JPS6259952B2 - - Google Patents

Info

Publication number
JPS6259952B2
JPS6259952B2 JP54161775A JP16177579A JPS6259952B2 JP S6259952 B2 JPS6259952 B2 JP S6259952B2 JP 54161775 A JP54161775 A JP 54161775A JP 16177579 A JP16177579 A JP 16177579A JP S6259952 B2 JPS6259952 B2 JP S6259952B2
Authority
JP
Japan
Prior art keywords
circuit
synchronization signal
video signal
composite video
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161775A
Other languages
Japanese (ja)
Other versions
JPS5684075A (en
Inventor
Ichiro Ikegami
Norio Meki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16177579A priority Critical patent/JPS5684075A/en
Publication of JPS5684075A publication Critical patent/JPS5684075A/en
Publication of JPS6259952B2 publication Critical patent/JPS6259952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control
    • H04N5/53Keyed automatic gain control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Receiver Circuits (AREA)
  • Television Signal Processing For Recording (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

【発明の詳細な説明】 本発明はビデオテープレコーダなどの映像信号
の記録再生装置等に使用する映像信号処理回路の
自動利得制御回路の性能向上をはかるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the performance of an automatic gain control circuit of a video signal processing circuit used in a video signal recording/reproducing device such as a video tape recorder.

従来の自動利得制御回路では複合映像信号のレ
ベルが規定値から外れた場合、例えば、同期信号
のレベルが異常に縮んで同期信号分離回路が誤動
作して映像信号のペデスタル部分の前縁、後縁部
で分離動作を行ない、誤つた幅の広いパルスが発
生した場合、自動利得制御回路を制御する制御電
圧が異常に大きな値となり、自動利得制御回路の
利得を非常に小さくする結果になつて複合映像信
号出力が小さくなるという問題があつた。これを
第1図と第2図を用いて説明する。
In conventional automatic gain control circuits, when the level of the composite video signal deviates from the specified value, for example, the level of the synchronization signal is abnormally reduced, the synchronization signal separation circuit malfunctions, and the leading and trailing edges of the pedestal portion of the video signal are If an erroneous wide pulse is generated by performing a separation operation in the section, the control voltage that controls the automatic gain control circuit will become an abnormally large value, resulting in a very small gain of the automatic gain control circuit, resulting in a compound problem. There was a problem that the video signal output became small. This will be explained using FIGS. 1 and 2.

