JPS6260122B2 - - Google Patents

Info

Publication number
JPS6260122B2
JPS6260122B2 JP54122574A JP12257479A JPS6260122B2 JP S6260122 B2 JPS6260122 B2 JP S6260122B2 JP 54122574 A JP54122574 A JP 54122574A JP 12257479 A JP12257479 A JP 12257479A JP S6260122 B2 JPS6260122 B2 JP S6260122B2
Authority
JP
Japan
Prior art keywords
membrane
copolymer
methacrylate
water
polymethyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54122574A
Other languages
Japanese (ja)
Other versions
JPS5648204A (en
Inventor
Takeshi Sonoda
Yoshitaka Tanaka
Yoshisada Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12257479A priority Critical patent/JPS5648204A/en
Publication of JPS5648204A publication Critical patent/JPS5648204A/en
Publication of JPS6260122B2 publication Critical patent/JPS6260122B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は限倖過透析など氎系溶液の濃瞮・
物質分離に適する新芏な半透性の膜、特に人工腎
臓甚に適する半透性の膜に関するものである。 アむ゜タクチツク郚分ずシンゞオタクチツク郚
分を有する含氎メタクリル酞メチル重合䜓から成
る膜は、すでに先に提案した特公昭52−
3616。この膜は、埓来甚いられおいる同じ目的
の各皮の膜に比范しお高床の含氎率のものが埗ら
れるこず、含氎率が高いにもかかわらず機械的性
質が優れおおり、セルロヌス系など他の玠材にく
らべお倧きな透氎性が埗られるなどの特長をも぀
おいる。 しかし、この膜は比范的小さい透氎性を埗る目
的䟋えば、通垞の人工腎臓における透析療法で
500mlhr.以䞋の陀氎を行なう堎合などには適
圓でない。その改善を行なう方法ずしお芪氎性ビ
ニルモノマヌを共重合成分ずしお添加する方法
特願昭53−36722、氎䞭でむオンに解離可胜な
基を含むビニルモノマヌを共重合成分ずしお添加
する方法特願昭53−54736を提案しおきた。 しかし、これらの膜では透氎性は調節可胜であ
るが、溶質の透析性胜がこれにずもな぀お倉化す
る傟向があり、透氎性ず透析性胜のバランスに若
干の問題を有しおいる。すなわち、人工腎臓のよ
うに限倖過による陀氎ず、透析による血䞭溶質
の陀去によ぀お高い治療効果を埗るためには、適
床の陀氎性ず溶質のバランスした陀去が芁求さ
れ、その目的に察し研究を重ね本発明に到達し
た。 本発明では、膜玠材ずしお基本的には二皮のポ
リマすなわち、スルホン酞のアルカリ金属塩基を
有する重合性単量䜓を重合成分の䞀぀ずしお含む
メタクリル酞メチル共重合䜓および、アミノたた
はアルキルアミノメタクリレヌト類を重合成分の
䞀぀ずしお含むメタクリル酞メチル共重合䜓から
なる混合物を甚いるこずを特城ずするものであ
る。たた、本発明の半透膜玠材には補膜、あるい
は䞭空糞ぞの玡糞時の粘床の調節、あるいは機械
的匷床などの改善のために、皮々の重合床のポリ
メタクリル酞メチル、さらにはアむ゜タクチツク
ポリメタクリル酞メチルを添加するこずも奜たし
い方法であり、本発明に含たれるこずはいうたで
もない。 スルホン酞のアルカリ金属塩基を有する重合性
単量䜓の䟋を挙げるず、―スチレンスルホン
酞アリルスルホン酞メタリルスルホン酞
―メタクリロキシプロパンスルホン酞ビニルス
ルホン酞―アクリロキシプロパンスルホン酞
たたは―アクリルアミド――メチルプロパン
スルホン酞およびこれらのナトリりム塩カリり
ム塩などの塩がある。これらの単量䜓は、メタク
リル酞メチルずの共重合䜓ずしお膜玠材成分の䞀
぀に䜿甚されるが、その際の添加量は玠材ポリマ
の構成成分ずしお0.1〜20モル、奜たしくは0.5
〜10モルの量で甚いられる。 膜玠材成分の䞀぀ずしお混合する他のポリマ
は、アミノたたはアルキルアミノメタアクリレヌ
ト類を重合成分の䞀぀ずしお0.2〜40モル、奜
たしくは〜20モル含むメタクリル酞メチル共
重合䜓である。これらアミノ基を含む単量䜓の䟋
を挙げるず、ゞメチルアミノ゚チルメタクリレヌ
トモノメチルアミノ゚チルメタクリレヌトア
ミノ゚チルメタクリレヌト―ブチルアミノ゚
チルメタクリレヌトゞ゚チルアミノ゚チルメタ
クリレヌト―ブチルアミノ゚チルメタクリレ
ヌトゞメチルアミノプロピルメタクリレヌト
―ゞメチルアミノ゚チル――ヒドロキシ
プロピルメタクリレヌト―アミノ゚チルメタ
クリレヌトなどである。 次に、䞊蚘の二぀のポリマすなわち、スルホン
酞基を有する単量䜓を含むメタクリル酞メチル共
重合䜓ず、アルキルアミノメタクリレヌト類
を含むメタクリル酞メチル共重合䜓ずを混合する
割合は、重量比で〜の範囲、奜たし
くはである。なお、粘床調節機械的匷床
などの改善のために、アタクチツクポリメタクリ
ル酞メチル、さらにはアむ゜タクチツクポリメタ
クリル酞メチルを添加混合するこずも可胜であ
り、その堎合は、これらポリメタクリル酞メチル
の割合は、党混合物䞭80以䞋ずし、奜たしくは
40以䞋ずする。 これら原料ポリマの平均分子量は、補膜あるい
は玡糞方匏および膜の䜿甚目的によ぀お芁求され
る機械的性質などを考慮しお倉曎するこずができ
るが、䞀般には原料ポリマの平均倀ずしお10䞇以
