JPS6259167B2 - - Google Patents

Info

Publication number
JPS6259167B2
JPS6259167B2 JP18507680A JP18507680A JPS6259167B2 JP S6259167 B2 JPS6259167 B2 JP S6259167B2 JP 18507680 A JP18507680 A JP 18507680A JP 18507680 A JP18507680 A JP 18507680A JP S6259167 B2 JPS6259167 B2 JP S6259167B2
Authority
JP
Japan
Prior art keywords
cold rolling
rolling
transformation
during cold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18507680A
Other languages
Japanese (ja)
Other versions
JPS57110622A (en
Inventor
Masayoshi Takano
Noryuki Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP18507680A priority Critical patent/JPS57110622A/en
Publication of JPS57110622A publication Critical patent/JPS57110622A/en
Publication of JPS6259167B2 publication Critical patent/JPS6259167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、冷間圧延時の冷間加工性および打抜
き性に優れたばね用鋼帯の製造方法に関するもの
である。 従来、コードリール用あるいはシートベルト付
トラクタ用などのぜんまいは、たとえばJIS規格
でいえば加工誘起変態を利用したSUS301のよう
なオーステナイト系ステンレス鋼や焼入、焼戻し
処理を行なうSK5のような焼入鋼帯が用いられて
いるが、SUS301は圧延温度や張力などを十分に
制御した冷間圧延による加工硬化および400℃付
近の時効処理により高い疲労寿命やばね限界値が
得られ、ばね特性上の信頼性は高い。しかしなが
ら材料が非常に高価であるという欠点があり、ば
ね加工工程における端末部の処理においては加工
硬化のために冷間圧延時の打抜きがしにくい。ま
た、軟化させるために端末部を焼なましする場合
には金属組織上の脆化域部分を含み、ばね疲労寿
命の低下につながるなどの欠点がある。 次にSK5のような焼入鋼帯は、SUS301に比べ
材料費が安価でしかも製造においてそれほど技術
上の注意を払う必要はないが、SUS301のような
疲労特性が得られないため、ばね疲労寿命の低下
につながる欠点がある。また、疲労特性を改善す
るために恒温変態処理をした場合には、高強度を
得るために冷間圧延により加工硬化を行なうが、
そのために極めて大きな冷延率をとらなければな
らず、その結果冷延中の鋼帯のエツジ部(耳部)
に小さな割れが多発する。このため歩留低下を余
儀なくされるが冷延に先立つて入念な側面研摩が
不可欠になつていた。 本発明は、上述した事情に鑑みてなされたもの
で、炭素鋼をベースに組成および製造条件、特に
冷延中に発生する鋼帯のエツジ部割れおよび冷間
加工時の打抜き性の優れたばね用鋼帯を得るため
種々実験、研究等を重ねた結果、フエライト中に
固溶するSiおよびMnをコントロールすると共に
Crを添加して冷間圧延時の冷間加工性および打
抜き性を改善し、さらに溶体化処理後に恒温変態
処理を行なうことにより、冷延中の帯鋼のエツジ
割れおよび冷延製品の打抜き性の優れたばね用鋼
帯を開発した。すなわち、本発明においては成分
としてC:0.65〜0.9%、Si:0.20%、Mn:0.5
%、Cr:0.1〜1.5%を含有し残部がFeおよび不
可避な不純物からなる鋼を溶体化処理後、A1点
以下であつて425℃以上の温度で恒温変態処理を
行なうことを特徴とする鋼帯の製造方法であり、
本発明鋼と同じ量の炭素を含有する従来の鋼帯
(SK5)と比較した場合に、冷延中の鋼帯のエツ
ジ割れおよび冷延製品の打抜き性を大巾に改善す
ることができ、この結果、鋼帯の品質が改善され
ると共に歩留を著しく向上し、さらには打抜き加
工工具の使用寿命を改善できる。また、従来の
SUS301のような高価な材料を使用しなくても同
等の機械的性質および疲労特性を得ることができ
コスト低減になり経済的な効果は大きい。 次に合金成分の役割および組成と製造条件の限
定理由について説明する。 (1) C:0.65〜0.90% C含量が0.65%以下ではセメンタイト容積%に
対しフエライト容積%が小さくなる。そのため機
械的性質(引張強度)が低下し、かつ塑断はセメ
ンタイトが主体になるため打抜き後のかえり(ば
り)が大になる。また、恒温変態がしにくくなる
ので少なくとも0.65%必要である。一方、C含量
が0.90%を越える場合は変態後のかたさが高いた
めに冷延しにくくなり、かつ圧下率が大きくなる
と冷延加工時の耳割れが起り易くなるため上限を
0.90%とした。 (2) Cr:0.1〜1.5% Cr含量が0.1%以下では恒温変態がしにくくな
り、かつ機械的性質(引張強さ)と疲労特性が低
下するため少なくとも0.1%である。またCr含量
が1.5%以上になると恒温変態後のかたさがかた
くなり過ぎ、冷延加工がしにくくなり、かつ恒温
変態による炭化物の微細化が進み、靭性が低下す
ると共に打抜き後のかえりが大になるため上限を
1.5%とした。 (3) Si:0.20%以下、Mn:0.5%以下 SiおよびMnの添加は恒温変態がしやすくなる
元素であるが、フエライト強化元素のために冷延
加工がしにくくなる。したがつてSi含量を0.20%
以下、Mn含量を0.5%以下とした。 (4) A1点以下〜425℃以上 A1点以上では恒温変態、すなわちパーライト
変態の析出がしなくなる。また、425℃以下では
パーライト変態と同時にベーナイト変態が起り組
織が不安定になりかたさむらが生ずる。また冷延
加工時の耳割れの発生が大になるため下限を425
℃以上とした。 以下、実施例を挙げ本発明を具体的に説明す
る。 実施例 1 第1表に示す成分組成の合金を50Kg高周波誘導
炉でそれぞれ溶解し鋳造したインゴツトを鍛造に
より厚さ15mm×幅120mmの断面に仕上げ、その後
熱延、脱スケール、さらに4段冷間圧延機により
厚さ1.0mm×幅120mmに圧延し供試材とした。次に
1000℃の溶体化処理を行なつたあと、ただちに
550℃に保持した恒温銘槽に移しかえ恒温変態処
理を行なつた。
The present invention relates to a method for producing a spring steel strip that has excellent cold workability and punchability during cold rolling. Conventionally, mainsprings for cord reels or tractors with seat belts have been made of austenitic stainless steel such as SUS301, which uses deformation-induced transformation according to the JIS standard, or hardened stainless steel such as SK5, which is hardened and tempered. Steel strips are used, but SUS301 has a high fatigue life and spring limit value due to work hardening by cold rolling with sufficient control of rolling temperature and tension, and aging treatment at around 400℃, and has excellent spring properties. Reliability is high. However, it has the disadvantage that the material is very expensive, and in the processing of the end portion in the spring processing process, it is difficult to punch out during cold rolling due to work hardening. Furthermore, when the end portion is annealed to soften it, it contains a brittle region in the metal structure, which has the disadvantage of reducing the spring fatigue life. Secondly, hardened steel strips such as SK5 have lower material costs than SUS301 and do not require as much technical attention in manufacturing, but they do not have the same fatigue properties as SUS301, so the spring fatigue life is There are drawbacks that lead to a decline in In addition, when isothermal transformation treatment is performed to improve fatigue properties, work hardening is performed by cold rolling to obtain high strength.
For this purpose, an extremely large cold rolling rate must be used, and as a result, the edges (ears) of the steel strip during cold rolling are reduced.