第1図は、従来の自動利得制御回路の構成の一
例を示すもので、入力端子1に複合映像信号(第
2図イ―A)が入ると可変利得増幅回路2を通過
し、出力端子3に出力されると共にクランプ回路
4で複合映像信号の同期信号の先端部がクランプ
された複合映像信号(第2図イ―D)が加算回路
5に供給される。一方、前記入力端子1の複合映
像信号は同期信号分離回路6において同期信号
(第2図イ―B)が分離されパルス遅延回路7
で、一定時間遅延した一定振幅の基準パルス(第
2図イ―C)をつくり、加算回路5に加えられ
る。なお、前記基準パルスの極性と複合映像信号
の同期信号先端部の極性は互いに反対になる様に
して加えられる。上述した様にして加算回路5で
加算された信号出力は第2図イ―Eに示す信号と
なるのでこの信号のピーク値をピークホールド回
路8で検出し一定の時定数を持たせてホールドし
誤差増幅回路9で基準値との差電圧を増幅し、可
変利得増幅回路2の増幅度を制御して加算出力が
第2図イ―Eに示すピーク電圧がVC1において平
衡し可変利得増幅回路の出力映像信号を一定にす
る。ところが第2図ロ―A′に示す様な同期信号
が縮んだ複合映像信号が入力端子1に入力された
場合、同期信号の先端からVDなる電圧で同期信
号を検出するとことになると目的とする同期信号
が検出できなくなり、第2図ロ―B′の様にフロン
トポーチの前縁とバツクポーチの後縁部を検出す
る結果になることが考えられる。従つて基準パル
スは第2図ロ―C′の様に幅の広いパルスが遅延
されたものになり、バツクポーチの後縁以降の映
像信号領域と重なる形になるため前者と同様にし
て第2図のロ―C′の基準パルスとロ―D′点線で
示す複合映像信号を加算するとピーク電圧はロ―
E′に示す出力が現われピーク電圧はVC2という高
い電圧になる。このことは可変利得増幅回路2の
増幅度を非常に小さくすることになり自動利得制
御回路が平衡するピーク電圧VC1になるためには
複合映像信号は第2図ロ―D′の実線で示す様な
微少な信号しか得られなくなるという大きい問題
があつた。
FIG. 1 shows an example of the configuration of a conventional automatic gain control circuit. When a composite video signal (I-A in FIG. 2) enters an input terminal 1, it passes through a variable gain amplifier circuit 2 and outputs from an output terminal 3. A composite video signal (FIG. 2 E-D) in which the leading end of the synchronization signal of the composite video signal is clamped by the clamp circuit 4 is supplied to the adder circuit 5. On the other hand, the composite video signal at the input terminal 1 is separated into a synchronization signal (E-B in FIG. 2) by a synchronization signal separation circuit 6, and a pulse delay circuit 7
Then, a reference pulse (FIG. 2, E-C) of a constant amplitude delayed by a certain period of time is generated and added to the adder circuit 5. Note that the polarity of the reference pulse and the polarity of the leading end of the synchronization signal of the composite video signal are applied in such a way that they are opposite to each other. The signal outputs added by the adding circuit 5 as described above become the signals shown in FIG. The difference voltage from the reference value is amplified in the error amplification circuit 9, and the amplification degree of the variable gain amplification circuit 2 is controlled, so that the peak voltage shown in FIG . Keep the output video signal constant. However, when a composite video signal in which the synchronization signal is compressed as shown in Figure 2 Row A' is input to input terminal 1, the purpose is to detect the synchronization signal with a voltage of V D from the tip of the synchronization signal. It is conceivable that the synchronizing signal cannot be detected, resulting in detection of the front edge of the front pouch and the rear edge of the back pouch, as shown in FIG. 2, row B'. Therefore, the reference pulse becomes a delayed wide pulse as shown in Figure 2, Row C', and overlaps with the video signal area after the trailing edge of the back pouch, so it is shown in Figure 2 as in the former case. By adding the low-C' reference pulse and the composite video signal shown by the low-D' dotted line, the peak voltage becomes low-C'.
The output shown at E' appears and the peak voltage becomes a high voltage of V C2 . This makes the degree of amplification of the variable gain amplifier circuit 2 very small, and in order for the automatic gain control circuit to reach a balanced peak voltage V C1 , the composite video signal is shown by the solid line in Figure 2, R-D'. A major problem was that only very small signals could be obtained.

本発明はこのような問題を解決する有効な手段
を提供するもので以下にその詳細を説明する。
The present invention provides an effective means for solving these problems, and will be described in detail below.

