JPS6143082B2 - - Google Patents

Info

Publication number
JPS6143082B2
JPS6143082B2 JP9407779A JP9407779A JPS6143082B2 JP S6143082 B2 JPS6143082 B2 JP S6143082B2 JP 9407779 A JP9407779 A JP 9407779A JP 9407779 A JP9407779 A JP 9407779A JP S6143082 B2 JPS6143082 B2 JP S6143082B2
Authority
JP
Japan
Prior art keywords
water
fibers
fiber
polymer
water removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9407779A
Other languages
Japanese (ja)
Other versions
JPS5617606A (en
Inventor
Koji Tanaka
Minoru Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP9407779A priority Critical patent/JPS5617606A/en
Priority to GB8004476A priority patent/GB2044273B/en
Priority to DE19803005198 priority patent/DE3005198A1/en
Publication of JPS5617606A publication Critical patent/JPS5617606A/en
Priority to US06/351,363 priority patent/US4507204A/en
Publication of JPS6143082B2 publication Critical patent/JPS6143082B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特定の水膨潤性繊維を含有する繊維
集合体が中空円筒状に圧縮成形されてなる除水フ
イルターおよびその製造法に関するものである。 近年、高度の水膨潤性を有し、かつ水不溶性の
重合体(ヒドロゲル)が、おむつ、生理用品、土
壌改良材、軟質コンタクトレンズ等、幅広い用途
分野に適用されつつある。 一方、有機溶剤、潤滑油等の水と混和性を有さ
ない液体類中に混入する水を除去することによ
り、かかる液体類を再使用、或は寿命延長せんと
する要求は強く、かかる目的のために例えば、シ
リカゲル、ゼオライト等の無機塩類の粒状物が一
部で使用されている。ところが、かかる無機塩類
によつても若干の除水が可能ではあるが、その除
水能力は極めて低く、更にかかる無機塩類は精製
液体中にある程度混入する本質的欠陥を内在して
おり、以て、その使用分野が制限されざるを得な
かつた。また、天然パルプ等のある程度吸湿性及
至吸水性を有する繊維の使用が一部で試みられて
いるが、これとても、その除水能力は極めて低
く、実用性の乏しいものでしかなかつた。 そこで、本発明者等は前記水膨潤性重合体(ヒ
ドロゲル)の瞬間多量吸水能力或はその水分保持
能力に着目し、かかるヒドロゲルの液体類用除水
材としての利用可能性を検討してみた。ところ
が、粒状形態のヒドロゲルを使用する場合には、
優れた吸水性能を有するが故に瞬時に膨潤して目
詰りを起こし、極めて短時間で除水処理を停止せ
ざるを得なくなる欠点を内在することが判明し
た。そこで、かかる目詰りの改良のために、繊維
形態を有するヒドロゲルを使用してみたところ、
粒状ヒドロゲルに比べて、ある程度除水処理時間
の延長が可能ではあるが、繊維の膨潤およびへた
りにより、やはり目詰りの問題を克服することは
できず、その吸水性能を発揮させることができな
かつた。そこで、本発明者等は、特願昭54−
15786号明細書において提案したように、ヒドロ
ゲル外層部とAN系重合体および/または他の重
合体内層部との多相構造を有する水膨潤性繊維単
一品または、該繊維と他の繊維との混用品を使用
することにより、繊維のへたりがなく長時間の除
水処理が可能となり、ヒドロゲルのもつ吸水性能
を十分に発揮させ得ることを見出した。 かかる状況下において本発明者等は、かかる知
見に基づき、前記特定の繊維状ヒドロゲルを使用
し、液体類用除水材として新規な中空円筒状フイ
ルターを提供すべく鋭意検討した結果、親水性架
橋重合体からなる外層部とアクリロニトリル
(AN)系重合体および/または他の重合体からな
る内層部とで構成され、しかも、少なくとも1部
が酸型カルボキシル基(−COOH)であるカル
ボキシル基を0.1〜4.0mmol/g結合含有する潜在
水膨潤繊維を含有する繊維集合体を中空円筒状に
圧縮成形し、次いで非膨潤状態で中和、乾燥する
ことにより、中筒等の支持体或は接着剤等を必要
とすることなく装着、交換等の取り扱いの容易な
中空円筒状フイルターが得られ、該フイルターは
繊維のへたり、目詰り等の問題なく長時間の除水
処理が可能であり、ヒドロゲルの有する吸水性能
を存分に発揮させ得ることを見出し、本発明に到
達した。 即ち、本発明の主要な目的は、優れた除水能力
を有する新規な除水フイルターおよびその製造方
法を提供することにある。 本発明の目的は、粒状無機塩類等を使用する場
合のように精製液体中に除水材が混入することが
なく、繊維のへたり、目詰り等を起こすことなく
長時間使用することができ、また装着、交換等の
取り扱いの容易な除水フイルターを提供すること
にあり、本発明の他の目的は、種々の形態の繊維
集合体を原料物質として使用することができ、任
意の密度を有する中空円筒状除水フイルターを、
中筒或は接着剤等を要することなく工業的有利に
製造し得る方法を提供することにある。 本発明の更に異なる目的は、以下に記載する本
発明の具体的な説明により明らかとなろう。 上述した本発明の目的を達成するための本発明
に係る除水フイルターは、親水性架橋重合体から
なる外層部とAN系重合体および/または他の重
合体からなる内層部とで構成され、しかも塩型カ
ルボキシル基(−COOX;Xはアルカリ金属また
はアンモニウム)を0.1〜4.0mmol/g結合含有す
る水膨潤性繊維を含有する繊維集合体が中空円筒
状に圧縮成形されてなるものであり、また、かか
る除水フイルターは、親水性架橋重合体からなる
外層部とAN系重合体および/または他の重合体
からなる内層部とで構成され、しかも少なくとも
1部が酸型カルボキシル基(−COOH)である
カルボキシル基を0.1〜4.0mmol/g結合含有する
潜在水膨潤繊維を含有する繊維集合体を中空円筒
状に圧縮成形し、次いで非膨潤状態にて中和、乾
燥することにより、有利に製造することができ
る。 こゝにおいて、本発明に係る水膨潤性繊維と
は、吸水膨潤性能を発揮するヒドロゲル層と強伸
度等の繊維物性を分担するAN系重合体および/
または他の重合体層との多層構造を有し、しかも
該繊維中に塩型カルボキシル基(−COOX:Xは
アルカリ金属またはアンモニウム)を0.1〜4.0m
mol/g、好ましくは0.2〜3.5mmol/g更に好まし
くは0.2〜2.0mmol/g結合含有する繊維の総称で
ある。かかる塩型カルボキシル基の量が本発明に
推奨する範囲を外れる場合には、繊維の水膨潤性
能、物性、柔軟性等の点で望ましくない。また、
かかる繊維の水膨潤度は2〜300c.c./g)、更に好
ましくは3〜200c.c./gの範囲内にあることが望ま
しい。更に、ヒドロゲル層の割合は、水膨潤性能
と繊維物性との兼ね合いで適宜設定されるべきで
あり一義的に規定することは困難であるが、乾燥
時における該繊維の全体積を基準として概ね55%
以下、更に好ましくは5〜40%の範囲内にあるこ
とが望ましい。なお、前記塩型カルボキシル基を
構成するアンモニウムは、アンモニアに水素イオ
ンが捕捉されたアンモニウムイオンを示称するこ
とは言うまでもなく、アミンに水素イオンが捕捉
されてなるイオンをも含むものであり、また、か
かる塩型カルボキシル基は100%塩型である必要
はなく、所定の水膨潤度を有する繊維が得られる
限り酸型カルボキシル基が共存していても構わな
いことは言うまでもない。 尚、上記AN系重合体とは、30重量%以上、好
ましくは50%以上のANを含有する重合体の総称
であり、AN単独重合体またはANと少なくとも1
種の他のエチレン系不飽和化合物との共重合体、
或はANと他の重合体、例えば澱粉、ポリビニル
アルコール等とのグラフト重合体等を挙げること
ができるが、前記AN含有率を満足する限り、AN
系重合体と他の重合体、例えばポリ塩化ビニル
系、ポリアミド系、ポリオレフイン系、ポリスチ
レン系、ポリビニルアルコール系、セルロース系
等との混合重合体を使用することもできる。ま
た、ヒドロゲル化方法に関しては、少なくとも繊
維外層部の一部にヒドロゲル層が導入され得る限
り何ら制約は認められず採用できるが、架橋反応
性単量体等の特定の組成を有する重合体からなる
繊維、或は鞘−芯型複合繊維等の特殊紡糸繊維を
出発物質として使用したり、予め架橋処理を施し
たりすることなく加水分解処理工程のみによつて
所望の水膨潤性能を有するヒドロゲル層の導入さ
れた多層繊維を作製し得る工業的有利な方法とし
て、例えば下記の如き手段を好適に採用すること
ができる。即ち、AN系繊維、或はAN系繊維を含
有する繊維集合体に、6.0mol/1000g溶液以上の
高濃度アルカリ金属水酸化物水性溶液を作用させ
る特開昭53−80493号公報記載の方法、または
0.5mol/1000g溶液以上の濃度の塩化ナトリウ
ム、芒硝、硝酸ソーダ等の電解質塩を共存させた
低濃度アルカリ金属水酸化物水性溶液を作用させ
る特願昭53−47974号公報記載の方法等を挙げる
ことができる。 また、本発明に係る少なくとも1部が酸型カル
ボキシル基(−COOH)であるカルボキシル基
を結合含有する潜在水膨潤繊維とは、中和処理に
より上記水膨潤性繊維となすことのできる繊維の
総称であり、該潜在水膨潤繊維は水膨潤性繊維を
所望のPHで酸処理することにより塩型カルボキシ
ル基の所望量が酸型に変換された繊維を有利に調
製することができるが、例えばAN系繊維を酸に
よつて加水分解することにより酸型カルボキシル
基が導入された繊維を直接作製することもでき
る。なお、前記酸処理方法としては、例えば水膨
潤性繊維をPH5.5以下、更に好ましくはPH5.0以下
に調製した水浴中に浸漬する方法を挙げることが
できる。また、全カルボキシル基量の少なくと
も、50モル%、より好ましくは、75モル%以上が
酸型カルボキシル基である潜在水膨潤繊維を使用
することにより、成形性、脱水、乾燥等の諸工程
を工業的有利に実施することができ、望ましい。 さらに、上記水膨潤性繊維、或は潜在水膨潤繊
維を含有する繊維集合体とは、水膨潤性繊維或は
潜在水膨潤繊維単一品またはそれら繊維と他の繊
維との混用品を示称し、また、かかる繊維集合体
の形態としては短繊維、長繊維、ウエツブ、糸、
編織物、不織布等を挙げることができる。なかで
も、開繊された短繊維形態のものを使用すること
により、均質な圧縮成形体を作製することができ
るので望ましく、また捲縮能を有する短繊維を使
用することにより、除水フイルター使用時におけ
る繊維のへたり、目詰り等の問題を顕著に改善す
ることができ、以てフイルター寿命を著しく延長
することができるので望ましい。 尚、所望により混用する他の繊維とは、綿、羊
毛等の天然繊維;レーヨン、キユプラ、アセテー
ト等の再生乃至半合成繊維;ポリビニルアルコー
ル系、ポリ塩化ビニル系、ポリアミド系、ポリエ
ステル系、ポリアクリロニトリル系等の合成繊維
等を挙げることができ、かかる他の繊維の混用率
は、最終的に得られる除水フイルターに要求され
る除水性能、水膨潤性繊維の水膨潤度、成形性等
により適宜設定することができ一義的に規定する
ことはできないが、概ね95重量%以下の割合で使
用される。また、最終的に得られる除水フイルタ
ーを構成する繊維集合体の水膨潤度は、被処理液
体の種類、含有水分率、粘度等により適宜設定す
ることができ一義的に規定することは困難である
が、概ね1〜200c.c./g、更に好ましくは2〜100
c.c./gの範囲内に設定することが望ましい。更
に、最終的に得られる除水フイルターの形態およ
び充填密度に関しても、被処理液体の種類、含有
水分率、粘度等により種々に変える必要があり一
義的に規定することはできないが、円筒の直径と
高さとの比は一般に1:0.5〜10、また充填密度
は概ね0.1〜0.6g/cm2、更に好ましくは0.15〜0.4
g/cm3の範囲内にあることが望ましい。なお、本
発明にいう中空円筒状とは、いわゆる中空円筒状
を示称することは勿論のこと、場合によつては中
空円錐台状等の形態をも含むものである。 次に、上記中空円筒状除水フイルターの成形法
について述べる。 先ず、前記潜在水膨潤繊維を含有する繊維集合
体を好ましくは100%以下、更に好ましくは50%
以下の水分率になるまで脱水する。かかる脱水が
不充分であると、後続の乾燥が困難になるので望
ましくないが、予め脱水されていない繊維集合体
を成形器中に充填した後、所望の水分率になるま
で、吸引脱水等を施すこともできる。次いで、好
ましくは100%以下に脱水された所定量の繊維集
合体を流体の入口および出口を備えた成形器中に
仕込み、圧縮成形する。なお、かかる繊維の仕込
量および圧縮条件により最終的に得られる除水フ
イルターの充填密度および形態を任意に調節する
ことができる。 上述のようにして圧縮成形された繊維集合体
は、続いて成形器より取り出すことなく圧縮した
まま、非膨潤状態で中和、乾燥する。かかる中和
処理により、カルボキシル基は酸型から塩型に変
換し、繊維は著しく吸水膨潤して乾燥処理が非常
に困難になるため非膨潤状態で該処理を施す必要
があり、また、該圧縮成形のみでは繊維間の接
着、フイルターの形態固定が不充分であるため、
成形器より取り出すことなく圧縮したまま中和、
乾燥処理を施すことが望ましい。また、かかる中
和、乾燥処理は非膨潤状態で実施され得る限り何
ら限定されることなく採用することができ、例え
ばアルカリ金属水酸化物等のアルカリを含有する
水混和性かつ非膨潤性溶媒を成形器中に導入して
繊維と接触させて中和し、所望により過剰のアル
カリを除去するために前記溶媒で洗浄し、次いで
熱風等で乾燥する方法、或は乾燥処理を施した後
にアンモニア、低級アミン等のガスと接触させて
中和する方法等を挙げることができる。なお、水
混和性かつ非膨潤性溶媒としては、メタノール、
エタノール、イソプロパノール等の低級アルコー
ル類、アセトン、メチルエチルケトン、ジオキサ
ン、ジメチルスルホキシド、ジメチルホルムアミ
ド等を挙げることができるが後続の乾燥が容易で
ある点で低沸点の溶媒を使用することが望まし
く、また非膨潤性を維持する限りこれら溶媒に水
が混合(例えば30%以下)されたものの方が中和
処理時間を短縮することができるので好ましい。