䞊であるこずが望たしい。 次に、補膜あるいは玡糞原液を䜜成するための
溶媒ずしおは、䞊蚘原料ポリマを溶解し、か぀氎
眮換可胜なものであるこずが必芁である。奜たし
い溶媒の䟋を挙げるず、ゞメチルスルホキシド
ゞメチルホルムアミドゞメチルアセトアミド
―メチルピロリドンゞオキサンアセトニト
リルアセトンメチル゚チルケトンメチルセ
ロ゜ルブメチルカルビトヌルなどがある。た
た、これらを混合しお甚いるこずも可胜である。
補膜あるいは玡糞原液の濃床は膜の含氎率、甚い
た溶媒の皮類、補膜の方法などによ぀お異なる
が、通垞10〜40の範囲である。 このようにしお埗られる均䞀溶液は、公知の
皮々の方匏によ぀お、湿匏法によ぀お凝固液に接
觊させお補膜あるいは玡糞するこずができる。た
ずえば、原液をガラス板、金属板などの平板に流
延したのち凝固济に浞挬しお固化させるか、たた
は现長い孔をも぀た口金から凝固济䞭に抌出しお
膜状に成圢するこずができる。たた、平板のほか
同心円圢の孔をも぀た口金から玡糞しお円筒状た
たは䞭空糞状に成圢するか、凞面、凹面その他の
䞍芏則圢状の面に広げたのち凝固させお皮々の圢
状の膜を埗るこずができる。 なお、本発明の方法における原液はポリマの組
成によ぀お宀枩付近では、ゲル化をおこすため原
液を加熱する必芁があるこずもある。 凝固济ずしおは、䞀般には氎、脂肪族の䜎玚ア
ルコヌル類たたはそれらの混合物を甚いる。さら
に、その凝固胜力を調節するために䞊蚘の氎やア
ルコヌル類に原液に甚いる溶媒や、無機塩類、さ
らには酞アルカリなどを添加した混合物を甚い
るこずもできる。アルコヌル類ずしお甚いられる
ものは、メタノヌル゚タノヌル―プロパノ
ヌルむ゜プロパノヌルブタノヌル類゚チレ
ングリコヌルグリセリンなどである。 本発明の膜は、湿最状態に保持すれば長期間に
わた぀お透過性胜および機械的性質に倧きな倉化
を生じない。たた、含氎グリセリンなどの適切な
湿最剀を付着させおおけばドラむ状態で保存する
こずも十分可胜である。湿最剀ずしおは、䞊蚘の
ほかに゚チレングリコヌルポリ゚チレングリコ
ヌル各皮の界面掻性剀などが挙げられる。さら
に補膜埌に加熱凊理によ぀お、膜の透過性胜およ
び機械的性質を倉えるこずも可胜である。加熱凊
理は匵力䞋たたは無匵力䞋で行ない、いずれの堎
合も氎䞭芪氎性液䜓䞭たたは湿最状態で行な
う。枩床は通垞50〜110℃の範囲である。 次に、本発明を実斜䟋によ぀お具䜓的に説明す
る。 実斜䟋  メタクリル酞メチルずメタクリル酞ゞメチルア
ミノ゚チルずの共重合をラゞカル開始剀を甚いお
ゞメチルスルホキシド䞭で行い、埌者の共重合䜓
䞭における含量が6.1モル、ポリメタクリル酞
メチルの粘床匏を甚いお蚈算した重量平均分子量
4.8×105の共重合䜓を埗た。 メタクリル酞メチルずパラスチレンスルホン酞
ナトリりムずの共重合をラゞカル開始剀を甚いお
氎―メタノヌル䞭で行ない、埌者の共重合䜓䞭に
おける含量が2.6モル重量平均分子量1.8×
105の共重合䜓を埗た。 たた、粘床調節のため、重量平均分子量1.4×
105および1.5×106のアタクチツクポリメタク
リル酞メチルを甚意した。さらに、機械的匷床の
改善のため、重量平均分子量6.0×105でNMRで枬
定したtriad衚瀺によるアむ゜タクチツク床95
のアむ゜タクチツクポリメタクリル酞メチルを甚
意した。 共重合䜓郚ず共重合䜓郚ず、アむ゜タ
クチツクポリメタクリル酞メチル郚ずポリメタ
クリル酞メチル郚ずを重量平均分子量4.5×105
になるように混合し、ゞメチルスルホキシド䞭で
加熱溶解した。その際の溶液ポリマ濃床は20ず
した。この溶液を玄100℃でガラス板の間に125ÎŒ
のスペヌサを眮いお膜厚を調節しながらキダスト
し、氷氎䞭で凝固させお膜厚123Ό含氎率68.5
の透明な半透膜を埗た。この膜の透過特性を
衚に瀺す。 ここでP1-1・cm3・secずは圧力透過定数
であり、膜の単䜍面積単䜍膜厚圓りの単䜍圧力
差単䜍時間における透過液の䜓積を衚わし、P2
cm2secずは、液䜓の䜓積流がない堎合の膜の
単䜍面積単䜍膜厚圓りの濃床募配による溶質の
透過定数を衚わす。 比范䟋  実斜䟋で甚意したアタクチツクポリメタクリ
ル酞メチル郚ずアむ゜タクチツクポリメタクリ
ル酞メチル郚ずを、重量平均分子量4.5×105に
なるように混合し、実斜䟋ず同様の方法で補膜
し、膜厚112Ό含氎率68.8の半透膜を埗
た。透過特性を衚に瀺す。 比范䟋  実斜䟋で甚意した共重合䜓郚ず、それぞ
れのポリメタクリル酞メチル郚ず぀を重量平均
分子量4.5×105になるように混合し、膜厚134
Ό含氎率68.2の半透膜を埗た。透過特性を
衚に瀺す。 比范䟋  実斜䟋で甚意した共重合䜓郚ず、それぞ
れのポリメタクリル酞メチル郚ず぀を重量平均
分子量4.5×105になるように混合し、膜厚125
Ό含氎率70.2の半透膜を埗た。透過特性を
衚に瀺す。
The present invention is capable of concentrating and concentrating aqueous solutions such as ultrafiltration and dialysis.
The present invention relates to a novel semipermeable membrane suitable for separating substances, in particular to a semipermeable membrane suitable for use in artificial kidneys. A membrane composed of a hydrous methyl methacrylate polymer having an isotactic part and a syndiotactic part was already proposed (Japanese Patent Publication No.
