、ヘキサン、ヘ
プタン、石油ベンジン等の石油系炭化水素類;シ
クロヘキサン、シクロオクタン等の脂環式飽和炭
化水素類;1―オクテン、シクロヘキサン等の脂
肪族不飽和炭化水素類;ベンゼン、トルエン、キ
シレン、スチレン等の芳香族炭化水素類;テトラ
クロルエチレン、塩化メチレン、クロロホルム、
四塩化炭素等のハロゲン化脂肪族炭化水素類;ス
ピンドル油、冷凍機油、ダイナモ油、タービン
油、マシン油、シリンダー油、マリンエンジン
油、ギヤ油、切削油、油圧圧作動油、コンプレツ
サー油等の潤滑油類等を挙げることができる。
Here, the liquids to which the water removal filter recommended in the present invention is applied are those that are liquid under water removal treatment conditions and undergo phase separation from water (even if some mutual dissolution occurs, phase separation does not occur). It is a general term for things. Those having such properties include petroleum hydrocarbons such as petroleum ether, pentane, hexane, heptane, and petroleum benzene; alicyclic saturated hydrocarbons such as cyclohexane and cyclooctane; and aliphatic non-hydrocarbons such as 1-octene and cyclohexane. Saturated hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene, and styrene; tetrachlorethylene, methylene chloride, chloroform,
Halogenated aliphatic hydrocarbons such as carbon tetrachloride; spindle oil, refrigerating machine oil, dynamo oil, turbine oil, machine oil, cylinder oil, marine engine oil, gear oil, cutting oil, hydraulic oil, compressor oil, etc. Examples include lubricating oils.

上述した本発明に係る液体類用除水フイルター
は、円筒の長さ方向の密度斑がなく、捲き密度、
円筒の厚み等を任意に調節することができるなど
工業的有利に成形することができ、除水処理時に
おけるへたり、目詰り、バイパスフロー、或は精
製液体中への除水材の混入等の問題がなく長時間
にわたつて卓抜した除水能を発揮する点が本発明
の特筆すべき利点である。
The water removal filter for liquids according to the present invention described above has no density unevenness in the length direction of the cylinder, and has a winding density,
It can be molded industrially with industrial advantages such as the ability to adjust the thickness of the cylinder, etc., and prevents settling, clogging, bypass flow, or mixing of water removal material into purified liquid during water removal treatment. A notable advantage of the present invention is that it exhibits outstanding water removal ability over a long period of time without any problems.

また本発明に係るフイルターは除水処理装置中
への装着、交換が極めて容易であり、操業上の利
点は大きく、さらに、かかるフイルターの出現に
より、従来廃棄されていた液体類の再生、再利用
の道がひらかれた意義は大きい。
In addition, the filter according to the present invention is extremely easy to install and replace in water removal treatment equipment, and has great operational advantages.Furthermore, with the advent of such a filter, liquids that were conventionally discarded can be regenerated and reused. It is of great significance that this path was paved.

本発明の理解を更に容易にするため、以下に実
施例を記載するが、本発明の要旨はこれ等の実施
例の記載によつて何ら限定されるものではない。
尚、実施例に記載する百分率および部は、特に断
りのない限り全て重量基準によるものである。
In order to further facilitate understanding of the present invention, Examples are described below, but the gist of the present invention is not limited in any way by the description of these Examples.
It should be noted that all percentages and parts described in the Examples are based on weight unless otherwise specified.

尚、実施例に記載する水膨潤度および塩型カル
ボキシル基(−COOX)量は下記の方法で測定乃
至算出したものである。
The degree of water swelling and the amount of salt-type carboxyl group (-COOX) described in the Examples were measured or calculated by the following method.

(1) 水膨潤度(c.c./g) 試料を純水中に浸漬し25℃に保ち24時間後、ナ
イロン濾布(200メツシユ)に包み、遠心脱水機
(3G×30分、但しGは重力加速度)により繊維間
の水を除去する。このようにして調整した試料の
重量を測定する(W1g)。次に、該試料を80℃の
真空乾燥機中で恒量になるまで乾燥して重量を測
定する(W2g)。以上の測定結果から、次式によ
つて算出した。従つて、本水膨潤度は、繊維の自
重の何倍の水を吸収保持するかを示す数値であ
る。
(1) Degree of water swelling (cc/g) The sample was immersed in pure water, kept at 25℃ for 24 hours, then wrapped in nylon filter cloth (200 mesh) and placed in a centrifugal dehydrator (3G x 30 minutes, where G is gravity). (acceleration) removes water between fibers. Measure the weight of the sample prepared in this way (W 1 g). The sample is then dried in a vacuum dryer at 80° C. to a constant weight and weighed (W 2 g). From the above measurement results, it was calculated using the following formula. Therefore, the actual water swelling degree is a numerical value indicating how many times the weight of the fiber can absorb and retain water.