Small cracks occur frequently. For this reason, careful side polishing was indispensable before cold rolling, although this inevitably resulted in a decrease in yield. The present invention has been made in view of the above-mentioned circumstances, and has been developed for use in springs based on carbon steel, which has excellent composition and manufacturing conditions, especially edge cracking of steel strips that occurs during cold rolling, and punching properties during cold working. As a result of various experiments and research to obtain steel strips, we succeeded in controlling the Si and Mn dissolved in ferrite and
By adding Cr to improve cold workability and punchability during cold rolling, and further performing isothermal transformation treatment after solution treatment, edge cracking of the steel strip during cold rolling and punchability of cold rolled products can be improved. We have developed an excellent steel strip for springs. That is, in the present invention, the components are C: 0.65 to 0.9%, Si: 0.20%, Mn: 0.5
%, Cr: 0.1 to 1.5%, with the remainder consisting of Fe and unavoidable impurities, which is then subjected to isothermal transformation treatment at a temperature below A1 point and above 425°C after solution treatment. It is a method of manufacturing obi,
When compared with a conventional steel strip (SK5) containing the same amount of carbon as the steel of the present invention, the edge cracking of the steel strip during cold rolling and the punchability of cold rolled products can be greatly improved, As a result, the quality of the steel strip is improved, the yield is significantly increased, and the service life of the punching tool can be improved. Also, traditional
It is possible to obtain the same mechanical properties and fatigue properties without using expensive materials such as SUS301, which reduces costs and has a large economic effect. Next, the role of alloy components and the reasons for limiting the composition and manufacturing conditions will be explained. (1) C: 0.65-0.90% When the C content is 0.65% or less, the ferrite volume % becomes smaller than the cementite volume %. As a result, mechanical properties (tensile strength) deteriorate, and cementite becomes the main component of plastic cutting, resulting in large burrs after punching. In addition, it is necessary to have at least 0.65% since it becomes difficult to undergo constant temperature transformation. On the other hand, if the C content exceeds 0.90%, the hardness after transformation will be high, making it difficult to cold-roll, and if the rolling reduction increases, edge cracking will easily occur during cold-rolling, so the upper limit should be set.
It was set at 0.90%. (2) Cr: 0.1 to 1.5% If the Cr content is 0.1% or less, isothermal transformation becomes difficult and mechanical properties (tensile strength) and fatigue properties deteriorate, so it should be at least 0.1%. In addition, if the Cr content exceeds 1.5%, the hardness after isothermal transformation becomes too hard, making it difficult to cold-roll, and the carbides become finer due to isothermal transformation, reducing toughness and causing large burrs after punching. set the upper limit to
It was set at 1.5%. (3) Si: 0.20% or less, Mn: 0.5% or less The addition of Si and Mn facilitates isothermal transformation, but the ferrite-strengthening elements make cold rolling difficult. Therefore, the Si content is reduced to 0.20%.
Hereinafter, the Mn content was set to 0.5% or less. (4) Below A1 point to 425°C or above At A1 point or above, precipitation of isothermal transformation, that is, pearlite transformation, does not occur. Furthermore, below 425°C, bainite transformation occurs at the same time as pearlite transformation, making the structure unstable and causing unevenness. In addition, the lower limit was set to 425 because the occurrence of edge cracking during cold rolling increases.
℃ or higher. The present invention will be specifically described below with reference to Examples. Example 1 Ingots were melted and cast in a 50Kg high-frequency induction furnace using alloys having the compositions shown in Table 1. The ingots were forged into a cross section of 15mm thick x 120mm wide, then hot-rolled, descaled, and then cold-rolled in four stages. The sample material was rolled to a thickness of 1.0 mm x width of 120 mm using a rolling mill. next
Immediately after solution treatment at 1000℃
It was transferred to a constant temperature tank maintained at 550°C and subjected to constant temperature transformation treatment.