第3図および第4図は本発明を説明するための
回路構成図と動作説明波形図で以下両図によつて
説明する。入力端子10に加えられた複合映像信
号第4図イ―aは可変利得増幅回路11を通り出
力端子12に出力されると同時にクランプ回路1
3で同期信号の先端部が或る一定の電圧(VCL
にクランプされて加算回路14に供給される。一
方、入力端子10の複合映像信号は同期信号分離
回路15に入り同期信号第4図イ―bをVD(イ
―a)のレベルを基準として分離する。ここで得
られた同期信号の前縁でトリガして単安定発振回
路16を一定時間(T)発振させ、このパルスを
用いて基準パルス発生回路19で第4図イ―cに
示すパルス幅と振幅及び基線レベル(VCL)の一
定な基準パルスを作成し加算回路14に加え前記
クランプされた複合映像信号と加算して第4図イ
―eの様な加算出力を得て加算出力のピーク電圧
C1をピークホールド回路17で検出、保持し、
誤差増幅回路18に伝達する。但し、単安定発振
回路16の発振時間Tは第4図においてt1<T<
t1<+t2(ただしt1は同期信号パルス期間、t2はバ
ツクポーチ期間)に設定されるものとする。誤差
増幅回路18では、前記ピーク値電圧と別の基準
直流電圧との差電圧を検出増幅して制御電圧をつ
くり可変利得増幅回路11を制御する。なおここ
で用いる可変利得増幅回路11はピーク値電圧が
高くなると利得が減少し、ピーク値電圧が低くな
ると利得が増加する様に構成されている。
FIGS. 3 and 4 are circuit configuration diagrams and waveform diagrams for explaining the operation of the present invention, which will be explained below with reference to these figures. The composite video signal E-a in FIG. 4 applied to the input terminal 10 passes through the variable gain amplification circuit 11 and is output to the output terminal 12, and at the same time is output to the clamp circuit 1.
3, the tip of the synchronization signal is at a certain voltage (V CL )
The signal is clamped and supplied to the adder circuit 14. On the other hand, the composite video signal at the input terminal 10 enters the synchronizing signal separation circuit 15 and separates the synchronizing signal E-b in FIG. 4 using the level of V D (E-a) as a reference. The monostable oscillation circuit 16 is triggered by the leading edge of the synchronization signal obtained here to oscillate for a certain period of time (T), and using this pulse, the reference pulse generation circuit 19 generates the pulse width shown in FIG. A reference pulse with a constant amplitude and baseline level (V CL ) is created and added to the adder circuit 14, and added to the clamped composite video signal to obtain an added output as shown in Fig. 4E, and the peak of the added output is determined. The voltage V C1 is detected and held by the peak hold circuit 17,
It is transmitted to the error amplification circuit 18. However, the oscillation time T of the monostable oscillation circuit 16 is t 1 <T<
It is assumed that t 1 <+t 2 (where t 1 is the synchronizing signal pulse period and t 2 is the back porch period). The error amplification circuit 18 detects and amplifies the difference voltage between the peak value voltage and another reference DC voltage to generate a control voltage to control the variable gain amplification circuit 11. Note that the variable gain amplifier circuit 11 used here is configured such that the gain decreases as the peak value voltage increases, and the gain increases as the peak value voltage decreases.

つぎに本発明の自動利得制御回路に正常な複合
映像信号と同期信号が縮んだ異常な複合映像信号
が入つて来た場合について第4図の動作波形図に
より説明する。
Next, a case where a normal composite video signal and an abnormal composite video signal in which the synchronization signal is shortened are input to the automatic gain control circuit of the present invention will be explained with reference to the operational waveform diagram in FIG.

先づ正常な複合映像信号イ―aが入力端子10
に入つた場合の各部における動作波形は第4図イ
に示した様になる。複合映像信号中の同期信号は
イ―aに示すように同期信号先端からVDなるレ
ベルで分離すると、同期信号イ―bが得られる。
この同期信号の前縁部の立上りで単安定発振回路
16をトリガし、時間Tなる幅のパルスを発生し
て基準パルス発生回路19で同期信号に同期した
時間Tのパルス幅を有し振幅一定で基線レベル
(図ではVCL)を規制した基準パルスイ―cを作
成する。つぎに、前記可変利得増幅回路11を通
つた複合映像信号の同期信号先端部をクランプ回
路13でクランプ(図ではVCL)して加算回路1
4に加え前記基準パルスイ―cと加算し、加算出
力イ―eを得る。加算出力イ―eのピーク値電圧
(VC1)をピークホールド回路17で検出し、別
に設定した基準直流電圧との差電圧を誤差増幅回
路18で検出、増幅して可変利得増幅回路11の
利得を制御するものである。
First, the normal composite video signal E-a is input to the input terminal 10.
The operating waveforms in each part when the state is entered are as shown in FIG. 4A. When the synchronizing signal in the composite video signal is separated at a level V D from the leading edge of the synchronizing signal as shown in E-a, a synchronizing signal E-b is obtained.
The monostable oscillation circuit 16 is triggered by the rising edge of the leading edge of this synchronization signal, and a pulse with a width of time T is generated.The pulse width is synchronized with the synchronization signal and the amplitude is constant in the reference pulse generation circuit 19. A reference pulse e-c is created in which the baseline level (V CL in the figure) is regulated. Next, the leading end of the synchronization signal of the composite video signal that has passed through the variable gain amplification circuit 11 is clamped by a clamp circuit 13 (to V CL in the figure), and the adder circuit 1
4 and the reference pulse E-c to obtain the addition output E-e. The peak value voltage (V C1 ) of the addition output e is detected by the peak hold circuit 17 , and the difference voltage between it and a separately set reference DC voltage is detected and amplified by the error amplifier circuit 18 to obtain the gain of the variable gain amplifier circuit 11 . It controls the