また、かかる中和処理により、カルボキシル基の
全量を塩型に変換する必要はなく、酸型カルボキ
シル基が共存したものであつても構わないことは
言うまでもない。 かくして得られた除水フイルターは、卓抜した
除水能力を発揮することは言うまでもなく精製液
体中に除水材が混入することがなく、繊維のへた
り、目詰り等を起こすことなく長時間の使用が可
能であり、また装置、取り出し等、取り扱いが容
易であること等の各点において、従来になかつた
優れた特性を有するものである。 また、本発明に係る製造法を採用することによ
り、中筒、接着剤等を使用することなく、また水
膨潤性繊維特有の脱水、乾燥等の困難を伴うこと
なく、さらに任意の形態および充填密度を有し、
しかも上記した優れた諸特性を有する除水フイル
ターを工業的有利に作製することができるのであ
る。 かくの如き本発明に係る除水フイルターは、水
の混入する液体類の除水材として好適に使用する
ことができ、かかるフイルターの出現により、従
来廃棄されていた液体類の再生、再利用の道がひ
らかれた意義は大きい。なお、かかる液体類とし
ては除水処理条件下において液体であり、水と相
分離を起こす(若干の相互溶解を起こしていても
相分離を起こしていれば良い)ものの総称であ
り、例えば石油エーテル、ペンタン、ヘキサン、
ヘプタン、石油ベンジン等の石油系炭化水素類;
シクロヘキサン、シクロオクタン等の脂環式飽和
炭化水素類;1−オクテン、シクロヘキセン等の
脂肪族不飽和炭化水素類、ベンゼン、トルエン、
キシレン、スチレン等の芳香族炭化水素類;テト
ラクロルエチレン、塩化メチレン、クロロホル
ム、四塩化炭素等のハロゲン化脂肪族炭化水素
類;スピンドル油、冷凍機油、ダイナモ油、ター
ビン油、マシン油、シリンダー油、マリンエンジ
ン油、ギヤ油、切削油、油圧作動油、コンプレツ
サー油等の潤滑油類等を挙げることができる。 本発明の理解を更に容易にするため、以下に実
施例を記載するが、本発明の要旨はこれ等の実施
例の記載によつて何ら限定されるものではない。
尚、実施例に記載する百分率および部は、特に断
りのない限り全て重量基準によるものである。 なお、実施例に記載する水膨潤度およびカルボ
キシル基量およびヒドロゲル外層部の体積比率
は、下記の方法で測定乃至算出したものである。 (1) 水膨潤度(c.c./g) 試料を純水中に浸漬し、25℃に保ち24時間
後、ナイロン濾布(200メツシユ)に包み、遠
心脱水機(3G×30分、但しGは重力加速度)
により繊維間の水を除去する。このようにして
調整した試料の重量を測定する(W1g)。 次に、該試料を80℃の真空乾燥機中で恒量に
なるまで乾燥して重量を測定する(W2g)。 以上の測定結果から、次式によつて算出し
た。従つて、本水膨潤度は、繊維の自重の何倍
の水を吸収保持するかを示す数値である。 (水膨潤度)=W−W/W (2) カルボキシル基量(mmol/g) 十分乾燥した試料約1gを精秤し(Xg)、こ
れに200mlの水を加えた後、50℃に加温しなが
ら1N塩酸水溶液を添加してPH2にし、次い
で、0.1N苛性ソーダ水溶液で常法に従つて滴
定曲線を求めた。該滴定曲線からカルボキシル
基に消費された苛性ソーダ水溶液消費量
(Ycc)を求めた。以上の測定結果から、次式
によつて算出した。 カルボキシル基量=0.1Y/X なお、多価カチオンが含まれる場合は、常法
によりこれらのカチオンの量を求め、上式を補
正する必要がある。また、酸型カルボキシル基
量を求める場合には、予め1N塩酸水溶液でPH
2に調製することなく滴定した。 (3) ヒドロゲル外層部の体積比率(V:%)吸水
膨潤した試料20本を100〜1000倍に拡大(Z
倍)して顕微鏡写真を撮り、芯部(AN系重合
体および/または他の重合体内層部)の直径を
測定した平均値(l1mm)を求め、次式によつて
算出した。 V={1−(1000l/Zl)}×100 但し、l:被処理AN系繊維の直径(μ) 実施例 1 開繊された二成分貼り合せ型AN系複合繊維
(日本エクスラン工業(株)製、単繊維繊度;6d、繊
維長;5mm)に、30%苛性ソーダ水溶液を均一に
散布して20%付着させ、次にオートクレーブ中に
仕込み105℃の飽和水蒸気中で5分間加熱した。 得られた繊維(1)は水に溶解せず、また水膨潤状
態でしごいてみたところAN系重合体芯部が残つ
ており、被処理繊維の外層部のみがヒドロゲル化
されている(ヒドロゲル外層部の体積比率V=5
%)ことが確認された。なお、該繊維(1)は0.4m
mol/gの−COONa基を含有しており、7.0c.c./g
の水膨潤度を有していた。 この繊維(1)を水中に分散し、硝酸で水のPHを
3.5に調節して酸処理を施した後、遠心脱水機で
水分率が20%になるまで脱水した。なお、この繊
維のカルボキシル基は90モル%が酸型に変換され
ていた。 このようにして得られた繊維を成形器中に仕込
み、0.18g/cm3の充填密度、内径32mm、外径180
mm、高さ150mmになるよう圧縮成形し、次いで成
形器中に0.1%苛性ソーダ含有メタノール/水
(=80/20)混合溶媒を導入して中和処理を施し
た後、メタノール/水(=80/20)混合溶媒で洗
浄し、引き続き60℃の熱風を導入して乾燥した。 このようにして作製されたフイルター()を
除水器中に装着し、0.3%の水を分散混入させた
タービン油(白濁状態)を1000ml/分の速度で除
水器中に供給し、被処理油をフイルター外側面よ
り内側面方向に通過させて精製油を取り出す除水
処理運転を10時間行なつた。 かかる運転期間中、目詰りによる圧力上昇は起
こらず、運転状況は良好であり、また精製油は透
明であり除水が完全に行なわれていることが確認
された。なお、使用後のフイルターを観察したと
ころ、繊維のへたりおよび形くずれは全く見られ
なかつた。 一方、加水分解時間と5分間から1時間に変え
る外は上記と同様にして水膨潤性繊維(−
COONa基:8.7mmol/g、水膨潤度:334c.c./g)
を作製したが、膠着が著しく、また極めて脆く、
フイルターに成形することはできなかつた。 実施例 2 実施例1記載のAN系複合繊維、機械捲縮を付
与した単一成分AN系繊維(AN=90%、単繊維繊
度;6d、繊維長;5mm、Cn=9.0ケ/25mm、Ci=
10.0%)及び捲縮を付与していない前記単一成分
AN系繊維のそれぞれに、20%の芒硝を共存させ
た10%苛性ソーダ水溶液を均一に散布して30%付
着させ、次にオートクレーブ中115℃の飽和水蒸
気で4分間加熱して水膨潤性繊維(2〜4)を作
製した。なお、これらの繊維はいずれもV=5%
であり、また該繊維のカルボキシル基は、酸処理
後いずれも約90モル%が酸型に変更されていた。 これら3種の繊維(2〜4)より実施例1記載
の処方に従つて3種の除水フイルター(〜)
を作製し、これら3種の除水フイルター(〜
)および実施例1にて作製した除水フイルター
()を使用し、実施例1記載と同様にして除水
処理運転を行なつた。 結果を第1表に示す。
The present invention relates to a water removal filter formed by compression molding a fiber aggregate containing specific water-swellable fibers into a hollow cylindrical shape, and a method for manufacturing the same. In recent years, highly water-swellable and water-insoluble polymers (hydrogel) are being applied to a wide range of fields such as diapers, sanitary products, soil improvement materials, and soft contact lenses. On the other hand, there is a strong demand to reuse or extend the lifespan of liquids that are not miscible with water, such as organic solvents and lubricating oils, by removing water from them. For example, granular materials of inorganic salts such as silica gel and zeolite are used in some cases for this purpose. However, although it is possible to remove some water with such inorganic salts, their water removal ability is extremely low, and furthermore, such inorganic salts have the inherent defect that they are mixed into purified liquids to some extent, and therefore cannot be used. , its field of use had to be restricted. In addition, some attempts have been made to use fibers such as natural pulp that have some degree of hygroscopicity or water absorption, but these have extremely low water removal ability and are of little practical use. Therefore, the present inventors focused on the instantaneous large water absorption capacity or water retention capacity of the water-swellable polymer (hydrogel), and investigated the possibility of using such hydrogel as a water removal material for liquids. . However, when using hydrogels in particulate form,
Although it has excellent water absorption performance, it has been found that it has the disadvantage that it swells instantaneously and causes clogging, making it necessary to stop water removal treatment in an extremely short period of time. Therefore, in order to improve such clogging, we tried using a hydrogel with a fibrous form.
Although it is possible to extend the water removal treatment time to some extent compared to granular hydrogels, it is still not possible to overcome the problem of clogging due to swelling and settling of the fibers, and the water absorption performance cannot be fully demonstrated. Ta. Therefore, the inventors of the present invention proposed the following patent application:
As proposed in the specification of No. 15786, a single water-swellable fiber having a multiphase structure of a hydrogel outer layer and an AN polymer and/or other polymer inner layer, or a combination of this fiber and other fibers. It has been found that by using a mixed product, water removal treatment can be carried out for a long time without fibers becoming sag, and the water absorbing performance of the hydrogel can be fully demonstrated. Under such circumstances, the present inventors, based on such knowledge, conducted intensive studies to provide a new hollow cylindrical filter as a water removal material for liquids using the above-mentioned specific fibrous hydrogel. It is composed of an outer layer made of a polymer and an inner layer made of an acrylonitrile (AN) polymer and/or other polymer, and in which at least a portion of the carboxyl group is an acid type carboxyl group (-COOH). A fiber aggregate containing latent water-swellable fibers containing ~4.0 mmol/g bond is compression molded into a hollow cylindrical shape, and then neutralized and dried in a non-swollen state to form a support such as a middle cylinder or an adhesive. A hollow cylindrical filter is obtained that is easy to install, replace, and