JPS625984B2 - - Google Patents

Info

Publication number
JPS625984B2
JPS625984B2 JP56067628A JP6762881A JPS625984B2 JP S625984 B2 JPS625984 B2 JP S625984B2 JP 56067628 A JP56067628 A JP 56067628A JP 6762881 A JP6762881 A JP 6762881A JP S625984 B2 JPS625984 B2 JP S625984B2
Authority
JP
Japan
Prior art keywords
less
steel
magnetic
present
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067628A
Other languages
Japanese (ja)
Other versions
JPS57185958A (en
Inventor
Tatsumi Oosuga
Chiaki Oochi
Yoji Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP56067628A priority Critical patent/JPS57185958A/en
Publication of JPS57185958A publication Critical patent/JPS57185958A/en
Publication of JPS625984B2 publication Critical patent/JPS625984B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は著しく比抵抗の大きい高マンガン非磁
性鋼の創案に係り、磁場中で非磁性鋼を使用する
場合に問題となる渦電流の発生に伴うエネルギー
損失や磁場の撹乱を著しく小さくすることのでき
る非磁性鋼を提供しようとするものである。 近年において磁気浮上式リニアモータカーや核
融合炉のプラズマ発生装置などの構造部材その他
に安価な非磁性鋼として高マンガンオーステナイ
ト鋼の適用が行われている。即ちこのような強磁
界中での非磁性鋼の使用目的は強磁性体(普通
鋼)を使用する場合における磁束分布の乱れや磁
気エネルギー損失を防止することであり、斯うし
た目的には非磁性金属材料であるアルミニウム合
金や銅合金の使用も適しているが、磁束分布を乱
すもう1つの重要な問題として磁束が金属中を通
過することによつて生ずる渦電流発生に基く磁束
分布の乱れや渦電流損失がある。この渦電流の防
止に対しては比抵抗の小さいアルミニウム合金や
銅合金は不向きであり、比抵抗の大小関係では高
マンガンオーステナイト鋼は著しく大きく、アル
ミニウム合金や銅合金の20〜30倍も大きい値を示
し、このことは渦電流が1/20〜1/30で済むことを
意味している。この渦電流の大きさは電気抵抗の
大きさに反比例するものであり、比抵抗が大きく
且つ非磁性の優れた非磁性鋼が望まれているが、
斯様な目的に即したものは殆んど見当らない。 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、比抵抗が著しく大き
く、しかも非磁性が極めて安定した高マンガン非
磁性鋼を化学成分の調整により他の特性を著しく
損うことなしに経済的に得しめるようにしたもの
である。なお茲でいう比抵抗Pは、電気伝導度の
逆数であつて、長さをl、断面積をSとしたとき
その電気抵抗Rは、R=P×l/Sで示されるこ
とは一般に知られている通りである。 上記したような本発明について更に説明する
と、本発明における基本的特徴は、C:0.01〜
1.5%、Si:3.0〜10%、Mn:20〜30%を含有し、
残部がFlおよび不可避的不純物から成ることで
あり、又上記成分組成のものに必要に応じて夫々
5%以下のCr,Ni,Cu,Co,Moおよび夫々1
%以下のAl,Nb,Ti,Vの1種又は2種以上の
元素をも含有せしめるものであつて、斯様な本発
明でいう非磁性とは透磁率として1.02以下の値を
示すものである。 上記のような本発明に関し、その化学成分限定
理由について説明すると以下の如くである。 Cは、0.01%未満では機械的強度が得難く、し
かもこのCを0.01%未満とするには特殊な精錬を
必要とし経済性を損う。一方このCが1.5%を超
えて含有すると炭化物の析出が著しく非磁性が損
われると共に溶接性や機械加工性を著しく損い構
造用材料としての使用に供し得なくなる。 Mnは、Cと共に高マンガン非磁性鋼を構成す
る基本成分であり、オーステナイト安定化元素と
して不可欠であつて、20%未満では安定したオー
ステナイト組織が得難く、非磁性が著しく損われ
る。又30%を超えて含有することはコストアツプ
となり、しかも製造時における困難性も増すので
30%を上限とした。 Siは、本発明において比抵抗を上昇させる重要
な元素であつて、この比抵抗を上昇させる効果は
3%未満では不充分であり、一方10%を超えて含
有させることはオーステナイトの安定性を損い、
又溶接性や機械加工性を著しく損うので3〜10%
の範囲とした。 次にCr,Ni,Cu,Co,Cu,Mo,Al,Nb,
Ti,Vは、高マンガンオーステナイト鋼におい
て、高強度化、高靭性化などの機械的特性の向上
や非磁性の安定性を補うものとして添加すること
ができるが、Cr,Ni,Cu,CoおよびMoについ
ては5%を超えて含有させても効果が飽和し、又
Al,Nb,Ti,Vについては1%を超えて含有さ
せても効果が飽和し、何れの場合もこれ以上に添
加することはその増量に見合う効果が得られず、
経済性を損うだけで、且つ熱間加工性においても
悪影響を及ぼすので夫々の規定量を上限とした。 然して一般にオーステナイト鋼の比抵抗は何れ
の合金元素を添加しても上昇することが知られて
いるが、その程度は合金元素の種類によつて異
る。即ち第1図は0.25%C―25%Mnをペース成
分とした高マンガンオーステナイト鋼に各種合金
元素を添加した場合の比抵抗上昇量を示したもの
であるが、前記したNi,Co,Cu,Mo,Crなど
の合金元素は5%程度まで添加しても比抵抗の上
昇は10μΩcm以下に止まる。ところがSiは著しく
比抵抗を上昇させ、これら他の合金元素に比較し
て3〜7倍の効果を有するが3%以下のSi添加で
は他合金元素により達成できる範囲内であり著し
い効果を示さない。 最後にNについて言うと0.005%未満ではオー
ステナイトの安定化が失われ易いと共に製造自体
も困難であつて経済性を損い、又0.1%を超えて
含有すると鋼の熱間加工性を損うので0.005〜0.1
%の範囲とすることが好ましい。 本発明によるものの具体的な製造例について説
明すると、次の第1表は成分系の異る各種の高マ
ンガン鋼について室温での比抵抗値と透磁率を測
定した結果を示したものであり、比抵抗は四端子
法によつて測定し、透磁率はソレノイド法により
100Olの磁場中での値を示したものである。なお
供試鋼のNは、何れも0.01〜0.05%の範囲内であ
る。 即ち上記第1表において、鋼C,D,H,Iお
よびLは本発明でいう化学成分組成のものである
が、何れも100μΩcmを超える比抵抗を示し、か
つ透磁率は1.002以下であり、極めて良好な非磁
性を示すことが解る。即ちこの比抵抗の値はアル
ミニウム:2.69μΩcm、銅:1.67μΩcm、炭素
鋼:10〜20μΩcmに比較し、著しく大きな値であ
り、通常の高マンガンオーステナイト鋼と比較し
ても2倍弱である。一方、比較鋼の中で鋼Eは、
10%を超えるSiを添加したものであるが、比抵抗
は大きな値を示すもののオーステナイトの安定性
は損