ピーク検出電圧VC1で自動利得制御回路が平衡
する様に前記基準直流電圧を設定すると入力され
る複合映像信号の大小に応じてピーク検出電圧が
C1になる様に可変利得増幅回路の利得が変化し
常に一定レベルの複合映像信号出力を得ることが
出来る。つぎに、同期信号が異常に縮んだ複合映
像信号が入つた時の動作を第4図ロによつて説明
する。同期信号の縮んだ複合映像信号ロ―a′は同
期信号分離回路15で同期信号の先端からVD
る電圧を基準として同期信号を分離しようとした
場合、同期信号が縮んでいるため無視されて複合
映像信号のフロントポーチ前縁とバツクポーチ後
縁部で分離回路が動作してロ―b′の様なパルスが
出力されることがある。この様な状態において単
安定発振回路16は、やはり前述したように同期
信号分離回路15に現われるロ―b′のパルスの前
縁立上りによつてトリガされロ―c′に示す様な時
間関係のパルスを発生し、基準パルス発生回路1
9の出力にはフロントポーチの前縁に同期した時
間Tのパルス幅をもち、一定振幅で基線レベル
(図ではVCL)が一定な基準パルスロ―c′が得ら
れる。
When the reference DC voltage is set so that the automatic gain control circuit is balanced at the peak detection voltage V C1 , the gain of the variable gain amplifier circuit is adjusted according to the magnitude of the input composite video signal so that the peak detection voltage becomes V C1 . It is possible to obtain a composite video signal output that changes and is always at a constant level. Next, the operation when a composite video signal whose synchronization signal is abnormally shortened is input will be explained with reference to FIG. 4B. When the synchronizing signal separation circuit 15 attempts to separate the composite video signal low-a' with the synchronizing signal reduced using the voltage V D from the leading edge of the synchronizing signal as a reference, it is ignored because the synchronizing signal is shrunken. A separation circuit may operate at the leading edge of the front porch and the trailing edge of the back porch of the composite video signal, and a pulse like low-b' may be output. In such a state, the monostable oscillation circuit 16 is triggered by the rising edge of the leading edge of the low-b' pulse appearing in the synchronizing signal separation circuit 15 as described above, and generates a time relationship as shown in low-c'. Generates pulses and uses reference pulse generation circuit 1
9, a reference pulse low c' having a pulse width of time T synchronized with the leading edge of the front porch, a constant amplitude and a constant base level (V CL in the figure) is obtained.

