JPS6257530B2 - - Google Patents

Info

Publication number
JPS6257530B2
JPS6257530B2 JP54098515A JP9851579A JPS6257530B2 JP S6257530 B2 JPS6257530 B2 JP S6257530B2 JP 54098515 A JP54098515 A JP 54098515A JP 9851579 A JP9851579 A JP 9851579A JP S6257530 B2 JPS6257530 B2 JP S6257530B2
Authority
JP
Japan
Prior art keywords
speed
running
vehicle speed
vehicle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54098515A
Other languages
Japanese (ja)
Other versions
JPS5622113A (en
Inventor
Toshio Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9851579A priority Critical patent/JPS5622113A/en
Publication of JPS5622113A publication Critical patent/JPS5622113A/en
Publication of JPS6257530B2 publication Critical patent/JPS6257530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 本発明は設定車速を基準とする所定の速度領域
内にて緩加速、慣性走行を繰返して車両の定速走
行を行なう車両走行制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle travel control device that allows a vehicle to travel at a constant speed by repeating slow acceleration and inertia travel within a predetermined speed range based on a set vehicle speed.

従来の定速走行装置は、セツトスイツチをプツ
シユ操作すると、その時点の走行速度を設定車速
S0として記憶し、以後車両の走行速度Sと前記設
定車速S0の比較によりスロツトルアクチエータを
通してスロツトル弁の開度を増減調整し、走行速
度を一定に保つて定速走行している。
With conventional constant-speed driving devices, when you push the set switch, the current driving speed is set to the set vehicle speed.
From then on, the opening degree of the throttle valve is adjusted to increase or decrease through the throttle actuator by comparing the running speed S of the vehicle with the set vehicle speed S0 , and the running speed is kept constant to drive the vehicle at a constant speed.

この定速走行時には車両の負荷変動が少ない状
態になつている点に着目し、その定速走行時によ
り一層の燃料節約を図ろうとするものである。
Focusing on the fact that the vehicle is in a state where load fluctuations are small when traveling at a constant speed, the aim is to further save fuel during constant speed traveling.

本発明は上記の点に鑑みたもので、定速走行条
件が生じたときに、より一層の燃費向上を図り得
る車両走行制御装置を提供する事を目的としてい
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle running control device that can further improve fuel efficiency when a constant speed running condition occurs.

そして上記の目的を達成する為に、本発明は第
6図の発明構成図に示すように車両の走行速度を
検出する車速センサaを備え、定速走行条件が生
じるとその設定車速bに対する走行速度のずれに
より加減速調整機構cを自動制御し、定速走行を
行なう車両走行制御装置において、 前記設定車速bを基準として所定の速度領域を
定め、その上限値に向かつて緩慢な加速走行のた
めに緩加速信号を前記加減速調整機構cに加える
とともに、走行速度が上限値に達すると前記緩加
速信号の発生を停止して慣性走行信号を発生する
制御手段d、および この制御手段dよりの慣性走行信号を受けて、
エンジンによる駆動力の車輪への伝達を遮断し、
且つ、前記エンジンへの燃料供給を遮断する事に
より、通常走行から慣性走行に切換える慣性走行
手段e、を設ける事を特徴としている。
In order to achieve the above object, the present invention is provided with a vehicle speed sensor a for detecting the running speed of the vehicle as shown in the invention block diagram in FIG. In a vehicle travel control device that automatically controls an acceleration/deceleration adjustment mechanism (c) according to a speed deviation to perform constant-speed travel, a predetermined speed range is defined based on the set vehicle speed (b), and slow acceleration is controlled as the speed range approaches the upper limit. a control means d for applying a slow acceleration signal to the acceleration/deceleration adjustment mechanism c for the purpose of operation, and stopping generation of the slow acceleration signal to generate an inertia running signal when the running speed reaches an upper limit; In response to the inertial running signal,
Cuts off the transmission of driving force from the engine to the wheels,
Further, the vehicle is characterized by being provided with inertial running means e that switches from normal running to inertial running by cutting off fuel supply to the engine.

以下本発明を図に示す実施例について説明す
る。第1図はその全体構成図であり、予め定めた
走行制御プログラムを含む制御プログラムに従つ
てデイジタル演算処理を実行するマイクロコンピ
ユータを用いている。
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 is an overall configuration diagram of the system, which uses a microcomputer that executes digital arithmetic processing according to a control program including a predetermined travel control program.