3616). This membrane has a higher moisture content than conventionally used membranes for the same purpose, and has excellent mechanical properties despite its high moisture content. It has features such as greater water permeability than other materials. However, this membrane is used for purposes of obtaining relatively low water permeability (e.g., for dialysis therapy in regular artificial kidneys).
It is not suitable for cases where water removal is less than 500ml/hr.). Methods for improving this are a method of adding a hydrophilic vinyl monomer as a copolymerization component (Japanese Patent Application No. 53-36722), and a method of adding a vinyl monomer containing a group that can be dissociated into ions in water as a copolymerization component (Patent Application 1973-54736). However, although the water permeability of these membranes can be adjusted, the solute dialysis performance tends to change accordingly, and there are some problems in the balance between water permeability and dialysis performance. In other words, in order to obtain a high therapeutic effect by removing water through ultrafiltration and removing solutes from the blood through dialysis, as with artificial kidneys, appropriate water removal performance and balanced removal of solutes are required. Through repeated research, we have arrived at the present invention. In the present invention, there are basically two types of polymers used as membrane materials: a methyl methacrylate copolymer containing a polymerizable monomer having an alkali metal base of sulfonic acid as one of the polymerization components, and an amino or alkylamino copolymer. This method is characterized by using a mixture of a methyl methacrylate copolymer containing methacrylates as one of the polymerization components. In addition, the semipermeable membrane material of the present invention may contain polymethyl methacrylate of various degrees of polymerization, and even isomethyl It goes without saying that adding tactical polymethyl methacrylate is also a preferred method and is included in the present invention. Examples of polymerizable monomers having an alkali metal base of sulfonic acid include p-styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 3
-methacryloxypropanesulfonic acid, vinylsulfonic acid, 3-acryloxypropanesulfonic acid, or 2-acrylamide-2-methylpropanesulfonic acid, and their salts such as sodium salts and potassium salts. These monomers are used as one of the membrane material components as a copolymer with methyl methacrylate, and the amount added at that time is 0.1 to 20 mol%, preferably 0.5% as a constituent of the material polymer.