The present invention relates to the creation of a high manganese non-magnetic steel with a significantly high resistivity, and is capable of significantly reducing energy loss and disturbance of the magnetic field due to the generation of eddy currents, which are problems when using non-magnetic steel in a magnetic field. The aim is to provide a non-magnetic steel that can be used. In recent years, high manganese austenitic steel has been applied as an inexpensive non-magnetic steel to structural members such as magnetic levitation linear motor cars and plasma generators for nuclear fusion reactors. In other words, the purpose of using non-magnetic steel in such a strong magnetic field is to prevent disturbance of magnetic flux distribution and loss of magnetic energy when using ferromagnetic material (ordinary steel), and it is not suitable for such purposes. The use of aluminum alloys and copper alloys, which are magnetic metal materials, is also suitable, but another important problem that disturbs the magnetic flux distribution is the disturbance of the magnetic flux distribution due to the generation of eddy currents that occur when the magnetic flux passes through the metal. There are also eddy current losses. Aluminum alloys and copper alloys with low resistivity are not suitable for preventing this eddy current, and high-manganese austenitic steel has a significantly higher resistivity, which is 20 to 30 times higher than that of aluminum alloys and copper alloys. This means that the eddy current can be reduced to 1/20 to 1/30. The magnitude of this eddy current is inversely proportional to the magnitude of electrical resistance, and a non-magnetic steel with high resistivity and excellent non-magnetism is desired.
I can hardly find anything suitable for such a purpose. The present invention was devised after repeated studies in view of the above-mentioned circumstances, and it takes a high-manganese non-magnetic steel that has an extremely high specific resistance and extremely stable non-magnetic properties, and improves other properties by adjusting the chemical composition. It is designed to provide economic benefits without causing significant damage. Furthermore, it is generally known that the specific resistance P is the reciprocal of the electrical conductivity, and when the length is l and the cross-sectional area is S, the electrical resistance R is expressed as R=P×l/S. It is exactly as it is written. To further explain the present invention as described above, the basic characteristics of the present invention are that C: 0.01 to
Contains 1.5%, Si: 3.0~10%, Mn: 20~30%,
The remainder consists of Fl and unavoidable impurities, and if necessary, Cr, Ni, Cu, Co, Mo and 1% each of Cr, Ni, Cu, Co, Mo and 1
% or less of one or more elements of Al, Nb, Ti, and V, and such non-magnetism as used in the present invention means that it exhibits a value of magnetic permeability of 1.02 or less. be. Regarding the present invention as described above, the reason for limiting the chemical components is as follows. If C is less than 0.01%, it is difficult to obtain mechanical strength, and furthermore, reducing the C content to less than 0.01% requires special refining, which impairs economic efficiency. On the other hand, if the C content exceeds 1.5%, the precipitation of carbides will significantly impair non-magnetism, as well as the weldability and machinability, making it impossible to use as a structural material. Mn is a basic component constituting high manganese nonmagnetic steel along with C, and is essential as an austenite stabilizing element. If it is less than 20%, it is difficult to obtain a stable austenite structure and nonmagnetism is significantly impaired. Also, if the content exceeds 30%, the cost will increase and the difficulty in manufacturing will also increase.