この第1図において、1は車速センサで、自動
車の走行速度に応じた周波数の車速信号を発生す
るものである。2はブレーキペダルの踏込操作に
連動して閉成してブレーキ信号を発生するブレー
キスイツチ、3は上り坂センサで、自動車が所定
傾斜より大きな傾斜の上り坂にかかると閉成して
上り坂信号を発生するスイツチにて構成してい
る。4はスロツトル開度センサで、自動車の加減
速を調整するスロツトル弁の開度に応じたアナロ
グの開度信号を発生するものであり、スロツトル
弁に連動するポテンシヨメータにて構成してい
る。5はリターン式のセツトスイツチで、定速走
行のセツト時にプツシユ操作するものである。6
はリターン式のキヤンセルスイツチで、定速走行
のマニユアル操作によるキヤンセル時に定速走行
を解除するものである。
In FIG. 1, reference numeral 1 denotes a vehicle speed sensor, which generates a vehicle speed signal having a frequency corresponding to the traveling speed of the automobile. 2 is a brake switch that closes in conjunction with the depression of the brake pedal and generates a brake signal, and 3 is an uphill slope sensor that closes and generates an uphill signal when the vehicle starts to go uphill with a slope greater than a predetermined slope. It consists of a switch that generates. Reference numeral 4 denotes a throttle opening sensor, which generates an analog opening signal according to the opening of the throttle valve that adjusts the acceleration and deceleration of the automobile, and is composed of a potentiometer linked to the throttle valve. Reference numeral 5 is a return type set switch, which is pushed when setting constant speed running. 6
is a return type cancel switch, which cancels constant speed driving when manual operation of constant speed driving is canceled.

7は予め定めた走行制御プログラムを含む制御
プログラムに従つてデイジタル演算処理を実行す
るシングルチツプのマイクロコンピユータで、ア
ナログ―デイジタル(A/D)変換器を内蔵して
おり、数メガヘルツ(MHz)の水晶振動子8を接
続するとともに、エンジンキースイツチの投入に
て作動開始する安定化電源回路(図示せず)より
の5Vの安定化電圧の供給を受けて作動状態とな
り、所定の演算処理を数10msec程度の周期にて
繰返し、定速走行のための制御指令および他のシ
ステムの各種制御指令を発するものであり定速走
行制御としては車速センサ1よりの車速信号、ブ
レーキスイツチ2よりのブレーキ信号、上り坂セ
ンサ3よりの上り坂信号、スロツトル開度センサ
4よりのアナログの開度信号、セツトスイツチ5
よりのセツト信号、キヤンセルスイツチ6よりの
キヤンセル信号などを受け、走行制御プログラム
による所定の演算処理を実行して緩加速走行のた
めに緩加速信号或は慣性走行のために慣性走行信
号などを発するものである。このマイクロコンピ
ユータ7は定速走行のための演算手順を定めた走
行制御プログラムを含む制御プログラムを記憶し
ている読出専用メモリ(ROM)と、このROMの
制御プログラムを順次読出してその手順に対応す
る演算処理を実行する中央処理部(CPU)と、
このCPUの演算処理に関連する各種データを一
時記憶するとともにそのデータの必要時にCPU
による読出しが可能なメモリ(RAM)と水晶振
動子8を伴つて上記各種演算のための基準クロツ
クパルスを発生するクロツク発生部と、アナログ
信号をデイジタル信号に変換するA/D変換器を
含み外部との各種信号の入出力を調整する入出力
(I/O)回路部とを主要構成とする半導体の大
規模集積回路(LSI)製(米国Intel8022)のもの
である。
7 is a single-chip microcomputer that executes digital arithmetic processing according to a control program including a predetermined travel control program. When the crystal oscillator 8 is connected, it is activated by receiving a stabilized voltage of 5V from a stabilized power supply circuit (not shown) that starts operating when the engine key switch is turned on, and performs a number of predetermined calculation processes. It repeatedly issues control commands for constant speed driving and various control commands for other systems at a cycle of about 10 msec.For constant speed driving control, the vehicle speed signal from the vehicle speed sensor 1 and the brake signal from the brake switch 2 are used. , uphill signal from uphill sensor 3, analog opening signal from throttle opening sensor 4, set switch 5
It receives a set signal from the vehicle, a cancel signal from the cancel switch 6, etc., executes predetermined arithmetic processing by the travel control program, and issues a slow acceleration signal for slow acceleration travel or an inertia travel signal for inertia travel. It is something. This microcomputer 7 has a read-only memory (ROM) that stores control programs including a travel control program that defines calculation procedures for constant speed travel, and sequentially reads out the control programs in this ROM to correspond to the procedures. A central processing unit (CPU) that performs arithmetic processing,
Various data related to the calculation processing of this CPU is temporarily stored, and when the data is needed, the CPU
A clock generator that generates reference clock pulses for the various calculations mentioned above, and an A/D converter that converts analog signals into digital signals, with a memory (RAM) that can be read by It is manufactured by a semiconductor large-scale integrated circuit (LSI) (Intel 8022, USA), and the main component is an input/output (I/O) circuit section that adjusts the input and output of various signals.