Used in amounts of ~10 mol%. The other polymer to be mixed as one of the membrane material components is a methyl methacrylate copolymer containing 0.2 to 40 mol%, preferably 1 to 20 mol% of amino or alkylamino methacrylate as one of the polymerization components. . Examples of monomers containing these amino groups are dimethylaminoethyl methacrylate, monomethylaminoethyl methacrylate, aminoethyl methacrylate, t-butylaminoethyl methacrylate, diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, dimethylaminopropyl methacrylate. 
These include 3-(dimethylaminoethyl)-2-hydroxypropyl methacrylate and 2-aminoethyl methacrylate. Next, the ratio of mixing the above two polymers, that is, the methyl methacrylate copolymer containing a monomer having a sulfonic acid group and the methyl methacrylate copolymer containing (alkyl) amino methacrylates, is determined by weight. The ratio ranges from 1:9 to 9:1, preferably 1:1. In addition, it is also possible to add and mix atactic polymethyl methacrylate or even isotactic polymethyl methacrylate in order to improve viscosity control, mechanical strength, etc. In that case, these polymethyl methacrylate The proportion of the total mixture should be 80% or less, preferably
40% or less. The average molecular weight of these raw material polymers can be changed in consideration of the mechanical properties required depending on the membrane forming or spinning method and the intended use of the membrane, but in general, the average molecular weight of the raw material polymers is 100,000 or more. It is desirable that Next, the solvent for forming a membrane or preparing a spinning dope needs to be a solvent that can dissolve the raw material polymer and be capable of displacing water. Examples of preferred solvents include dimethyl sulfoxide,
dimethylformamide, dimethylacetamide,
Examples include N-methylpyrrolidone, dioxane, acetonitrile, acetone, methyl ethyl ketone, methyl cellosolve, and methyl carbitol. It is also possible to use a mixture of these.
The concentration of the membrane-forming or spinning dope varies depending on the water content of the membrane, the type of solvent used, the membrane-forming method, etc., but is usually in the range of 10 to 40%. The homogeneous solution obtained in this way can be brought into contact with a coagulating liquid to form a film or spin by a wet method using various known methods. For example, the stock solution can be cast onto a flat plate such as a glass plate or a metal plate, and then immersed in a coagulation bath to solidify it, or it can be extruded into a coagulation bath through a nozzle with elongated holes and formed into a film. In addition to flat plates, membranes of various shapes can be formed by spinning them from spindles with concentric circular holes and forming them into cylindrical or hollow fiber shapes, or by spreading them on convex, concave, or other irregularly shaped surfaces and solidifying them. Obtainable. Note that depending on the composition of the polymer, the stock solution in the method of the present invention may need to be heated at around room temperature in order to cause gelation. As the coagulation bath, water, aliphatic lower alcohols, or a mixture thereof is generally used. Furthermore, in order to adjust the coagulation ability, it is also possible to use a mixture in which a solvent used in the stock solution, an inorganic salt, an acid, an alkali, etc. are added to the above-mentioned water or alcohol. Alcohols used include methanol, ethanol, n-propanol, isopropanol, butanols, ethylene glycol, and glycerin. The membrane of the present invention does not undergo significant changes in permeation performance and mechanical properties over long periods of time when kept in a wet state. It is also possible to store it in a dry state by attaching a suitable wetting agent such as hydrous glycerin. In addition to the above, examples of wetting agents include ethylene glycol, polyethylene glycol, and various surfactants. Furthermore, it is also possible to change the permeability and mechanical properties of the membrane by heat treatment after membrane formation. The heat treatment is carried out under tension or without tension, and in either case it is carried out in water, in a hydrophilic liquid or in a wet state. Temperatures typically range from 50 to 110°C. Next, the present invention will be specifically explained using examples. Example 1 Copolymerization of methyl methacrylate and dimethylaminoethyl methacrylate was carried out in dimethyl sulfoxide using a radical initiator, the content of the latter in the copolymer was 6.1 mol %, and the viscosity formula of polymethyl methacrylate was Weight average molecular weight calculated using
4.8×10 5 copolymers were obtained. Copolymerization of methyl methacrylate and sodium p-styrene sulfonate was carried out in water-methanol using a radical initiator, and the content of the latter in the copolymer was 2.6 mol% and the weight average molecular weight was 1.8 ×
A copolymer of 10 5 was obtained. In addition, to adjust the viscosity, the weight average molecular weight is 1.4×
Atactic polymethyl methacrylate of 10 5 and 1.5×10 6 was prepared. Furthermore, to improve mechanical strength, the isotactic degree is 95% by triad display measured by NMR with a weight average molecular weight of 6.0 × 105 .