handle without the need for water removal, etc., and the filter can perform water removal treatment for a long time without problems such as fiber settling or clogging. The present invention was achieved by discovering that it is possible to fully utilize the water absorbing performance of . That is, the main object of the present invention is to provide a novel water removal filter having excellent water removal ability and a method for manufacturing the same. The purpose of the present invention is to prevent the water removal agent from being mixed into the purified liquid, which is the case when using granular inorganic salts, etc., and to enable long-term use without causing fiber fatigue or clogging. Another object of the present invention is to provide a water removal filter that is easy to handle such as installation and replacement.Another object of the present invention is that fiber aggregates in various forms can be used as a raw material, and that fiber aggregates of any density can be used. A hollow cylindrical water removal filter,
The object of the present invention is to provide an industrially advantageous manufacturing method that does not require a middle cylinder or an adhesive. Further objects of the present invention will become apparent from the detailed description of the invention provided below. The water removal filter according to the present invention for achieving the above-mentioned object of the present invention is composed of an outer layer made of a hydrophilic crosslinked polymer and an inner layer made of an AN polymer and/or other polymer, Furthermore, the fiber aggregate containing water-swellable fibers containing 0.1 to 4.0 mmol/g of salt-type carboxyl groups (-COOX; X is an alkali metal or ammonium) is compression-molded into a hollow cylindrical shape, Further, such a water removal filter is composed of an outer layer made of a hydrophilic crosslinked polymer and an inner layer made of an AN polymer and/or other polymer, and furthermore, at least a portion of the water removal filter has an acid type carboxyl group (-COOH ) is advantageously obtained by compression molding a fiber aggregate containing potentially water-swellable fibers containing 0.1 to 4.0 mmol/g of bonded carboxyl groups into a hollow cylindrical shape, and then neutralizing and drying in a non-swollen state. can be manufactured. Here, the water-swellable fiber according to the present invention is a hydrogel layer that exhibits water absorption and swelling performance, and an AN-based polymer and/or that shares fiber physical properties such as strength and elongation.
or has a multilayer structure with other polymer layers, and has a salt type carboxyl group (-COOX: X is an alkali metal or ammonium) in the fiber of 0.1 to 4.0 m
mol/g, preferably 0.2 to 3.5 mmol/g, more preferably 0.2 to 2.0 mmol/g, is a general term for fibers containing bonds. If the amount of the salt-type carboxyl group is out of the range recommended for the present invention, it is undesirable in terms of water swelling performance, physical properties, flexibility, etc. of the fiber. Also,
The degree of water swelling of such fibers is preferably within the range of 2 to 300 c.c./g, more preferably 3 to 200 c.c./g. Furthermore, the proportion of the hydrogel layer should be appropriately set in consideration of water swelling performance and fiber physical properties, and it is difficult to define it unambiguously, but it is approximately 55% based on the total volume of the fiber when dry. %
Below, it is more preferably within the range of 5 to 40%. Note that the ammonium constituting the salt-type carboxyl group does not only refer to ammonium ions in which hydrogen ions are trapped in ammonia, but also includes ions in which hydrogen ions are trapped in amines. It goes without saying that such salt-type carboxyl groups do not need to be 100% salt-type, and acid-type carboxyl groups may coexist as long as fibers having a predetermined degree of water swelling can be obtained. The above-mentioned AN-based polymer is a general term for polymers containing 30% by weight or more, preferably 50% or more of AN, and is an AN homopolymer or a polymer containing AN and at least 1% by weight.
copolymers with other ethylenically unsaturated compounds of the species,
Alternatively, graft polymers of AN and other polymers such as starch, polyvinyl alcohol, etc. can be mentioned, but as long as the above AN content is satisfied, AN
It is also possible to use a mixed polymer of this polymer and other polymers such as polyvinyl chloride, polyamide, polyolefin, polystyrene, polyvinyl alcohol, cellulose, etc. Regarding the hydrogel formation method, as long as a hydrogel layer can be introduced into at least a part of the outer layer of the fiber, there are no restrictions and the method can be adopted. A hydrogel layer having the desired water swelling performance can be created by only using a hydrolysis treatment process without using fibers or special spun fibers such as sheath-core composite fibers as a starting material or performing any crosslinking treatment in advance. As an industrially advantageous method for producing the introduced multilayer fiber, for example, the following means can be suitably employed. That is, the method described in JP-A-53-80493, in which AN-based fibers or fiber aggregates containing AN-based fibers are treated with a highly concentrated alkali metal hydroxide aqueous solution of 6.0 mol/1000 g or more; or
Examples include the method described in Japanese Patent Application No. 1983-47974 in which a low-concentration alkali metal hydroxide aqueous solution coexisting with an electrolyte salt such as sodium chloride, mirabilite, or sodium nitrate at a concentration of 0.5 mol/1000 g or more is applied. be able to. In addition, the latent water-swellable fiber containing bonded carboxyl groups, at least a portion of which is an acid-type carboxyl group (-COOH), according to the present invention, is a general term for fibers that can be made into the above-mentioned water-swellable fibers by neutralization treatment. The latent water-swellable fibers can be advantageously prepared by acid-treating the water-swellable fibers at a desired pH to convert a desired amount of salt-type carboxyl groups into acid-type fibers. It is also possible to directly produce fibers into which acid-type carboxyl groups have been introduced by hydrolyzing the fibers with acid. The acid treatment method includes, for example, a method in which water-swellable fibers are immersed in a water bath adjusted to a pH of 5.5 or less, more preferably 5.0 or less. In addition, by using latent water-swellable fibers in which at least 50 mol%, more preferably 75 mol% or more of the total carboxyl groups are acid type carboxyl groups, various processes such as moldability, dehydration, drying, etc. can be improved industrially. This is desirable because it can be carried out with great advantage. Furthermore, the above-mentioned water-swellable fibers or fiber aggregates containing latent water-swellable fibers refer to single water-swellable fibers or latent water-swellable fibers or mixtures of these fibers and other fibers, In addition, the forms of such fiber aggregates include short fibers, long fibers, webs, threads,