The upper limit was set at 30%. Si is an important element that increases specific resistance in the present invention, and the effect of increasing this specific resistance is insufficient if it is less than 3%, while Si content exceeding 10% will affect the stability of austenite. loss,
In addition, it will significantly impair weldability and machinability, so 3 to 10%
The range of Next, Cr, Ni, Cu, Co, Cu, Mo, Al, Nb,
Ti and V can be added to high manganese austenitic steel to improve mechanical properties such as high strength and toughness, and to supplement non-magnetic stability. Regarding Mo, the effect is saturated even if it is contained in excess of 5%, and
For Al, Nb, Ti, and V, the effect is saturated even if the content exceeds 1%, and in any case, adding more than this will not produce an effect commensurate with the increased amount.
Since it only impairs economic efficiency and also has an adverse effect on hot workability, the respective specified amounts were set as upper limits. However, it is generally known that the resistivity of austenitic steel increases with the addition of any alloying element, but the extent of this increase varies depending on the type of alloying element. That is, Figure 1 shows the increase in resistivity when various alloying elements are added to high manganese austenitic steel with 0.25%C-25%Mn as a pace component. Even if alloying elements such as Mo and Cr are added up to about 5%, the increase in resistivity remains below 10μΩcm. However, Si significantly increases the resistivity and has an effect 3 to 7 times greater than these other alloying elements, but when Si is added at less than 3%, it is within the range that can be achieved with other alloying elements and does not show a significant effect. . Finally, regarding N, if it is less than 0.005%, the stabilization of austenite is likely to be lost, and the manufacturing itself is difficult, impairing economic efficiency, while if it is more than 0.1%, it impairs the hot workability of the steel. 0.005~0.1
It is preferable to set it as the range of %. To explain a specific manufacturing example of the product according to the present invention, Table 1 below shows the results of measuring the specific resistance value and magnetic permeability at room temperature of various high manganese steels with different composition systems. Specific resistance was measured by the four-terminal method, and magnetic permeability was measured by the solenoid method.
This shows the value in a 100Ol magnetic field. Note that the N content of the sample steels was all within the range of 0.01 to 0.05%. That is, in Table 1 above, steels C, D, H, I, and L have the chemical composition according to the present invention, but all exhibit a specific resistance exceeding 100 μΩcm and a magnetic permeability of 1.002 or less. It can be seen that it exhibits extremely good nonmagnetism. That is, this specific resistance value is significantly larger than that of aluminum: 2.69 μΩcm, copper: 1.67 μΩcm, and carbon steel: 10 to 20 μΩcm, and is slightly less than twice that of ordinary high manganese austenitic steel. On the other hand, among the comparative steels, Steel E is
Although more than 10% Si is added, although the specific resistance shows a large value, the stability of austenite is impaired.