9はクラツチ駆動回路で、マイクロコンピユー
タ7よりのクラツチオン指令の信号を受けてセツ
トされ、電磁クラツチを作動させるクラツチ駆動
信号を発生するとともに、クラツチオフ指令の信
号にてその駆動信号がリセツトされるものであ
る。10はモータ駆動回路で、マイクロコンピユ
ータ7よりの開度増加指令、開度減少指令、開度
保持指令の各信号を受けてそれに対応するモータ
駆動信号を発生するものである。11はスロツト
ルアクチエータで、スロツトル弁の開閉駆動を行
なう駆動モータおよびこの駆動モータの回転駆動
力のスロツトル弁への伝達を断続する電磁クラツ
チにて構成したものであり、クラツチ駆動回路9
およびモータ駆動回路10よりの各駆動信号にて
作動するものである。12はバルブ駆動回路で、
マイクロコンピユータ7よりの燃料遮断指令の信
号を受けて燃料カツトバルブ13をオンさせ、エ
ンジンへの燃料供給を遮断するとともに、燃料復
帰指令の信号にて燃料カツトバルブ13をオフさ
せて燃料供給を復帰させるものである。14はニ
ユートラル制御回路で、マイクロコンピユータ7
よりのニユートラル指令の信号を受けてニユート
ラル制御信号を電気式の自動変速制御装置15に
加え変速機構をニユートラル状態に切換えるとと
もにニユートラル解除の信号にてそれをリセツト
してニユートラル状態を解除し、自動変速制御に
よる変速位置に復帰させている。
Reference numeral 9 denotes a clutch drive circuit which is set in response to a clutch on command signal from the microcomputer 7, generates a clutch drive signal for actuating the electromagnetic clutch, and which is reset by a clutch off command signal. be. Reference numeral 10 denotes a motor drive circuit which receives signals from the microcomputer 7, such as an opening increase command, an opening decrease command, and an opening maintenance command, and generates corresponding motor drive signals. Reference numeral 11 denotes a throttle actuator, which is composed of a drive motor that drives the throttle valve to open and close, and an electromagnetic clutch that connects and disconnects the transmission of the rotational driving force of the drive motor to the throttle valve.
and each drive signal from the motor drive circuit 10. 12 is a valve drive circuit,
In response to a fuel cutoff command signal from the microcomputer 7, the fuel cut valve 13 is turned on to cut off fuel supply to the engine, and in response to a fuel return command signal, the fuel cut valve 13 is turned off to restore fuel supply. It is. 14 is a neutral control circuit, and a microcomputer 7
In response to the signal from the neutral command, a neutral control signal is applied to the electric automatic transmission control device 15 to switch the transmission mechanism to the neutral state, and at the same time, it is reset with a neutral release signal to release the neutral state and perform automatic transmission. The gear is returned to the controlled gear position.

そして、スロツトルアクチエータ11にて加減
速調整機構を構成し、また、マイクロコンピユー
タ7および各駆動回路9,10,12,14にて
制御手段を構成し、さらに燃料カツトバルブ13
および自動変速制御装置15にて慣性走行手段を
構成している。また、クラツチ駆動信号およびモ
ータ駆動信号が緩加速信号に対応し、さらにバル
ブ駆動回路12よりのバルブ駆動信号およびニユ
ートラル駆動信号が慣性走行信号に対応してい
る。
The throttle actuator 11 constitutes an acceleration/deceleration adjustment mechanism, the microcomputer 7 and each drive circuit 9, 10, 12, 14 constitutes a control means, and the fuel cut valve 13
The automatic transmission control device 15 constitutes an inertial traveling means. Further, the clutch drive signal and the motor drive signal correspond to the slow acceleration signal, and further, the valve drive signal and the neutral drive signal from the valve drive circuit 12 correspond to the inertia running signal.