Examples include knitted fabrics and nonwoven fabrics. Among these, it is preferable to use short fibers in the form of opened fibers, as this allows the production of a homogeneous compression molded product, and the use of short fibers with crimping ability makes it easier to use water removal filters. This is desirable because it can significantly improve problems such as fiber settling and clogging, which can significantly extend the life of the filter. Other fibers that may be mixed if desired include natural fibers such as cotton and wool; recycled or semi-synthetic fibers such as rayon, kyupra, and acetate; polyvinyl alcohol-based, polyvinyl chloride-based, polyamide-based, polyester-based, and polyacrylonitrile. The mixing ratio of such other fibers depends on the water removal performance required of the water removal filter finally obtained, the degree of water swelling of water swelling fibers, moldability, etc. Although it can be set as appropriate and cannot be defined uniquely, it is generally used at a ratio of 95% by weight or less. In addition, the degree of water swelling of the fiber aggregate constituting the finally obtained water removal filter can be set appropriately depending on the type of liquid to be treated, the moisture content, the viscosity, etc., and it is difficult to define it unambiguously. However, it is generally 1 to 200c.c./g, more preferably 2 to 100c.c./g.
It is desirable to set it within the range of cc/g. Furthermore, the shape and packing density of the final water removal filter cannot be unambiguously defined as they need to be changed depending on the type of liquid to be treated, moisture content, viscosity, etc., but the diameter of the cylinder The ratio of height to height is generally 1:0.5 to 10, and the packing density is approximately 0.1 to 0.6 g/cm 2 , more preferably 0.15 to 0.4.
It is desirable that it be within the range of g/cm 3 . Note that the term "hollow cylindrical shape" as used in the present invention not only refers to a so-called hollow cylindrical shape, but also includes shapes such as a hollow truncated cone shape in some cases. Next, a method for forming the hollow cylindrical water removal filter will be described. First, the fiber aggregate containing the latent water-swellable fibers is preferably 100% or less, more preferably 50%.
Dehydrate until the moisture content is below. If such dehydration is insufficient, subsequent drying becomes difficult, which is undesirable, but after filling a fiber aggregate that has not been dehydrated in advance into a molding machine, suction dehydration, etc. is performed until the desired moisture content is reached. It can also be applied. Next, a predetermined amount of the fiber aggregate, preferably dehydrated to 100% or less, is charged into a molding machine equipped with a fluid inlet and an outlet, and compression molded. Note that the packing density and form of the finally obtained water removal filter can be adjusted as desired by adjusting the amount of fibers charged and the compression conditions. The fiber aggregate compression-molded as described above is then neutralized and dried in a non-swelled state while being compressed without being removed from the molding machine. This neutralization process converts the carboxyl groups from acid type to salt type, and the fibers significantly swell upon water absorption, making drying very difficult. Molding alone is insufficient to bond fibers together and fix the shape of the filter.
Neutralize while compressed without removing it from the molding machine.
It is desirable to perform a drying process. Further, such neutralization and drying treatments can be employed without any limitations as long as they can be carried out in a non-swelling state. Ammonia, Examples include a method of neutralizing by contacting with a gas such as a lower amine. Note that water-miscible and non-swelling solvents include methanol,
Examples include lower alcohols such as ethanol and isopropanol, acetone, methyl ethyl ketone, dioxane, dimethyl sulfoxide, and dimethyl formamide, but it is preferable to use a solvent with a low boiling point because subsequent drying is easy, and it is also non-swelling. As long as the properties are maintained, it is preferable to use these solvents mixed with water (for example, 30% or less) because the neutralization time can be shortened.
Furthermore, it is needless to say that it is not necessary to convert the entire amount of carboxyl groups into the salt form by such neutralization treatment, and it is also possible for acid type carboxyl groups to coexist. The water removal filter obtained in this way not only exhibits outstanding water removal ability, but also eliminates the mixing of water removal material into purified liquids and can be used for long periods of time without fibers becoming sagging or clogging. It has excellent characteristics that have not been seen before in terms of ease of use, ease of handling, such as equipment and removal. In addition, by adopting the manufacturing method according to the present invention, it is possible to form any shape and fill it without using a middle tube, adhesive, etc., and without the difficulties of dehydration, drying, etc. peculiar to water-swellable fibers. has a density,
Moreover, a water removal filter having the above-mentioned excellent properties can be manufactured with industrial advantage. The water removal filter according to the present invention can be suitably used as a water removal material for liquids mixed with water, and with the advent of such a filter, it has become possible to regenerate and reuse liquids that were previously discarded. The significance of this path being opened is great. In addition, such liquids are a general term for liquids that are liquid under water removal treatment conditions and undergo phase separation from water (even if some mutual dissolution occurs, phase separation is sufficient), such as petroleum ether. , pentane, hexane,