An isotactic polymethyl methacrylate was prepared. 2 parts of the copolymer, 2 parts of the copolymer, 1 part of isotactic polymethyl methacrylate, and 1 part of polymethyl methacrylate with a weight average molecular weight of 4.5×10 5
The mixture was mixed and heated to dissolve in dimethyl sulfoxide. The solution polymer concentration at that time was 20%. Spread this solution between 125 Όl of glass at approximately 100°C.
Cast the film while adjusting the film thickness by placing a spacer, and solidify it in ice water to form a film with a thickness of 123Ό and a water content of 68.5.
% transparent semipermeable membrane A was obtained. Table 1 shows the permeation characteristics of this membrane. Here, P 1 (g -1・cm 3・sec) is the pressure permeation constant, which represents the unit area of the membrane, the unit pressure difference per unit membrane thickness, and the volume of permeate per unit time, and P 2
(cm 2 /sec) represents the solute permeation constant due to the concentration gradient per unit area of the membrane and unit membrane thickness when there is no volumetric flow of liquid. Comparative Example 1 5 parts of the atactic polymethyl methacrylate prepared in Example 1 and 1 part of the isotactic polymethyl methacrylate were mixed so that the weight average molecular weight was 4.5×10 5 , and the same mixture as in Example 1 was prepared. A semipermeable membrane B having a membrane thickness of 112 ÎŒm and a water content of 68.8% was obtained by the method. The transmission characteristics are shown in Table 1. Comparative Example 2 4 parts of the copolymer prepared in Example 1 and 1 part of each polymethyl methacrylate were mixed to have a weight average molecular weight of 4.5×10 5 , and a film thickness of 134
A semipermeable membrane C with ÎŒ and a water content of 68.2% was obtained. The transmission characteristics are shown in Table 1. Comparative Example 3 4 parts of the copolymer prepared in Example 1 and 1 part of each polymethyl methacrylate were mixed to have a weight average molecular weight of 4.5×10 5 , and a film thickness of 125
A semipermeable membrane D with a water content of 70.2% was obtained. The transmission characteristics are shown in Table 1.

【衚】 なお、比范䟋の膜は透氎性P1が高すぎ、
この膜玠材ポリマで䞭空糞を玡糞し、䞭空糞型人
工腎臓を䜜぀た堎合、通垞の透析療法の条件では
必芁量の〜倍の陀氎が起りコントロヌラを必
芁ずする。なお、該透氎性P1倀の望たしい倀
は1.5前埌である。 すなわち、本発明の実斜䟋の膜のみが適床の
透氎性ず、高い尿玠リン酞むオンビタミン
B12透過性を瀺すバランスのずれた人工腎臓甚半
透膜を提䟛できるこずを瀺しおいる。 実斜䟋  メタクリル酞メチルずメタクリル酞ゞ゚チルア
ミノ゚チルずの共重合をラゞカル開始剀を甚いお
メタノヌルず氎ずの混合溶媒䞭で行ない、埌者の
共重合䜓䞭における含量が4.8モル、重量平均
分子量6.6×105の共重合䜓を埗た。 この共重合䜓2.5郚ず実斜䟋で調補した共
重合䜓2.5郚およびアむ゜タクチツクポリメタ
クリル酞メチル郚ずを混合し、実斜䟋ず同様
の方法で補膜し、膜厚120Ό含氎率69.5の半
透膜を埗た。この膜の透氎性P1は1.3×10-12
-1・cm3・secであり、尿玠の透過定数P2は
7.1×10-6cm2secリン酞むオンの透過定数
P2は3.1×10-6cm2sec、ビタミンB12の透過定
数P2は1.2×10-6cm2secであ぀た。 実斜䟋  メタクリル酞メチルず―メタクリロキシプロ
ピルスルホン酞ナトリりムずの共重合を実斜䟋
ず同様の方法で行ない、埌者の共重合䜓䞭におけ
る含量が1.8モル重量平均分子量2.4×105の
共重合䜓を埗た。 この共重合䜓郚ず、実斜䟋で調補した共
重合䜓郚ず、ポリメタクリル酞郚ずを重量
平均分子量4.5×105になるように混合し、ゞメチ
ルアセトアミド䞭で加熱溶解し、実斜䟋ず同様
な方法で膜厚102Ό含氎率66.8の半透膜を
埗た。この膜の透氎性P1は、0.9×10-12-1・
cm3・secであり、尿玠の透過定数P2は6.9×10-6
cm2sec、リン酞むオンの透過定数P2は3.0×
10-6cm2sec、ビタミンB12の透過定数P2は1.2
×10-6cm2secであ぀た。 実斜䟋  実斜䟋で甚意した共重合䜓郚ず共重合䜓
郚ずアむ゜タクチツクポリメタクリル酞メチ
ル郚ずポリメタクリル酞メチル郚ずを重量平
均分子量5.5×105になるように混合し、ゞメチル
スルホキシド䞭で加熱溶解し玡糞原液を調補し
た。このポリマ濃床は26ずした。この原液粘床
は110℃で玄2100ポむズであ぀た。この原液を環
状玡糞孔から䞭空糞の内郚に空気を定量的に泚入
しながら玡糞し、ゞメチルスルホキシドを玄20
含む氎溶液からなる〜℃の凝固济に導き、次
にグリセリン济を通過せしめお、玄30分の速
床で䞭空繊維をカセに巻きず぀た。この䞭空繊維