入力された複合映像信号は前者と同様に可変利
得増幅回路11を通りクランプ回路で同期信号の
先端が電圧VCLにクランプされた信号ロ―d′(点
線で示す)が作られる。したがつて前者の場合と
同様に上記の2つの信号を加算回路で加算すると
加算出力としてロ―e′の点線で示すものが得ら
れ、ピークホールド回路17ではVC3なるピーク
電圧を検出する。この場合も前者と同様にピーク
ホールド電圧がVC1で自動利得制御回路が平衡す
る様に設定してあるとすると電圧VC3はVC1より
小さいので可変利得増幅回路の利得が増加し、出
力がロ―d′の実線で示す信号レベルになつたとこ
ろで加算出力電圧はロ―e′の実線で示す様にな
り、ピークホールド電圧もVC1となつて自動利得
制御装置は平衡し一定レベルの複合映像信号が出
力端子に得られる。さらに第3図の構成の具体的
な実施例を第5図に示す。図において可変利得増
幅回路11、クランプ回路13、同期信号分離回
路15は一般に使用されており、誤差増幅回路1
8は差動形増幅回路であるので説明を省略する。
点線で囲んだ16が単安定発振回路であつて同期
信号分離回路15の出力パルスを容量C1、抵抗
R1で微分し、ダイオードD1を通して細いパルス
としてスイツチトランジスタQ1をスイツチング
し、トランジスタQ2,Q3から構成される単安定
発振回路をトリガする様にしている。この単安定
発振回路の発振パルス幅は抵抗R3と容量C2によ
り決められ、正の一定幅のパルスをエミツタホロ
アトランジスタQ4を通して点線で囲んだFの回
路に供給する。Fの回路は加算するための基準パ
ルスの発生とクランプ回路13の複合映像信号を
加算する機能を有している。即ち、前記トランジ
スタQ4の正電圧パルスをトランジスタQ6,Q7
らなる差動増幅回路のQ6のベースに加え抵抗
R8,R9で定まる電圧を基準にしてスイツチング
動作を行なわせるとトランジスタQ7のコレクタ
には抵抗R10×電流I0の振幅を有し、単安定発振
回路の発振パルス幅と等しい正極性の基準パルス
が得られる。一方、抵抗R10には同期信号の先端
がクランプされた複合映像信号がトランジスタ
Q5のエミツタホロワを経由して供給され、同期
信号の先端の電圧を最低の基準として複合映像信
号に応じた電圧が供給される。以上から解るよう
にトランジスタQ7のコレクタには基準パルスと
複合映像信号の加算された電圧はトランジスタ
Q8のエミツタホロワで電流増幅を行ない、ピー
ク値電圧を容量C3に急速に保持するものであ
る。なお抵抗R13はC3のチヤージを徐々に放電さ
せるための抵抗で点線で囲んだ17がピークホー
ルド回路である。以上の説明の中で同期信号分離
回路15に供給する複合映像信号は入力端子10
から得ているが可変利得増幅回路11の出力から
得ても全く同様の動作を行なうことはいうまでも
ない。
Similar to the former, the input composite video signal passes through the variable gain amplifier circuit 11, and a clamp circuit generates a signal low d' (indicated by a dotted line) in which the leading edge of the synchronizing signal is clamped to the voltage VCL . Therefore, as in the former case, when the above two signals are added by the adder circuit, the added output shown by the dotted line of low-e' is obtained, and the peak hold circuit 17 detects the peak voltage V C3 . In this case, as in the former case, if the peak hold voltage is set to V C1 and the automatic gain control circuit is balanced, the voltage V C3 is smaller than V C1 , so the gain of the variable gain amplifier circuit increases and the output increases. When the signal level reaches the signal level shown by the solid line of low-d', the added output voltage becomes as shown by the solid line of low-e', and the peak hold voltage also becomes V C1 , and the automatic gain control device is balanced and a fixed level complex A video signal is obtained at the output terminal. Furthermore, a concrete example of the configuration shown in FIG. 3 is shown in FIG. In the figure, a variable gain amplifier circuit 11, a clamp circuit 13, and a synchronization signal separation circuit 15 are generally used, and an error amplifier circuit 1
Since 8 is a differential amplifier circuit, its explanation will be omitted.
16 surrounded by a dotted line is a monostable oscillation circuit, and the output pulse of the synchronous signal separation circuit 15 is connected to a capacitor C 1 and a resistor.
The pulse is differentiated with respect to R1 , and a thin pulse is passed through the diode D1 to switch the switch transistor Q1 , thereby triggering a monostable oscillator circuit composed of transistors Q2 and Q3 . The oscillation pulse width of this monostable oscillator circuit is determined by the resistor R 3 and the capacitor C 2 , and a positive constant width pulse is supplied to the circuit F surrounded by the dotted line through the emitter follower transistor Q 4 . The circuit F has a function of generating a reference pulse for addition and adding the composite video signal of the clamp circuit 13. That is, the positive voltage pulse of the transistor Q 4 is applied to the base of Q 6 of the differential amplifier circuit consisting of transistors Q 6 and Q 7 , and the resistor
When a switching operation is performed based on the voltage determined by R 8 and R 9 , the collector of transistor Q 7 has an amplitude of resistance R 10 × current I 0 , and a positive polarity equal to the oscillation pulse width of the monostable oscillation circuit. A reference pulse is obtained. On the other hand, the composite video signal with the tip of the synchronization signal clamped to the resistor R10 is connected to the transistor.
It is supplied via the emitter follower of Q5 , and the voltage corresponding to the composite video signal is supplied using the voltage at the tip of the synchronization signal as the lowest reference. As can be seen from the above, the voltage that is the sum of the reference pulse and the composite video signal is applied to the collector of transistor Q7 .
Current amplification is performed by the emitter follower of Q8 , and the peak value voltage is rapidly held in the capacitor C3 . Note that the resistor R13 is a resistor for gradually discharging the charge of C3 , and 17 surrounded by a dotted line is a peak hold circuit. In the above explanation, the composite video signal supplied to the synchronization signal separation circuit 15 is input to the input terminal 10.
However, it goes without saying that the same operation can be performed even if the signal is obtained from the output of the variable gain amplifier circuit 11.