(水膨潤度)=W−W/W (2) −COOX基量(m mol/g) 十分乾燥した試料約1gを精秤し(Xg)、これに
200mlの水を加えた後、50℃に加温しながら1N塩
酸水溶液を添加してPH2にし、次いで0.1N苛性
ソーダ水溶液で常法に従つて滴定曲線を求めた。
該滴定曲線からカルボキシル基に消費された苛性
ソーダ水溶液消費量(Yc.c.)を求めた。以上の測
定結果から、次式によつて算出した。
(Water swelling degree) = W 1 - W 2 /W 2 (2) -COOX group amount (m mol/g) Approximately 1 g of a sufficiently dried sample was accurately weighed (Xg), and
After adding 200 ml of water, a 1N aqueous hydrochloric acid solution was added while heating to 50°C to adjust the pH to 2, and then a titration curve was determined using a 0.1N aqueous sodium hydroxide solution according to a conventional method.
The amount of caustic soda aqueous solution consumed by carboxyl groups (Yc.c.) was determined from the titration curve. From the above measurement results, it was calculated using the following formula.

(−COOX基量)=0.1Y/X 尚、多価カチオンが含まれる場合は、常法によ
りこれらのカチオンの量を求め、上式を補正する
必要がある。
(-COOX group amount)=0.1Y/X In addition, when polyvalent cations are included, it is necessary to determine the amount of these cations by a conventional method and correct the above formula.

実施例 1 90%のANおよび10%のアクリル酸メチルより
なるAN系繊維(単繊維繊度;5d、繊維長;76
mm)40%と、該AN系繊維(但し、単繊維繊度;
d)60%より成り、1/8メートル番手の紡毛式レ
ギユラー糸に、30%苛性ソーダ水溶液を均一に撒
布して20%付着させた。次にこの糸をオートクレ
ープ中に仕込み、107℃の飽和水蒸気中で5分間
加熱した後、残留アルカリを水洗除去し、乾燥し
て白色乃至微黄色の水膨潤性繊維からなる糸
()を作製した。
Example 1 AN-based fiber consisting of 90% AN and 10% methyl acrylate (single fiber fineness: 5 d , fiber length: 76
mm) 40% and the AN-based fiber (however, single fiber fineness;
7 d ) A 30% aqueous solution of caustic soda was uniformly spread onto a 1/8 meter count woolen regular yarn made of 60% yarn, so that 20% of the yarn adhered to the yarn. Next, this thread was placed in an autoclave, heated for 5 minutes in saturated steam at 107°C, and the residual alkali was washed away with water, and dried to produce a white to slightly yellow water-swellable fiber thread (). did.

得られた糸()を分解した繊維は水に溶解せ
ず、また水膨潤状態でしごいてみたところAN系
重合体芯部が残つており被処理繊維の外層部のみ
がヒドロゲル化されていることが確認された。な
お、該繊維は0.4m mol/gの−COONa基を含
有しており、6c.c./gの水膨潤度を有していた。
The fibers obtained by decomposing the yarn () did not dissolve in water, and when squeezed in a swollen state with water, the AN polymer core remained and only the outer layer of the treated fibers was hydrogelated. This was confirmed. The fiber contained 0.4 mmol/g of -COONa groups and had a water swelling degree of 6 c.c./g.

かかる糸()を、直径30mm、長さ247mmの中
筒に0.25g/cm3の密度で直径70mmになるよう捲き
上げてフイルターを作製した。
A filter was prepared by winding up the thread (2) into a middle cylinder having a diameter of 30 mm and a length of 247 mm at a density of 0.25 g/cm 3 to a diameter of 70 mm.

このフイルターを装着した除水器を、0.2%の
水を分散混入するタービン油(白濁状態)150
を入れた容器と接続し、該油が1/分の速度で
前記除水器を循環通過するよう除水処理運転を行
なつた。
Turbine oil (white cloudy state) mixed with 0.2% water is mixed with a water remover equipped with this filter.
was connected to a container containing oil, and a water removal operation was performed so that the oil circulated through the water remover at a rate of 1/min.

かかる運転期間中、目詰りによる圧力上昇は起
こらず、運転状況は良好であり、また被処理油が
除水器を2回以上通過後のタービン油は透明(水
分含有率0.02%以下)であり除水が完全に行なわ
れていることが確認された。
During this period of operation, there was no pressure increase due to clogging, and the operating conditions were good, and after the oil to be treated passed through the water remover twice or more, the turbine oil was transparent (moisture content 0.02% or less). It was confirmed that water removal was complete.