Petroleum hydrocarbons such as heptane and petroleum benzine;
Alicyclic saturated hydrocarbons such as cyclohexane and cyclooctane; aliphatic unsaturated hydrocarbons such as 1-octene and cyclohexene; benzene, toluene,
Aromatic hydrocarbons such as xylene and styrene; Halogenated aliphatic hydrocarbons such as tetrachlorethylene, methylene chloride, chloroform, and carbon tetrachloride; Spindle oil, refrigeration oil, dynamo oil, turbine oil, machine oil, cylinder oil , marine engine oil, gear oil, cutting oil, hydraulic oil, compressor oil, and other lubricating oils. In order to further facilitate understanding of the present invention, Examples are described below, but the gist of the present invention is not limited in any way by the description of these Examples.
It should be noted that all percentages and parts described in the Examples are based on weight unless otherwise specified. The degree of water swelling, the amount of carboxyl groups, and the volume ratio of the outer layer of the hydrogel described in the Examples were measured or calculated by the following methods. (1) Water swelling degree (cc/g) Immerse the sample in pure water, keep it at 25℃ for 24 hours, wrap it in a nylon filter cloth (200 mesh), and put it in a centrifugal dehydrator (3G x 30 minutes, except for G. gravitational acceleration)
water between the fibers is removed. The weight of the sample thus prepared is measured (W 1g ). Next, the sample is dried in a vacuum dryer at 80° C. until it reaches a constant weight, and the weight is measured (W 2g ). From the above measurement results, it was calculated using the following formula. Therefore, the actual water swelling degree is a numerical value indicating how many times the weight of the fiber can absorb and retain water. (Water swelling degree) = W 1 - W 2 / W 1 (2) Amount of carboxyl groups (mmol/g) Approximately 1 g of a sufficiently dried sample was accurately weighed (Xg), and 200 ml of water was added to it, and 50 ml of water was added to it. A 1N aqueous hydrochloric acid solution was added while heating to 0.degree. C. to adjust the pH to 2, and then a titration curve was determined using a 0.1N aqueous sodium hydroxide solution according to a conventional method. The amount of caustic soda aqueous solution consumed by carboxyl groups (Ycc) was determined from the titration curve. From the above measurement results, it was calculated using the following formula. Amount of carboxyl group=0.1Y/X Note that when polyvalent cations are included, it is necessary to determine the amount of these cations by a conventional method and correct the above formula. In addition, when determining the amount of acid-type carboxyl groups, use 1N hydrochloric acid aqueous solution in advance to determine the pH value.
2. Titration was carried out without preparation. (3) Volume ratio of the outer layer of the hydrogel (V: %) 20 water-swollen samples were magnified 100 to 1000 times (Z
The average value (l 1 mm) of the diameter of the core (the layer within the AN polymer and/or other polymers) was calculated using the following formula. V={1-(1000l 1 /Zl) 2 }×100 where l: Diameter of treated AN-based fiber (μ) Example 1 Opened two-component bonded AN-based composite fiber (Japan Exlan Kogyo Co., Ltd. Co., Ltd., single fiber fineness: 6 d , fiber length: 5 mm) was uniformly sprayed with 30% caustic soda aqueous solution to make it adhere to 20%, and then placed in an autoclave and heated in saturated steam at 105°C for 5 minutes. . The obtained fiber (1) did not dissolve in water, and when it was squeezed in a water-swollen state, the AN polymer core remained, and only the outer layer of the treated fiber was hydrogelized (hydrogel). Volume ratio of outer layer part V = 5
%) was confirmed. In addition, the fiber (1) is 0.4m
Contains mol/g of -COONa group, 7.0cc/g
It had a degree of water swelling of . Disperse this fiber (1) in water and adjust the pH of the water with nitric acid.
After acid treatment at a pH of 3.5, it was dehydrated using a centrifugal dehydrator until the moisture content reached 20%. Note that 90 mol% of the carboxyl groups in this fiber were converted to acid form. The fibers obtained in this way were placed in a molding machine with a packing density of 0.18 g/ cm3 , an inner diameter of 32 mm, and an outer diameter of 180 mm.
mm, height 150 mm, and then neutralized by introducing methanol/water (=80/20) mixed solvent containing 0.1% caustic soda into the molding machine. /20) Washed with a mixed solvent and then dried by introducing hot air at 60°C. The filter () prepared in this way was installed in a water remover, and turbine oil (white cloudy state) mixed with 0.3% water was supplied into the water remover at a rate of 1000 ml/min. A water removal treatment operation was carried out for 10 hours in which the treated oil was passed from the outer surface of the filter toward the inner surface to take out the refined oil. During this period of operation, no pressure increase due to clogging occurred, and the operating conditions were good, and the refined oil was clear, confirming that water removal was complete. In addition, when the filter was observed after use, no fibers were found to be sagging or deformed at all. On the other hand, water-swellable fibers (-
COONa group: 8.7 mmol/g, water swelling degree: 334 c.c./g)
However, it was extremely sticky and extremely brittle.
It could not be molded into a filter. Example 2 The AN-based composite fiber described in Example 1, a single-component AN-based fiber with mechanical crimping (AN = 90%, single fiber fineness: 6 d , fiber length: 5 mm, Cn = 9.0 pieces/25 mm, Ci=
10.0%) and the single component without crimp
A 10% caustic soda aqueous solution containing 20% Glauber's salt was uniformly sprayed on each AN fiber to make it adhere to 30%, and then heated in an autoclave with saturated steam at 115°C for 4 minutes to form water-swellable fibers. 2 to 4) were prepared. In addition, all of these fibers have V=5%
After the acid treatment, about 90 mol% of the carboxyl groups in the fibers were converted to the acid type. Three types of water removal filters (~) were prepared from these three types of fibers (2 to 4) according to the formulation described in Example 1.
and these three types of water removal filters (~
) and the water removal filter () produced in Example 1, and the water removal treatment operation was carried out in the same manner as described in Example 1. The results are shown in Table 1.