次に、上記構成において、その作動を第2図、
第3図、第4図の演算流れ図および第5図の特性
図とともに説明する。
Next, in the above configuration, its operation is shown in FIG.
This will be explained with reference to the calculation flowcharts in FIGS. 3 and 4 and the characteristic diagram in FIG. 5.

この第2図は走行制御プログラムによるマイク
ロコンピユータ7の演算処理を示す演算流れ図、
第3図は第2図中のエコノミー走行制御ルーチン
の詳細な演算処理を示す演算流れ図、第4図は第
3図中のリズム走行制御ルーチンの詳細な演算処
理を示す演算流れ図、第5図はエコノミー走行時
の速度変化を示す特性図である。
FIG. 2 is a calculation flowchart showing the calculation processing of the microcomputer 7 according to the travel control program.
FIG. 3 is a calculation flowchart showing detailed calculation processing of the economy driving control routine in FIG. 2, FIG. 4 is a calculation flowchart showing detailed calculation processing of the rhythm driving control routine in FIG. 3, and FIG. FIG. 3 is a characteristic diagram showing speed changes during economy driving.

まず、自動車の運転開始のためにキースイツチ
を投入すると図示していない安定化電源回路が作
動開始し、その安定化電圧がマイクロコンピユー
タ7を含み各部回路に供給されてこのマイクロコ
ンピユータ7が作動状態となり、各種フラグの解
除を含む初期セツト作動を経た後に走行制御プロ
グラムの演算処理に進み、以後この走行制御プロ
グラムを含む制御プログラムの演算処理を数
10msecの周期にて繰返す。
First, when the key switch is turned on to start driving the car, a stabilized power supply circuit (not shown) starts operating, and the stabilized voltage is supplied to various circuits including the microcomputer 7, and the microcomputer 7 becomes operational. After going through an initial set operation including canceling various flags, the process proceeds to the calculation processing of the travel control program, and thereafter the calculation processing of the control program including this travel control program is performed several times.
Repeat at a cycle of 10msec.

この走行制御プログラムにおいては、まず第2
図のセツトスイツチ判定ステツプ101に到来して
セツトスイツチ5が操作されているか含かを判定
するが、運転開始時で操作されていないためその
判定がノー(NO)になり、キヤンセルスイツチ
6が操作されているか否かを判定するキヤンセル
判定ステツプ102に進んでその判定もNOになり、
ブレーキスイツチ2が作動したか否かを判定する
ブレーキ判定ステツプ103に進んでその判定もNO
になり、エコノミーフラグ判定ステツプ111に進
む。このとき、初期セツト作動にてフラグが解除
されているためその判定もNOになり、ニユート
ラル解除ステツプ112、クラツチオフステツプ
113、燃料復帰ステツプ114に進む演算を実行し、
ニユートラル制御回路14をオフさせ、バルブ駆
動回路12および燃料カツトバルブ13をオフさ
せ、クラツチ駆動回路9もリセツトされてスロツ
トルアクチエータ11がオフしたままになる。
In this travel control program, first the second
When the set switch determination step 101 in the figure is reached, it is determined whether or not the set switch 5 has been operated, but since it has not been operated at the start of operation, the determination is NO, indicating that the cancel switch 6 has been operated. Proceeding to cancel judgment step 102, which judges whether or not there is, the judgment becomes NO.
Proceeding to brake determination step 103, which determines whether brake switch 2 has been activated, the determination is also NO.
, and proceed to economy flag determination step 111. At this time, since the flag was released during the initial set operation, the determination becomes NO, and the neutral release step 112 and the clutch off step are performed.
113, execute the calculation to proceed to fuel return step 114,
Neutral control circuit 14 is turned off, valve drive circuit 12 and fuel cut valve 13 are turned off, and clutch drive circuit 9 is also reset so that throttle actuator 11 remains off.