なお、加水分解時間を変える(1時間加熱)外
は糸()と同様にして、314c.c./gの水膨潤度
を有しAN系重合体芯部の残つていない繊維から
なる糸を作製し、該糸を用いて除水処理を行つた
ところ、運転開始5分後には目詰まりにより圧力
が急上昇し、運転を継続することはできなかつ
た。
In addition, the hydrolysis time was changed (heated for 1 hour), except for the yarn (), which was made of fibers with a water swelling degree of 314 c.c./g and no AN polymer core remaining. When the thread was used to remove water, the pressure suddenly increased due to clogging 5 minutes after the start of operation, and the operation could not be continued.

実施例 2 二成分貼り合せ型AN系複合繊維(日本エクス
ラン工業(株)製、単繊維維度;6d、バリカツト)
60%と、実施例1記載のAN系繊維(5d×バリカ
ツト、バルキー)40%より成り、2/5メートル
番手の梳毛式バルキー糸を、実施例1記載の処方
に従つてアルカリ処理して水膨潤性繊維からなる
糸()を作製した。
Example 2 Two-component bonded AN-based composite fiber (manufactured by Nippon Exlan Kogyo Co., Ltd., monofilament fiber strength: 6 d , Varicut)
A 2/5 meter count worsted bulky yarn consisting of 60% and 40% AN fiber (5 d x Balikat, bulky) described in Example 1 was treated with alkali according to the recipe described in Example 1 A thread () made of water-swellable fibers was produced.

この糸()を分解した繊維は水に溶解せず、
AN系重合体芯部が残つており、6c.c./gの水膨
潤度を有していた。
The fibers obtained by decomposing this thread () do not dissolve in water,
The AN polymer core remained and had a water swelling degree of 6 c.c./g.

この糸()より実施例1と同様にしてフイル
ターを作製し、除水量gを測定したところ340g
の水を吸収除去していることが確認された。な
お、除水量gの測定は、実施例1記載の除水処理
運転に際し、被処理油が除水器を2回以上通過し
た後も処理油が透明にならなくなるまで逐次被処
理油中に水を追加していくことにより求めた。
A filter was made from this thread () in the same manner as in Example 1, and the amount of water removed was measured to be 340g.
It was confirmed that water was absorbed and removed. The amount of water removed (g) was measured during the water removal treatment operation described in Example 1. Even after the oil to be treated passes through the water remover twice or more, water is continuously added to the oil to be treated until the treated oil no longer becomes transparent. It was found by adding .

実施例 3 綿30%、実施例1記載のAN系繊維(但し、
1.5d×38mm)30%および該AN系繊維(但し、2d
×38mm、バルキー)40%より成り、2/30メート
ル番手の綿紡式バルキー糸を、実施例1記載の処
方に従つてアルカリ処理して水膨潤性繊維を含有
する糸()を作成したのちフイルターを作製し
た。
Example 3 30% cotton, AN-based fiber described in Example 1 (however,
1.5 d × 38 mm) 30% and the AN fiber (however, 2 d
x 38 mm, bulky) made of 40% cotton spun bulky yarn of 2/30 meter count was treated with alkali according to the recipe described in Example 1 to create a yarn containing water-swellable fibers. A filter was made.

このフイルターの除水量は300gであつた。 The amount of water removed by this filter was 300g.

なお、前記糸()の水膨潤度は4.5g/c.c.であつ
た。
Incidentally, the water swelling degree of the yarn (2) was 4.5 g/cc.

実施例 4 実施例2記載のAN系複合繊維(但し、2.5d×
76mm)に、20%の硝酸ソーダを共存させた10%苛
性ソーダ水溶液を均一に撒布して30%付着させ、
次いでこの繊維をオートクレーブ中に仕込み、
115℃の飽和水蒸気中で10分間加熱した後、残留
アルカリを水洗除去し、乾燥して白色乃至微黄色
の水膨潤性繊維を作製した。この繊維はAN系重
合体芯部が残つており、1.6m mol/gの−
COONa基を含有し、85c.c./gの水膨潤度を有し
ていた。
Example 4 The AN-based composite fiber described in Example 2 (however, 2.5 d ×
76mm), uniformly spread a 10% caustic soda aqueous solution containing 20% sodium nitrate to make it adhere to 30%.
Next, this fiber is placed in an autoclave,
After heating in saturated steam at 115° C. for 10 minutes, residual alkali was removed by washing with water and dried to produce white to slightly yellow water-swellable fibers. This fiber still has an AN-based polymer core, and has a -
It contained COONa groups and had a water swelling degree of 85 c.c./g.