【表】 この鋼体を用いて冷間圧延を板厚0.25mm(冷延
率75%)まで実施し、その冷延材の耳部割れの発
生状況につき調査した結果を第1図に示す。図に
おいて〇印は割れなしの場合、●印は微少割れが
ある場合(圧延に影響なし)、×印は片側10個所以
上の割れ又はほぼ全長に割れ発生した場合を示
す。第1図から明らかなように、Si量は0.20%、
Mn量は0.5%をそれぞれ越えると耳割れが発生す
ることがわかる。 次に第1表に示した供試材No.K〜N(本発明)
につきその恒温変態温度と耳部割れ発生程度の関
係につき調べた結果を第2図に示す。なお、第2
図に示した「耳部割れ発生量」の評価基準は次の
とおりである。 割れ評点4:ほぼ全長にわたり割れ発生 3:鋼帯片側30箇所/3.5m以内発生 2: 〃 10箇所/3.5m以内発生 1:微少割れ程度 0:割れ発生なし 第2図から明らかなように、恒温変態温度が
425℃未満になると冷延加工時の耳割れの発生が
大になることを示している。 実施例 2 実施例1に示した処理方法で熱処理およびそれ
につづく冷間圧延を施した第1表に示す成分組成
の素材を用い、さらに冷間加工時の打抜き性につ
き打抜き性とかえり量との関係を調査した。その
結果を第2表に示す。
[Table] This steel body was cold rolled to a thickness of 0.25 mm (cold rolling ratio 75%), and the occurrence of edge cracking in the cold rolled material was investigated. The results are shown in Figure 1. In the diagram, ○ marks indicate no cracks, ● marks indicate slight cracks (no effect on rolling), and × marks indicate cracks in 10 or more places on one side or cracks occurring over almost the entire length. As is clear from Figure 1, the amount of Si is 0.20%,
It can be seen that ear cracking occurs when the Mn content exceeds 0.5%. Next, sample materials No. K to N (invention) shown in Table 1
Figure 2 shows the results of an investigation into the relationship between the isothermal transformation temperature and the degree of ear cracking. In addition, the second
The evaluation criteria for the "amount of ear cracking" shown in the figure are as follows. Crack rating 4: Cracks occur throughout almost the entire length 3: Occur at 30 locations on one side of the steel strip/within 3.5 m 2: Occur at 10 locations/within 3.5 m 1: Slight cracking level 0: No cracks occur As is clear from Figure 2, The isothermal transformation temperature is
This shows that when the temperature is lower than 425°C, edge cracking occurs more frequently during cold rolling. Example 2 Using a material having the composition shown in Table 1, which was heat treated and subsequently cold rolled using the treatment method shown in Example 1, the punching property and burr amount during cold working were further evaluated. investigated the relationship. The results are shown in Table 2.