そして、この自動車のエンジン始動を行ない、
走行開始しても上記と同様の演算処理を実行し、
また発進時などに一時的にブレーキペダルを踏込
んだ場合にはブレーキスイツチ2よりブレーキ信
号が発生し、ブレーキ判定ステツプ103の判定が
イエス(YES)になり、エコノミーフラグ解除
ステツプ104を経由するが、その他は同様の演算
を実行し、スロツトルアクチエータ11、燃料カ
ツトバルブ13およびニユートラル制御回路14
をいずれもオフ状態に維持している。
Then, start the engine of this car,
Even after starting to run, the same calculation process as above is performed,
Furthermore, when the brake pedal is temporarily depressed when starting, etc., a brake signal is generated from the brake switch 2, and the judgment in the brake judgment step 103 becomes YES, and the process goes through the economy flag release step 104. , the others perform similar calculations, and the throttle actuator 11, fuel cut valve 13, and neutral control circuit 14
Both are kept in the off state.

この状態における平地走行中において、自動制
御の定速走行に移行するために第5図の特性図に
おける時刻t1にて運転者がセツトスイツチ5をプ
ツシユ操作すると、走行制御プログラムの第2図
のセツトスイツチ判定ステツプ101に到来したと
きその判定がYESになり、車速計算ステツプ105
に進んで車速センサ1よりの車速信号に基いて車
速Sを計算し、車速セツトステツプ106にてその
車速Sを設定車速S0(=S)としてセツト記憶
し、クラツチオンステツプ107にてクラツチオン
指令の信号をクラツチ駆動回路9に加えてスロツ
トルアクチエータ11内の電磁クラツチをオンさ
せ、次のスロツトル初期制御ステツプ108に進ん
で前記設定車速S0に対応した初期開度θにスロ
ツトル弁の開度を制御すべくモータ駆動回路10
に開度制御指令の信号を加え、スロツトルアクチ
エータ11の作動によるスロツトル初期制御を終
え、エコノミーフラグセツトステツプ109、加速
フラグセツトステツプ110を通つてエコノミーフ
ラグおよび加速フラグをセツトし、定速走行のた
めの初期制御作動を完了してエコノミーフラグ判
定ステツプ111に進む。そして、このエコノミー
フラグ判定ステツプ111の判定がNOからYESに
反転し、エコノミー走行制御ルーチン200に進
む演算を実行する。この初期制御作動の完了にセ
ツトスイツチ5のプツシユ操作を止めた後はセツ
トスイツチ判定ステツプ101の判定がNOになり、
キヤンセル判定ステツプ102、ブレーキ判定ステ
ツプ103を通つてエコノミーフラグ判定ステツプ
111、エコノミー走行制御ルーチン200に進む
演算を繰返す。
While driving on flat ground in this state, when the driver presses the set switch 5 at time t1 in the characteristic diagram of FIG. 5 to shift to constant speed driving under automatic control, the set switch of FIG. 2 of the travel control program is activated. When the vehicle reaches determination step 101, the determination becomes YES, and vehicle speed calculation step 105 is reached.
Then, the vehicle speed S is calculated based on the vehicle speed signal from the vehicle speed sensor 1, and the vehicle speed S is set and stored as the set vehicle speed S0 (=S) in the vehicle speed set step 106, and the clutch on command is issued in the clutch on step 107. The signal is applied to the clutch drive circuit 9 to turn on the electromagnetic clutch in the throttle actuator 11, and the process proceeds to the next throttle initial control step 108, where the throttle valve is adjusted to the initial opening θ 0 corresponding to the set vehicle speed S 0 . Motor drive circuit 10 to control the opening degree
An opening control command signal is applied to the throttle actuator 11 to complete the initial throttle control, and the economy flag and acceleration flag are set through the economy flag set step 109 and the acceleration flag set step 110, and the engine starts running at a constant speed. After completing the initial control operation, the process proceeds to economy flag determination step 111. Then, the determination in the economy flag determination step 111 is reversed from NO to YES, and the calculation to proceed to the economy travel control routine 200 is executed. After the push operation of the set switch 5 is stopped upon completion of this initial control operation, the determination at the set switch determination step 101 becomes NO.
Economy flag determination step is performed through cancel determination step 102 and brake determination step 103.
111, the operation proceeds to the economy travel control routine 200 and is repeated.