【表】 第1表の結果より、本発明フイルターは優れた
除水能を有しており、中でも捲縮を有する水膨潤
性繊維(1〜3)からなる除水フイルター(〜
)の性能が特に優れていることが明瞭に理解さ
れる。 なお、比較のためクラフトパルプについて上記
と同様にして除水能を測定したところ、処理可能
油量250、除水量610gと、性能は極めて劣つて
いた。 実施例 3 実施例1記載のAN系複合繊維(但し、2.5d×
10mm)を実施例1記載の処方に従つて加水分解処
理(但し、115℃×7分)して1.4mmol/gの−
COONa基を含有しており、43c.c./gの水膨潤度を
有する繊維(5、V=12%)を作製した。 この繊維(5)20%とポリエステル繊維(3d×10
mm)80%を開繊混合したのち、実施例1記載の処
方に従つて除水フイルター(V;但し、充填密度
0.2g/cm3)を作製し、実施例1記載と同様にして
除水処理運転(但し、油供給速度500ml/分)を
行ない、その除水能を測定したところ、処理可能
油量620、除水量1410gと、優れた性能を有し
ていた。
[Table] From the results in Table 1, the filter of the present invention has excellent water removal ability, and especially the water removal filter (~
It is clearly understood that the performance of ) is particularly excellent. For comparison, the water removal ability of kraft pulp was measured in the same manner as above, and the performance was extremely poor, with the amount of oil that could be treated being 250 and the amount of water removed being 610 g. Example 3 The AN-based composite fiber described in Example 1 (however, 2.5 d ×
10 mm) was hydrolyzed (115°C x 7 minutes) according to the recipe described in Example 1 to obtain 1.4 mmol/g of -
Fibers (5, V=12%) containing COONa groups and having a water swelling degree of 43 c.c./g were prepared. This fiber (5) 20% and polyester fiber (3 d × 10
After opening and mixing 80% of the fibers (mm), a water removal filter (V; however, the packing density
0.2 g/cm 3 ) was prepared, water removal treatment was performed in the same manner as described in Example 1 (however, the oil supply rate was 500 ml/min), and its water removal ability was measured. The amount of oil that could be treated was 620, It had excellent performance with a water removal amount of 1410g.