【表】 なお、打抜き性はぜんまい端末加工用機械プレス
を用い、連続打抜回数により発生するかえり量で
評示〔分子側:圧延方向のかえり量(%)、分母
側:圧延方向に対し直角方向のかえり量(%)〕
した。なお、かえり量の測定はマイクロメータお
よび顕微鏡を使用。本発明の供試材No.I,Jおよ
びNo.L、比較材No.A,B,C,D,FおよびNo.G
と比較し、連続打抜きによるかえり量の変化がき
わめて少ないことが第2表のデータから明らかで
ある。 実施例 3 実施例1で使用した本発明の供試材No.I,Jお
よびNo.Lの各圧延素材を、さらに325℃で時効処
理した。これらの素材につきその時効処理後の薄
板ばね材の機械的性質および疲労特性を調査した
結果を第3表に示す。
[Table] The punching property is evaluated by the amount of burr generated by the number of consecutive punches using a mechanical press for processing the end of a spring. [Numerator side: burr amount (%) in the rolling direction, denominator side: perpendicular to the rolling direction. Amount of direction return (%)]
did. The amount of burr is measured using a micrometer and a microscope. Test materials No. I, J and No. L of the present invention, comparative materials No. A, B, C, D, F and No. G
It is clear from the data in Table 2 that the change in burr amount due to continuous punching is extremely small compared to the above. Example 3 The rolled materials of the present invention test materials No. I, J and No. L used in Example 1 were further aged at 325°C. Table 3 shows the results of investigating the mechanical properties and fatigue properties of thin leaf spring materials after aging treatment for these materials.