の䞭埄は玄220Ό膜厚は玄40Όであ぀た。 この䞭空繊維9000本を有効長190mmの䞭空糞型
人工腎臓甚ケヌスに通垞の方法で収玍し、有効面
積玄1.2m2のモゞナヌルを䜜補した。このモゞナ
ヌルの透過性胜を衚に瀺す。 比范䟋  実斜䟋で甚意したアタクチツクポリメタクリ
ル酞メチル郚ずアむ゜タクチツクポリメタクリ
ル酞メチル郚ずを甚いお実斜䟋ず同様な方法
で内埄玄220Ό膜厚玄40Όの䞭空繊維を玡糞
し、有効面積玄1.2m2のモゞナヌルを䜜補した。
このモゞナヌルの透過性胜を衚に瀺す。 比范䟋  セルロヌス系䞭空糞型人工腎臓の代衚䟋ずしお
コルデむス・ダり瀟―DAKモデル1.3、有効面
積玄1.3m2のモゞナヌルの透過性胜カタログ倀
䞀郚枬定倀を衚に瀺す。
[Table] Note that the membrane of Comparative Example 1 had too high water permeability (P 1 ),
When hollow fibers are spun using this membrane material polymer to create a hollow fiber artificial kidney, two to three times the amount of water required will be removed under normal dialysis treatment conditions, requiring a controller. Note that the desirable water permeability (P 1 ) value is around 1.5. That is, only the membrane of Example 1 of the present invention has moderate water permeability and high urea, phosphate ion, and vitamin content.
This shows that it is possible to provide a semipermeable membrane for artificial kidneys with balanced B 12 permeability. Example 2 Copolymerization of methyl methacrylate and diethylaminoethyl methacrylate was carried out in a mixed solvent of methanol and water using a radical initiator, and the content of the latter in the copolymer was 4.8 mol% and the weight average molecular weight was 6.6. A copolymer of ×10 5 was obtained. 2.5 parts of this copolymer, 2.5 parts of the copolymer prepared in Example 1, and 1 part of isotactic polymethyl methacrylate were mixed, and a film was formed in the same manner as in Example 1. A semipermeable membrane E with a rate of 69.5% was obtained. The water permeability P 1 of this membrane is 1.3×10 -12
(g -1・cm 3・sec), and the permeation constant P 2 of urea is
7.1×10 -6 (cm 2 /sec), permeation constant of phosphate ion
P 2 was 3.1×10 −6 (cm 2 /sec), and the permeation constant P 2 of vitamin B 12 was 1.2×10 −6 (cm 2 /sec). Example 3 Copolymerization of methyl methacrylate and sodium 3-methacryloxypropylsulfonate in Example 1
A copolymer having a weight average molecular weight of 2.4×10 5 and a content of 1.8 mol % in the latter copolymer was obtained. 2 parts of this copolymer, 2 parts of the copolymer prepared in Example 1, and 2 parts of polymethacrylic acid were mixed so that the weight average molecular weight was 4.5 × 10 5 , and the mixture was heated and dissolved in dimethylacetamide. A semipermeable membrane F having a membrane thickness of 102 ÎŒm and a water content of 66.8% was obtained in the same manner as in Example 1. The water permeability P 1 of this membrane is 0.9×10 -12 (g -1・
cm 3 sec), and the permeation constant P 2 of urea is 6.9×10 -6
(cm 2 /sec), the permeation constant P 2 of phosphate ion is 3.0×
10 -6 (cm 2 /sec), the permeability constant P 2 of vitamin B 12 is 1.2
×10 -6 (cm 2 /sec). Example 4 2 parts of the copolymer prepared in Example 1, 2 parts of the copolymer, 1 part of isotactic polymethyl methacrylate, and 1 part of polymethyl methacrylate were mixed to have a weight average molecular weight of 5.5×10 5 The mixture was mixed and heated and dissolved in dimethyl sulfoxide to prepare a spinning stock solution. The polymer concentration was 26%. The viscosity of this stock solution was approximately 2100 poise at 110°C. This stock solution is spun while quantitatively injecting air into the hollow fiber through the annular spinning hole, and dimethyl sulfoxide is added to approximately 20%.