Claims (1)

【特許請求の範囲】 1 親水性架橋重合体からなる外層部とアクリロ
ニトリル系重合体および/または他の重合体から
なる内層部とで構成され、しかも塩型カルボキシ
ル基(−COOX:Xはアルカリ金属またはアンモ
ニウム)を0.1〜4.0mmol/g結合含有する水膨潤
性繊維を含有する繊維集合体が中空円筒状に圧縮
成形されてなる除水フイルター。 2 水膨潤性繊維の水膨潤度が2〜300c.c./gであ
る特許請求の範囲第1項記載の除水フイルター。 3 親水性架橋重合体からなる外層部とアクリロ
ニトリル系重合体および/または他の重合体から
なる内層部とで構成され、しかも少なくとも一部
が酸型カルボキシル基(−COOH)であるカル
ボキシル基を0.1〜4.0mmol/g結合含有する潜在
水膨潤繊維を含有する繊維集合体を中空円筒状に
圧縮成形し、次いで非膨潤状態にて中和、乾燥す
ることを特徴とする除水フイルターの製造法。 4 少なくとも50モル%が酸型カルボキシル基で
ある特許請求の範囲第3項記載の製造法。 5 100%以下の水分率の繊維集合体を使用する
特許請求の範囲第3項記載の製造法。
[Scope of Claims] 1. Consisting of an outer layer made of a hydrophilic crosslinked polymer and an inner layer made of an acrylonitrile polymer and/or other polymer, the salt-type carboxyl group (-COOX: X is an alkali metal A water removal filter comprising a fiber assembly containing water-swellable fibers containing 0.1 to 4.0 mmol/g of bonded ammonium or ammonium) and compression molded into a hollow cylindrical shape. 2. The water removal filter according to claim 1, wherein the water swelling degree of the water swelling fiber is 2 to 300 c.c./g. 3 The carboxyl group, which is composed of an outer layer made of a hydrophilic crosslinked polymer and an inner layer made of an acrylonitrile polymer and/or other polymer, and in which at least a portion is an acid type carboxyl group (-COOH), is 0.1 A method for producing a water removal filter, which comprises compression molding a fiber aggregate containing latent water-swollen fibers containing ~4.0 mmol/g bond into a hollow cylindrical shape, and then neutralizing and drying in a non-swollen state. 4. The production method according to claim 3, wherein at least 50 mol% is an acid type carboxyl group. 5. The manufacturing method according to claim 3, which uses a fiber aggregate with a moisture content of 100% or less.
JP9407779A 1979-02-12 1979-07-23 Dewatering filter and its production Granted JPS5617606A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9407779A JPS5617606A (en) 1979-07-23 1979-07-23 Dewatering filter and its production
GB8004476A GB2044273B (en) 1979-02-12 1980-02-11 Fibrous material and filters for removing water from hydrophobic liquids
DE19803005198 DE3005198A1 (en) 1979-02-12 1980-02-12 WATER REMOVAL MATERIAL
US06/351,363 US4507204A (en) 1979-02-12 1982-02-23 Water-removing material usable for hydrophobic liquids and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9407779A JPS5617606A (en) 1979-07-23 1979-07-23 Dewatering filter and its production