今までの説明から解る様に同期信号分離出力の
前縁を用いて一定幅の基準パルスをつくるもので
あるから同期信号の分離が困難なために第4図ロ
―a′の様な誤つた信号に対しても誤動作すること
がない高性能で安定な自動利得制御を行なうこと
ができ、大なる効果が得られるものである。
As you can see from the previous explanation, since the leading edge of the synchronization signal separation output is used to create a reference pulse of a constant width, it is difficult to separate the synchronization signal, resulting in errors such as the one shown in Figure 4, row a'. It is possible to perform high-performance and stable automatic gain control that does not cause malfunctions even for signals, and a great effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動利得制御装置の従来例を示すブロ
ツク図、第2図は同装置の動作説明のための動作
波形図、第3図は本発明による自動利得制御装置
の1実施例を示すブロツク図、第4図は同装置の
動作を説明するための各部動作波形図、第5図は
本発明による具体的な実施回路例である。 11……可変利得増幅回路、13……クランプ
回路、14……加算回路、15……同期分離回
路、16……単安定発振回路、17……ピークホ
ールド回路、18……誤差増幅回路、19……基
準パルス発生回路。
FIG. 1 is a block diagram showing a conventional example of an automatic gain control device, FIG. 2 is an operation waveform diagram for explaining the operation of the same device, and FIG. 3 is a block diagram showing an embodiment of the automatic gain control device according to the present invention. 4 are operation waveform diagrams of various parts for explaining the operation of the device, and FIG. 5 is a concrete example of a circuit according to the present invention. 11... Variable gain amplifier circuit, 13... Clamp circuit, 14... Adder circuit, 15... Synchronous separation circuit, 16... Monostable oscillation circuit, 17... Peak hold circuit, 18... Error amplifier circuit, 19 ...Reference pulse generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 複合映像信号より同期信号をとり出す同期信
号分離回路と、前記同期信号分離回路の出力の前
縁でトリガされ、少なくとも同期信号パルス期間
より長くかつ同期信号パルス期間とバツクポーチ
期間を加算した期間より短い一定パルス幅および
一定振幅のパルスを発生する基準パルス発生回路
と、前記複合映像信号を増巾する可変利得増幅回
路と、前記可変利得増幅回路からの複合映像信号
出力の同期信号先端部をある一定の電位に固定す
るクランプ回路と、前記基準パルスと前記クラン
プされた複合映像信号の同期信号の極性が相互に
逆極性になるようにして両信号を加える加算回路
とを有し、前記加算回路の加算出力のピーク値を
検出し、検出したピーク値電圧に応じて前記可変
利得増幅回路を制御することを特徴とする自動利
得制御装置。
1. A synchronization signal separation circuit that extracts a synchronization signal from a composite video signal, and a period that is triggered by the leading edge of the output of the synchronization signal separation circuit and is at least longer than the synchronization signal pulse period and longer than the sum of the synchronization signal pulse period and the back porch period. a reference pulse generation circuit that generates a pulse with a short constant pulse width and a constant amplitude; a variable gain amplifier circuit that amplifies the composite video signal; and a synchronization signal tip of the composite video signal output from the variable gain amplifier circuit. The addition circuit includes a clamp circuit that fixes the potential to a constant potential, and an addition circuit that adds the reference pulse and the synchronization signal of the clamped composite video signal so that the polarities of the signals are opposite to each other. An automatic gain control device characterized in that it detects a peak value of a summation output and controls the variable gain amplifier circuit according to the detected peak value voltage.
JP16177579A 1979-12-12 1979-12-12 Automatic gain controller Granted JPS5684075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16177579A JPS5684075A (en) 1979-12-12 1979-12-12 Automatic gain controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16177579A JPS5684075A (en) 1979-12-12 1979-12-12 Automatic gain controller