The hollow fibers were introduced into a coagulation bath of 2 to 5 DEG C. containing an aqueous solution, then passed through a glycerin bath, and wound into a skein at a speed of about 30 m/min. The medium diameter of this hollow fiber was approximately 220Ό, and the film thickness was approximately 40Ό. 9,000 of these hollow fibers were housed in a hollow fiber artificial kidney case with an effective length of 190 mm using the usual method to create a module with an effective area of about 1.2 m 2 . Table 2 shows the transmission performance of this module. Comparative Example 4 Hollow fibers with an inner diameter of about 220Ό and a film thickness of about 40Ό were prepared in the same manner as in Example 4 using 5 parts of the atactic polymethyl methacrylate prepared in Example 1 and 1 part of the isotactic polymethyl methacrylate. A module with an effective area of approximately 1.2 m 2 was produced by spinning.
Table 2 shows the transmission performance of this module. Comparative Example 5 As a representative example of a cellulose-based hollow fiber artificial kidney, Table 2 shows the permeation performance catalog values (partially measured values) of a module with an effective area of approximately 1.3 m 2 , Cordis Dow's C-DAK model 1.3.

【衚】 比范䟋は溶質の透過性は問題ないが、透氎性
限倖過が高すぎる。なお、該透氎性倀の望
たしい倀は3.0前埌である。たた、比范䟋はリ
ン酞むオンおよびビタミンB12の透過性が劣り、
さらに透氎性も䞍足気味である。 䞀方、本発明の実斜䟋のモゞナヌルは、適床
の透氎性ず高いダむアリザンスを有し、バランス
が取れた透析療法を可胜ずする。 比范䟋  りサギの頚動脈から3.8ク゚ン酞ナトリりム
を加えお採取した新鮮血を遠心分離しお埗た倚血
小板血挿PRPそれぞれc.c.に、実斜䟋の膜
および比范䟋の膜から切出したそれぞれ盎
埄14mmの円板状切片を浞し、37℃で時間振ずう
した。 コントロヌルずしおは膜を入れおいないPRPを
甚いた。それぞれのPRP䞭の血小板をコヌルタヌ
カりンタヌで枬定しお次の倀を埗た。 コントロヌル 4.80×105mm 膜を含浞 4.08×105mm 膜 〃 3.31×105mm すなわち膜の血小板の枛少率が少なく、血液
適合性が良奜である。 比范䟋  りサギの頚動脈から採取した新鮮血100mlにヘ
パリン200単䜍を添加し、遠心分離しお倚血小板
血挿PRPを埗た。 実斜䟋の膜、比范䟋の膜および比范䟋
の膜から切出した盎埄43mmの円板状切片をそ
れぞれ、ヘパリン500単䜍を添加した生理食塩液
100mlに30分間浞し、次に生理食塩液で充分掗浄
した。 これらの膜それぞれず、PRPずを37℃で時間
接觊させた埌、リン酞緩衝液で掗浄し、グル
タルアルデヒド溶液で固定した。 次に、電子顕埮鏡でこれらの膜ぞの血小板の付
着状況を芳察した。
[Table] Comparative Example 4 has no problem with solute permeability, but water permeability (ultrafiltration) is too high. Note that the desirable water permeability value is around 3.0. In addition, Comparative Example 5 had poor permeability to phosphate ions and vitamin B12 ;
Furthermore, water permeability is also lacking. On the other hand, the module of Example 4 of the present invention has appropriate water permeability and high dialysance, and enables well-balanced dialysis therapy. Comparative Example 6 Membrane A of Example 1 and membrane A of Comparative Example 1 were added to 3 c.c. each of platelet-rich plasma (PRP) obtained by centrifuging fresh blood collected from a rabbit carotid artery with 3.8% sodium citrate added. Disc-shaped sections, each 14 mm in diameter, cut from membrane B were immersed and shaken at 37°C for 1 hour. As a control, PRP without a membrane was used. The platelets in each PRP were measured using a Coulter counter to obtain the following values. Control 4.80×10 5 /mm 3 Membrane A impregnated 4.08×10 5 /mm 3 Membrane B 3.31×10 5 /mm 3 In other words, the decrease rate of platelets in Membrane A is small and blood compatibility is good. Comparative Example 7 200 units of heparin was added to 100 ml of fresh blood collected from the carotid artery of a rabbit, and the mixture was centrifuged to obtain platelet-rich plasma (PRP). Disc-shaped sections with a diameter of 43 mm cut from membrane A of Example 1, membrane B of Comparative Example 1, and membrane D of Comparative Example 3 were each placed in a physiological saline solution containing 500 units of heparin.