【表】 なお、比較例としてばね用SUS301のオーステ
ナイト系ステンレス鋼を400℃で時効処理したも
のおよび第1表に示した比較例の供試材No.Aを厚
さ0.25mm×幅120mmに冷延して熱処理(830℃焼
入、350℃焼戻し)したものの薄板ばね材の機械
的性質および疲労特性を示す。この第3表のデー
タからわかるように、本発明(供試材No.I,J,
L)は通常の熱処理材No.Aと比較して、引張力は
ほぼ同等であるが疲労限が高い。また比較例の
SUS301と比べて同等の疲労限を有する。この結
果、SUS301のような高価な材料を使用しなくて
よいため低コストで生産することができ経済的で
ある。さらには同一抗張力に対してかたさが低
い。よつて加工がやりやすい。 以上の実施例にも示す如く、本発明は成分組成
を調整すると共に恒温変態処理を行なうことによ
り、冷延中の鋼帯の耳割れおよび冷延製品のかえ
りが少なくなり、この結果、鋼帯の品質を改善す
ることができると共に、仕上工数の低減および歩
留の向上になる。また従来のSUS301のような高
価な材料を使用しなくて同等の機械的性質および
疲労特性を得ることができ、生産コストの低減に
なる等の経済的な効果がある。
[Table] As a comparative example, SUS301 austenitic stainless steel for springs was aged at 400℃, and sample material No. A of the comparative example shown in Table 1 was cooled to a thickness of 0.25 mm x width of 120 mm. This figure shows the mechanical properties and fatigue properties of thin plate spring materials after being rolled out and heat treated (830℃ quenching, 350℃ tempering). As can be seen from the data in Table 3, the present invention (sample materials No. I, J,
L) has almost the same tensile strength as normal heat-treated material No. A, but has a higher fatigue limit. Also, a comparative example
It has the same fatigue limit as SUS301. As a result, there is no need to use expensive materials such as SUS301, so it can be produced at low cost, making it economical. Furthermore, the hardness is low for the same tensile strength. It is easy to process. As shown in the above examples, the present invention reduces the edge cracking of the steel strip during cold rolling and the burrs of the cold rolled product by adjusting the chemical composition and performing isothermal transformation treatment. In addition to improving the quality of the process, it also reduces finishing man-hours and increases yield. In addition, it is possible to obtain the same mechanical properties and fatigue properties as conventional SUS301 without using expensive materials, and it has economical effects such as reduced production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷延鋼帯におけるSiおよびMn量と冷
延時の耳割れ発生程度との関係を示す。第2図は
本発明における恒温変態温度と冷延時の耳割れ発
生程度との関係を示す。
Figure 1 shows the relationship between the Si and Mn contents in a cold rolled steel strip and the degree of edge cracking during cold rolling. FIG. 2 shows the relationship between the isothermal transformation temperature and the degree of edge cracking during cold rolling in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.65〜0.95%、Si:0.20%以下、Mn:
0.5%以下、Cr:0.1〜1.5%を含有し残部がFeお
よび不可避な不純物からなる鋼を溶体化処理後、
A1点以下であつて425℃以上の温度において恒温
変態処理を行なうことを特徴とする鋼帯の製造方
法。
1 C: 0.65-0.95%, Si: 0.20% or less, Mn:
After solution treatment of steel containing 0.5% or less, Cr: 0.1-1.5%, and the balance consisting of Fe and unavoidable impurities,
A method for producing a steel strip, characterized by carrying out isothermal transformation treatment at a temperature below A1 point and above 425°C.
JP18507680A 1980-12-27 1980-12-27 Production of steel strip Granted JPS57110622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18507680A JPS57110622A (en) 1980-12-27 1980-12-27 Production of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18507680A JPS57110622A (en) 1980-12-27 1980-12-27 Production of steel strip

Publications (2)

Publication Number Publication Date
JPS57110622A JPS57110622A (en) 1982-07-09
JPS6259167B2 true JPS6259167B2 (en) 1987-12-09

Family

ID=16164391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18507680A Granted JPS57110622A (en) 1980-12-27 1980-12-27 Production of steel strip

Country Status (1)

Country Link
JP (1) JPS57110622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021270U (en) * 1988-06-16 1990-01-08
WO2013133295A1 (en) * 2012-03-08 2013-09-12 日立金属株式会社 Carbon tool steel strip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926211A (en) * 1982-08-04 1984-02-10 Plus Eng Co Ltd Extrusion pin for plastic
JPS6217134A (en) * 1985-07-15 1987-01-26 Nippon Kokan Kk <Nkk> Manufacture of patented steel strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021270U (en) * 1988-06-16 1990-01-08
WO2013133295A1 (en) * 2012-03-08 2013-09-12 日立金属株式会社 Carbon tool steel strip
CN104160053A (en) * 2012-03-08 2014-11-19 日立金属株式会社 Carbon tool steel strip
JPWO2013133295A1 (en) * 2012-03-08 2015-07-30 日立金属株式会社 Carbon tool steel strip
US10294545B2 (en) 2012-03-08 2019-05-21 Hitachi Metals, Ltd. Method of producing a carbon tool steel strip

Also Published As

Publication number Publication date
JPS57110622A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
JP4465057B2 (en) High carbon steel sheet for precision punching
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP3474545B2 (en) Machine parts
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPS6159379B2 (en)
JPS6259167B2 (en)
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JPH07188858A (en) Steel for cold forging
JP3230587B2 (en) A high-strength stainless cold-rolled steel strip having excellent formability and fatigue properties and exhibiting high strength by aging treatment, and a method for producing the same.
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JP4577936B2 (en) Method for producing martensitic stainless steel with excellent strength, ductility and toughness
JP3493153B2 (en) Wire or steel bars and machine parts with excellent cold workability
JPH11264049A (en) High carbon steel strip and its production
JP3347210B2 (en) Manufacturing method of high strength steel sheet for precision punching
JP3913088B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent deep drawability
JPH0717944B2 (en) Manufacturing method of bainite steel sheet with excellent spring characteristics
JPH0625379B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent toughness after heat treatment
JPS6052551A (en) Steel having high ductility and high workability and its production
JPH06271935A (en) Production of high carbon cold rolled steel sheet small in anisotropy