これにより、前記エコノミー走行制御ルーチン
200において車速センサ1、上り坂センサ3、
スロツトル開度センサ4よりの各信号に基きスロ
ツトルアクチエータ11によるスロツトル弁の開
度制御燃料カツトバルブ13のオンオフ制御およ
び自動変速制御装置15によるニユートラル或は
ニユートラル解除などの制御を行なうための演算
処理を実行する。
As a result, in the economy driving control routine 200, the vehicle speed sensor 1, the uphill sensor 3,
Arithmetic processing for controlling the opening of the throttle valve by the throttle actuator 11 based on each signal from the throttle opening sensor 4, controlling the on/off of the fuel cut valve 13, and controlling the automatic transmission control device 15 to set the throttle to neutral or cancel neutral. Execute.

すなわち、エコノミー走行制御ルーチン200
では第3図の車速計算ステツプ201に到来し、車
速センサ1よりの車速信号に基いて現在の車速S
を計算し、上り坂判定ステツプ202の判定がNOに
なり、リズム走行制御ルーチン300に進み、第
4図の上限判定ステツプ301に到来する。このと
き、セツト操作直後のため車速Sが設定車速S0
ほぼ等しいため、その判定がNOになり下限判定
ステツプ303に進んでその判定もNOになり、加速
フラグ判定ステツプ305に進み、加速フラグセツ
トステツプ110にて加速フラグがセツトされてい
るためその判定がYESになりニユートラル解除
ステツプ309、燃料復帰ステツプ310を通つてそれ
までの走行と同様に自動変速制御状態でかつ燃料
供給状態を維持し、緩加速制御ステツプ311に進
む。
That is, the economy driving control routine 200
Then, the vehicle speed calculation step 201 in FIG. 3 is reached, and the current vehicle speed S is calculated based on the vehicle speed signal from the vehicle speed sensor 1.
is calculated, and the determination in the uphill determination step 202 becomes NO, and the process proceeds to the rhythm traveling control routine 300, arriving at the upper limit determination step 301 in FIG. At this time, since the vehicle speed S is almost equal to the set vehicle speed S0 immediately after the set operation, the determination becomes NO, and the process proceeds to lower limit determination step 303, where the determination also becomes NO, and the process proceeds to acceleration flag determination step 305, where the acceleration flag Since the acceleration flag was set in the set step 110, the determination becomes YES, and the vehicle goes through the neutral release step 309 and the fuel return step 310 to maintain the automatic gear shift control state and fuel supply state as in the previous driving. , proceed to slow acceleration control step 311.

以後、上記と同様の演算処理を繰返し、緩加速
制御ステツプ311の演算にてスロツトルアクチエ
ータ11によるスロツトル開度を所定値増加さ
せ、第5図の時刻t2に向つて徐々に走行速度を上
昇させる緩加速の制御を行なう。
Thereafter, the same calculation process as above is repeated, and the throttle opening degree by the throttle actuator 11 is increased by a predetermined value by the calculation in the slow acceleration control step 311, and the traveling speed is gradually increased toward time t2 in FIG. Performs slow acceleration control to raise the vehicle.

これにより、時刻t2にて車速が(S0+5)Km/
hまで上昇すると、リズム走行制御ルーチン30
0にて上限判定ステツプ310に到来したときその
判定がNOからYESに反転し、加速フラグ解除ス
テツプ302に進んで加速フラグを解除するため、
次の加速フラグ判定ステツプ305の判定がYESか
らNOに反転し、燃料カツトステツプ306に進み、
燃料カツト指令の信号をバルブ駆動回路12に加
えて燃料カツトバルブ13をオンさせて燃料遮断
を行ない、ニユートラル指令ステツプ307にてニ
ユートラル指令の信号をニユートラル制御回路1
4に加え、自動変速制御装置15を強制的にニユ
ートラル状態に切換え、スロツトル復帰ステツプ
308にてスロツトル開度を初期値θに復帰させ
る。これによつて、この自動車は慣性走行に移行
し、車速がゆつくりと低下し始める。このとき、
車速Sが(S0+5)Km/hより低下すると第4図
の上限判定ステツプ301の判定がNOになるが、下
限判定ステツプ303の判定もNOになり、加速フラ
グが解除されたままになるため、加速フラグ判定
ステツプ305、燃料カツトステツプ306、ニユート
ラル指令ステツプ307、スロツトル復帰ステツプ
308を通る演算処理を繰返し、慣性走行を持続す
る。
As a result, the vehicle speed at time t 2 is (S 0 + 5) Km/
When it rises to h, the rhythm running control routine 30
When the upper limit determination step 310 is reached at 0, the determination is reversed from NO to YES, and the process proceeds to the acceleration flag release step 302 to release the acceleration flag.
The determination at the next acceleration flag determination step 305 is reversed from YES to NO, and the process advances to fuel cut step 306.
A fuel cut command signal is applied to the valve drive circuit 12 to turn on the fuel cut valve 13 to shut off the fuel, and in a neutral command step 307, the neutral command signal is sent to the neutral control circuit 1.
In addition to step 4, the automatic transmission control device 15 is forcibly switched to the neutral state and the throttle return step is executed.
At 308, the throttle opening degree is returned to the initial value θ0 . As a result, the vehicle shifts to inertial running, and the vehicle speed begins to slowly decrease. At this time,
When the vehicle speed S decreases below (S 0 +5) Km/h, the determination in the upper limit determination step 301 in FIG. 4 becomes NO, but the determination in the lower limit determination step 303 also becomes NO, and the acceleration flag remains cleared. Therefore, acceleration flag judgment step 305, fuel cut step 306, neutral command step 307, throttle return step
The calculation process through step 308 is repeated to maintain inertial running.