It was soaked in 100 ml for 30 minutes, and then thoroughly washed with physiological saline. Each of these membranes was brought into contact with PRP at 37°C for 1 hour, then washed with phosphate buffer and fixed with 3% glutaraldehyde solution. Next, the adhesion of platelets to these membranes was observed using an electron microscope.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  スルホン酞のアルカリ金属塩基を有する重合
性単量䜓を含むメタクリル酞メチル共重合䜓ず、
アルキルアミノメタクリレヌト類を含むメタ
クリル酞メチル共重合䜓ずの混合物からなる含氎
性半透膜。
1. A methyl methacrylate copolymer containing a polymerizable monomer having an alkali metal base of sulfonic acid,
A hydrous semipermeable membrane made of a mixture with a methyl methacrylate copolymer containing (alkyl)aminomethacrylates.
JP12257479A 1979-09-26 1979-09-26 Semipermeable membrane Granted JPS5648204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257479A JPS5648204A (en) 1979-09-26 1979-09-26 Semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257479A JPS5648204A (en) 1979-09-26 1979-09-26 Semipermeable membrane

Publications (2)

Publication Number Publication Date
JPS5648204A JPS5648204A (en) 1981-05-01
JPS6260122B2 true JPS6260122B2 (en) 1987-12-15

Family

ID=14839264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257479A Granted JPS5648204A (en) 1979-09-26 1979-09-26 Semipermeable membrane

Country Status (1)

Country Link
JP (1) JPS5648204A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690408B2 (en) * 1990-07-03 1997-12-10 株匏䌚瀟クラレ Method for producing unsaturated ester
CN107096399A (en) * 2016-02-22 2017-08-29 深圳垂启執环保科技有限公叞 A kind of high pressure resistant porous polymer PMMA filter membrane materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523616A (en) * 1975-06-26 1977-01-12 Sumitomo Electric Industries Resin concret mixed with reinforcing materials
JPS5335551A (en) * 1976-09-10 1978-04-03 Xonics Inc Electrostatic image copying apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523616A (en) * 1975-06-26 1977-01-12 Sumitomo Electric Industries Resin concret mixed with reinforcing materials
JPS5335551A (en) * 1976-09-10 1978-04-03 Xonics Inc Electrostatic image copying apparatus

Also Published As

Publication number Publication date
JPS5648204A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
JPS6259606B2 (en)
US4810384A (en) Hydrophilic PVDF semipermeable membrane
US4075108A (en) Polycarbonate membranes and production thereof
FR2656234A1 (en) SEMI-PERMEABLE ASYMMETRIC MEMBRANE FOR THE TREATMENT OF BIOLOGICAL LIQUIDS.
EP0066408B1 (en) Porous membrane
US4160791A (en) Polycarbonate membranes and production thereof
JPS6238205A (en) Semi-permeable membrane for separation
JPS61238834A (en) Porous polysulfone resin membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPH0451216B2 (en)
JPS6260122B2 (en)
JPH0420649B2 (en)
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP2510540B2 (en) Polyacrylonitrile-based semipermeable membrane and method for producing the same
JPH05161836A (en) Permeable membrane excellent in biocompatibility
JPH0536065B2 (en)
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPH0360530B2 (en)
JPS6259611B2 (en)
USRE30856E (en) Polycarbonate membranes and production thereof
JPH03254826A (en) Preparation of polysulfone semipermeable membrane
JPS6259612B2 (en)
JPS6352923B2 (en)
JPS61115570A (en) Porous membrane for purifying blood
JP2005162926A (en) Method for producing temperature-responsive polymer material