Publications (2)

Publication Number Publication Date
JPS5617606A JPS5617606A (en) 1981-02-19
JPS6143082B2 true JPS6143082B2 (en) 1986-09-25

Family

ID=14100422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9407779A Granted JPS5617606A (en) 1979-02-12 1979-07-23 Dewatering filter and its production

Country Status (1)

Country Link
JP (1) JPS5617606A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59620A (en) * 1982-06-28 1984-01-05 Kinmon Seisakusho:Kk Flow rate measuring device
JP6014831B2 (en) * 2012-03-21 2016-10-26 オリオン機械株式会社 Gas-liquid separation filter and air purifier for compressed air
JP2016028137A (en) * 2014-07-09 2016-02-25 東洋紡株式会社 Moisture adsorption filter for liquid fuel
TWI793244B (en) * 2018-01-24 2023-02-21 日商日本Exlan工業股份有限公司 Water-absorbing fiber precursor, water-absorbing nonwoven fabric precursor and water-absorbing nonwoven fabric; as well as facial mask containing the same and face mask having lotion already filled with, and their manufacturing method

Also Published As

Publication number Publication date
JPS5617606A (en) 1981-02-19

Similar Documents

Publication Publication Date Title
JPS6260503B2 (en)
US20040059055A1 (en) High-absorbent polyvinyl alcohol fibers and nonwoven fabric comprising them
US5110678A (en) Synthetic polyvinyl alcohol fiber and process for its production
CN107118361B (en) Silk fibroin/carboxymethyl chitosan composite gel and preparation method thereof
AU715169B2 (en) Readily fibrillatable fiber
JPS6143082B2 (en)
RU2181798C2 (en) Method for obtaining molded cellulose body and molded cellulose body
CN109440212B (en) Preparation method of high-orientation high-toughness regenerated cellulose fiber and high-orientation high-toughness regenerated cellulose fiber
JPH0253526B2 (en)
US4873143A (en) Water-swellable fiber
JPH10504593A (en) Manufacturing method of cellulose extrudate
JPH105580A (en) Activated carbon fiber molded adsorbent
DE3005198C2 (en)
US5217701A (en) Process for producing carbon materials
JPS6260127B2 (en)
JPH04185792A (en) Latent bulky pulp composition and method for preparing the same
JPS626851B2 (en)
JPH09165404A (en) Chitosan molding with its surface being n-thiocarbamoylated and its production
JPS6260502B2 (en)
KR100224474B1 (en) A manufacturing method for polyvinyl alcohol fiber with high absorptiveness and intensivity
JPH01132832A (en) Method for producing carbon material
JPH01188539A (en) Novel cellulosic cellular membrane and production thereof
CN118185121A (en) Preparation method of pH response type banana nanocellulose aerogel based on amino for oil-water separation
CA2980056A1 (en) Method for production of man-made textile yarns form wood fibers
CN114007743B (en) Ion exchange fiber and ion exchange filter containing the same