この繊維10%とポリエステル繊維(3d×76
mm)90%より1/8メートル番手の紡毛式混紡糸
()を作製した。
10% of this fiber and polyester fiber (3 d × 76
A woolen blended yarn () with a count of 1/8 m from 90% mm) was produced.

この糸()より成るフイルター(但し、捲き
密度;0.2g/cm3)の除水量は250gであつた。
The amount of water removed by a filter made of this thread (winding density: 0.2 g/cm 3 ) was 250 g.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも繊維外層部の一部が親水性架橋重
合体で構成され、かつ残部がアクリロニトリル系
重合体および/または他の重合体で構成される水
膨潤性繊維を含有する繊維集合体が複数個の穴が
穿設された中筒に捲回され円筒状に形成されてな
る液体類用除水フイルター。
1 A plurality of fiber aggregates containing water-swellable fibers in which at least a part of the fiber outer layer is composed of a hydrophilic cross-linked polymer and the remainder is composed of an acrylonitrile polymer and/or other polymers. A water removal filter for liquids that is wound into a cylindrical shape around a hollow cylinder.
JP8300279A 1979-02-12 1979-06-29 Dewatering filter for liquids Granted JPS567609A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8300279A JPS567609A (en) 1979-06-29 1979-06-29 Dewatering filter for liquids
GB8004476A GB2044273B (en) 1979-02-12 1980-02-11 Fibrous material and filters for removing water from hydrophobic liquids
DE19803005198 DE3005198A1 (en) 1979-02-12 1980-02-12 WATER REMOVAL MATERIAL
US06/351,363 US4507204A (en) 1979-02-12 1982-02-23 Water-removing material usable for hydrophobic liquids and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8300279A JPS567609A (en) 1979-06-29 1979-06-29 Dewatering filter for liquids

Publications (2)

Publication Number Publication Date
JPS567609A JPS567609A (en) 1981-01-26
JPS6260127B2 true JPS6260127B2 (en) 1987-12-15

Family

ID=13790040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8300279A Granted JPS567609A (en) 1979-02-12 1979-06-29 Dewatering filter for liquids

Country Status (1)

Country Link
JP (1) JPS567609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168732A (en) * 1989-11-29 1991-07-22 Nec Home Electron Ltd Liquid crystal projector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170507A (en) * 1983-03-01 1983-10-07 Japan Exlan Co Ltd Water removing filter for water contained oil
JPH0651088B2 (en) * 1988-07-12 1994-07-06 義貴 斉藤 Regeneration method of lubricating oil for vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168732A (en) * 1989-11-29 1991-07-22 Nec Home Electron Ltd Liquid crystal projector

Also Published As

Publication number Publication date
JPS567609A (en) 1981-01-26

Similar Documents

Publication Publication Date Title
Zheng et al. Research and application of kapok fiber as an absorbing material: A mini review
KR930000562B1 (en) Synthetic polyvinyl alcohol fiber and process for its production
KR100225318B1 (en) Fibrillatable fiber of a sea- islands structure
IE44104B1 (en) Hygroscopic fibres and filaments of synthetic polymers
JPH0113884B2 (en)
JP2018009276A (en) Regenerated cellulose fiber, fiber structure containing the same and manufacturing method therefor
US5972501A (en) Easily fibrillatable fiber
US4810449A (en) Process for the production of hydrophilic polyacrylonitrile filaments or fibers
US6124058A (en) Separator for a battery comprising a fibrillatable fiber
US6048641A (en) Readily fibrillatable fiber
JPH10504593A (en) Manufacturing method of cellulose extrudate
JPS6260127B2 (en)
US4507204A (en) Water-removing material usable for hydrophobic liquids and process for producing the same
US2925879A (en) Filter medium
JP2000226720A (en) Cellulose yarn having controlled fibrillation and its production
JPS6143082B2 (en)
JP7130192B2 (en) Arsenic-adsorbing regenerated cellulose molded article, method for producing same, arsenic-adsorbing material, and water treatment material
JPS626851B2 (en)
JPH1053918A (en) Polyvinyl alcohol fiber and its production
US5804120A (en) Process for making cellulose extrudates
KR960000084B1 (en) Method for preparation of polyester fiber with improved water-absorbability and drapabiliy
KR100224474B1 (en) A manufacturing method for polyvinyl alcohol fiber with high absorptiveness and intensivity
JPS648561B2 (en)
WO1998030740A1 (en) Process for preparing low-fibrillate cellulose fibres
JP2544834B2 (en) Polyvinyl alcohol synthetic fiber