この慣性走行を10秒前後程度継続することによ
り車速が徐々に低下し、時刻t3にて車速Sが(S0
−5)Km/hまで低下すると、リズム走行制御ル
ーチン300にて上限判定ステツプ301を経て下
限判定ステツプ303に到来したときその判定が
YESに反転し、加速フラグセツトステツプ304に
進んで加速フラグをセツトする。よつて、次の加
速フラグ判定ステツプ305の判定がYESに反転
し、ニユートラル解除ステツプ309に進んでニユ
ートラル解除の信号をニユートラル制御回路14
に加え、自動変速制御装置15のニユートラル状
態を解除して自動変速状態に切換わり、燃料復帰
ステツプ310に進んでバルブ駆動回路12にオフ
信号を加え、燃料カツトバルブ13をオフさせて
燃料供給状態に復帰させ、緩加速制御ステツプ
311に進む。このとき、前記自動変速制御装置1
5におけるニユートラル解除による自動変速状態
に切換わる時点では車速が充分高いため、自動変
速制御装置15にてトツプのギヤ位置に制御さ
れ、よつてその自動変速状態への切換時点での自
動車のシヨツクは小さくなつており、走行上の支
障にならず、比較的滑らかな切換制御を行なう。
そして、緩加速制御ステツプ311に進んで約5秒
間で(S0−5)Km/hから(S0+5)Km/hまで
の10Km/h分の車速上昇を行なうための緩加速制
御を開始する。これによつて、車速Sが徐々に上
昇し始め、(S0−5)Km/hより高くなると第4
図の下限判定ステツプ303の判定がNOになるが、
加速フラグがセツトされたままになるため、加速
フラグ判定ステツプ305、ニユートラル解除ステ
ツプ309燃料復帰ステツプ310、緩加速制御ステツ
プ311を通る演算を繰返し、緩加速走行の制御を
持続する。
By continuing this inertial running for about 10 seconds, the vehicle speed gradually decreases, and at time t3 , the vehicle speed S becomes (S 0
-5) When the speed decreases to Km/h, the rhythm driving control routine 300 passes through the upper limit determination step 301 and reaches the lower limit determination step 303, when the determination is made.
The answer is reversed to YES, and the process advances to acceleration flag setting step 304 to set the acceleration flag. Therefore, the determination at the next acceleration flag determination step 305 is reversed to YES, and the process proceeds to a neutral release step 309 where the neutral release signal is sent to the neutral control circuit 14.
In addition, the automatic shift control device 15 is released from the neutral state and switched to the automatic shift state, and the process proceeds to a fuel return step 310, where an off signal is applied to the valve drive circuit 12, and the fuel cut valve 13 is turned off to enter the fuel supply state. Return and slow acceleration control step
Proceed to 311. At this time, the automatic transmission control device 1
Since the vehicle speed is sufficiently high at the time of switching to the automatic transmission state by canceling the neutral in step 5, the automatic transmission control device 15 controls the top gear position, and therefore the shock of the automobile at the time of switching to the automatic transmission state is It is small, does not interfere with driving, and provides relatively smooth switching control.
Then, the process proceeds to slow acceleration control step 311 and starts slow acceleration control to increase the vehicle speed by 10 km/h from (S 0 -5) Km/h to (S 0 +5) Km/h in about 5 seconds. do. As a result, the vehicle speed S starts to gradually increase, and when it becomes higher than (S 0 −5) Km/h, the fourth
Although the determination in lower limit determination step 303 in the diagram is NO,
Since the acceleration flag remains set, the calculations through acceleration flag determination step 305, neutral release step 309, fuel return step 310, and slow acceleration control step 311 are repeated to maintain control of slow acceleration driving.