【表】 なわれ、透磁率は大きな値を示す。また鋼Gは、
Mnの含有量が10%未満の場合であるが、安定な
オーステナイトは得られず、非磁性鋼としての機
能を有しない。また鋼A,B,F,JおよびK
は、いずれもSiの含有量が2%に満たない鋼種で
あるが、各種合金元素を添加しても比抵抗の値は
80μΩcm以下に止まる。 以上のように、本発明は、基本的にオーステナ
イトを安定化する化学成分域においてSiを3%以
上、Mn:20〜30%を添加することにより達成さ
れるものであり、他合金元素の存在下において
も、その効果は失なわれない。また、被削性向上
の目的で0.08%以下のCaの添加及び0.1%以下の
Sの添加または両者の複合添加を行なつても本発
明の効果を損なうことはない。また本発明におけ
る効果は、製品形状によつて左右されることはな
く、鋼板、鋼管、条鋼などの圧延鋼材及び鋳鍛鋼
品に対しても適用可能である。 以上説明したような本発明によれば渦電流の発
生に伴うエネルギー損失や磁場の撹乱を著しく小
となし、比抵抗の頗る高い高マンガン非磁性鋼を
経済的に提供し得るもので、工業的にその効果の
大きい発明である。
[Table] The magnetic permeability shows large values. Also, steel G is
When the Mn content is less than 10%, stable austenite cannot be obtained and the steel does not function as a non-magnetic steel. Also steel A, B, F, J and K
are all steel types with a Si content of less than 2%, but even if various alloying elements are added, the specific resistance value remains the same.
Stays below 80μΩcm. As described above, the present invention is basically achieved by adding 3% or more of Si and 20 to 30% of Mn in the chemical component range that stabilizes austenite, and the presence of other alloying elements The effect is not lost even at the bottom. Moreover, the effects of the present invention will not be impaired even if Ca is added in an amount of 0.08% or less, S is added in an amount of 0.1% or less, or a combination of both is added for the purpose of improving machinability. Further, the effects of the present invention are not affected by the shape of the product, and can be applied to rolled steel products such as steel plates, steel pipes, and long steel products, as well as cast and forged steel products. According to the present invention as described above, the energy loss and disturbance of the magnetic field due to the generation of eddy currents are significantly reduced, and high manganese nonmagnetic steel with high resistivity can be economically provided, which is suitable for industrial use. This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すもので、第1
図は比抵抗に及ぼす各合金元素の影響を示した図
表である。
The drawings show the technical content of the present invention, and
The figure is a chart showing the influence of each alloying element on resistivity.