Publications (2)

Publication Number Publication Date
JPS5684075A JPS5684075A (en) 1981-07-09
JPS6259952B2 true JPS6259952B2 (en) 1987-12-14

Family

ID=15741662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16177579A Granted JPS5684075A (en) 1979-12-12 1979-12-12 Automatic gain controller

Country Status (1)

Country Link
JP (1) JPS5684075A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116369U (en) * 1982-02-03 1983-08-09 ソニー株式会社 AGC control signal detection pulse shaping circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549212A (en) * 1977-06-21 1979-01-24 Takasago Corp Preparation of hydroxycitronellal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549212A (en) * 1977-06-21 1979-01-24 Takasago Corp Preparation of hydroxycitronellal

Also Published As

Publication number Publication date
JPS5684075A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
JPS6259952B2 (en)
US4056826A (en) Subcarrier regeneration circuit for color television receivers
JPS5857949B2 (en) Synchronous separation circuit
US3592961A (en) Fine phase error-compensating system and method
US3280342A (en) Limiting amplifier
JPS58186270A (en) Synchronizing separation circuit
KR930003565B1 (en) Synchronizing signal separator circuit
KR800001740Y1 (en) Automatic gain control apparatus
JPS5885680A (en) Noise eliminating circuit
JPH0419880Y2 (en)
JPS6214780Y2 (en)
JPS637081A (en) Video signal processor
JPS5847891B2 (en) DC regeneration circuit
KR890005717Y1 (en) A rectangular wave eliminating circuit of communication satellite receiver
JP3547970B2 (en) Sync separation circuit
JPS599961B2 (en) Dropout compensation circuit
JP2595755B2 (en) Burst gate pulse switching device
JPH0327678A (en) Clamp circuit
JP2577817B2 (en) SECAM Identifier
JPS5919474Y2 (en) Phase comparison circuit such as AFC circuit
JP2778105B2 (en) Clamp circuit
JPS6272278A (en) Synchronizing signal separating device
JPS6219106B2 (en)
JPS60247376A (en) Synchronizing separator circuit
JPS5947909B2 (en) Synchronous separation device