Claims (1)

【特許請求の範囲】 1 C:0.01〜1.5%、Si:3.0〜10%、Mn:20〜
30%を含有し、残部が鉄および不可避不純物から
なることを特徴とする著しく比抵抗の大きい高マ
ンガン非磁性鋼。 2 C:0.01〜1.5%、Si:3.0〜10%、Mn:20〜
30%を含有し、更にCr:5%未満、Ni:5%以
下、Cu:5%以下、Co:5%以下、Al:1%以
下、Nb:1%以下、Ti:1%以下、V:1%以
下の何れか1種又は2種以上を含有し、残部が鉄
および不可避不純物からなることを特徴とする著
しく比抵抗の大きい高マンガン非磁性鋼。
[Claims] 1 C: 0.01~1.5%, Si: 3.0~10%, Mn: 20~
High manganese nonmagnetic steel with extremely high specific resistance, characterized by containing 30% of manganese and the remainder consisting of iron and unavoidable impurities. 2 C: 0.01~1.5%, Si: 3.0~10%, Mn: 20~
Contains 30% and further contains Cr: less than 5%, Ni: 5% or less, Cu: 5% or less, Co: 5% or less, Al: 1% or less, Nb: 1% or less, Ti: 1% or less, V : A high manganese nonmagnetic steel with an extremely high resistivity, characterized by containing 1% or less of any one or two or more, with the remainder consisting of iron and unavoidable impurities.
JP56067628A 1981-05-07 1981-05-07 High-manganese nonmagnetic steel with remarkably high specific resistance Granted JPS57185958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56067628A JPS57185958A (en) 1981-05-07 1981-05-07 High-manganese nonmagnetic steel with remarkably high specific resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067628A JPS57185958A (en) 1981-05-07 1981-05-07 High-manganese nonmagnetic steel with remarkably high specific resistance

Publications (2)

Publication Number Publication Date
JPS57185958A JPS57185958A (en) 1982-11-16
JPS625984B2 true JPS625984B2 (en) 1987-02-07

Family

ID=13350428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067628A Granted JPS57185958A (en) 1981-05-07 1981-05-07 High-manganese nonmagnetic steel with remarkably high specific resistance

Country Status (1)

Country Link
JP (1) JPS57185958A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083310A (en) * 1983-10-13 1985-05-11 Kansai Electric Power Co Inc:The Neutral point grounding reactor apparatus
DE3573932D1 (en) * 1984-09-07 1989-11-30 Nippon Steel Corp Shape memory alloy and method for producing the same
US4612067A (en) * 1985-05-21 1986-09-16 Abex Corporation Manganese steel
DE3628395C1 (en) * 1986-08-21 1988-03-03 Thyssen Edelstahlwerke Ag Use of steel for plastic molds
TW470779B (en) * 1997-07-28 2002-01-01 Nippon Steel Welding Prod Eng Iron base Si-Mn alloy or iron base Si-Mn-Ni alloy having good crushability and alloy powder thereof
CN102747273A (en) * 2012-06-28 2012-10-24 北京科技大学 High-manganese non-magnetic steel containing niobium and preparation method thereof
AU2016264750B2 (en) 2015-05-21 2019-06-06 Ak Steel Properties, Inc. High manganese 3rd generation advanced high strength steels

Also Published As

Publication number Publication date
JPS57185958A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
US5091024A (en) Corrosion resistant, magnetic alloy article
CN1091162C (en) Iron-cobalt alloy
JP6929005B2 (en) Ultra-low cobalt iron-cobalt magnetic alloy
US4933026A (en) Soft magnetic alloys
US5601664A (en) Corrosion-resistant magnetic material
JPS625984B2 (en)
JP6539937B2 (en) Samarium-containing soft magnetic alloy
JPH0847235A (en) Production of stepping motor and yoke therefor
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
JPS61238943A (en) High-strength non-magnetic steel excelling in rust resistance
US3615367A (en) Low-loss magnetic core of ferritic structure containing chromium
EP0077079B1 (en) Use of a non-magnetic alloy having high hardness for electromagnetic stirrer rolls
US4484958A (en) Non-magnetic alloy having high hardness and good weldability
CN109097679B (en) Marine low-magnetic steel and preparation method thereof
JPH0753896B2 (en) High Mn non-magnetic steel with good rust resistance and machinability
US4009025A (en) Low permeability, nonmagnetic alloy steel
JPH0475305B2 (en)
JPH0641624B2 (en) Work hardening type non-magnetic stainless steel
JPS626632B2 (en)
CN116987974B (en) High-strength high-toughness low-permeability medium manganese steel and manufacturing method thereof
JPS62136557A (en) High strength nonmagnetic steel having rust resistance
JPH03277718A (en) Production of ni-fe-cr soft-magnetic alloy
Whittenberger et al. Elevated temperature phase relationships in the Cr-Ni-Mn-N system
JPS60110848A (en) Nonmagnetic high hardness steel
JPS61207553A (en) Nonmagnetic steel for use at very low temperature