以後、上記と同様の演算処理を実行することに
よつて設定車速S0を基準とした下限値(S0−5)
Km/hと上限値(S0+5)Km/hの速度領域の間
で、車速Sがその下限値から上限値に達するまで
緩加速走行を行ない、上限値に達すると慣性走行
に切換わつて下限値に低下するまでその慣性走行
を持続するリズム走行の制御を行なう。ここで、
従来のスロツトル弁の開度を調整し、走行速度を
一定に保つて定速走行を行なう技術において、ス
ロツトル弁を全閉状態にする事により慣性走行を
行つた場合、車速に応じてある程度の燃料は供給
される。それに対し、本実施例では慣性走行を行
なう際に、燃料カツトバルブ13をオンさせて積
極的に燃料遮断を行つているので、その分燃料を
節約でき、燃費が向上するという効果がある。
又、慣性走行を行なう際に同時に、自動変速制御
装置15を強制的にニユートラル状態に切換えて
いる事により、いわゆる、エンジンブレーキによ
り車速Sが速やかに低下する事はなく、主に摩擦
力のみの影響を受けて徐々に低下する。従つて車
速Sがその上限値から下限値に達するまでの期間
を長くする事ができ、その事は言い換えると燃料
の遮断を行う期間を長くする事ができるのでより
一層の燃費向上が図れる事になる。
Thereafter, by executing the same calculation process as above, the lower limit value (S 0 -5) based on the set vehicle speed S 0 is determined.
Between the speed range of Km/h and the upper limit (S 0 + 5) Km/h, the vehicle performs slow acceleration driving until the vehicle speed S reaches the upper limit from the lower limit, and when it reaches the upper limit, it switches to inertial driving. Rhythm running is controlled to maintain the inertia running until the inertia drops to the lower limit. here,
In the conventional technology that adjusts the opening of the throttle valve to keep the traveling speed constant and performs constant speed driving, if the throttle valve is fully closed to perform inertial driving, a certain amount of fuel will be lost depending on the vehicle speed. is supplied. In contrast, in this embodiment, when performing inertial travel, the fuel cut valve 13 is turned on to actively cut off the fuel, so that fuel can be saved accordingly, resulting in improved fuel efficiency.
In addition, since the automatic transmission control device 15 is forcibly switched to the neutral state at the same time as inertia running, the vehicle speed S does not quickly decrease due to so-called engine braking, and the vehicle speed S is mainly reduced by only frictional force. affected and gradually decreases. Therefore, it is possible to lengthen the period for the vehicle speed S to reach its lower limit from its upper limit, and in other words, it is possible to lengthen the period during which fuel is cut off, resulting in further improvement in fuel efficiency. Become.

これにより、効率的な緩加速制御と慣性走行を
活用し、燃料消費を極力節約した平均的な定速走
行となるエコノミー走行を行なう事ができる。
As a result, efficient slow acceleration control and inertia driving are utilized to achieve economical driving, which is average constant speed driving that saves fuel consumption as much as possible.

次に、上記のエコノミー走行にて所定傾斜以上
の上り坂に差掛かると、上り坂センサ3より上り
坂信号が発生してマイクロコンピユータ7に加わ
るため、エコノミー走行制御ルーチン200にお
いて第3図の車速計算ステツプ201を通つて上り
坂判定ステツプ202に到来したときその判定がNO
からYESに反転し、リズム走行制御ルーチン3
00に進まずニユートラル解除ステツプ203に進
む。これにより、リズム走行制御を停止する。そ
して、ニユートラル解除ステツプ203にてニユー
トラル状態を解除し、燃料復帰ステツプ204にて
燃料供給状態に復帰させ、車速Sが設定車速S0
不感帯幅αを加算した値(S0+α)より高いか否
かを判定する第1車速判定ステツプ205、減速の
ためにスロツトル弁の開度を減少させるスロツト
ル開度減少ステツプ206、車速SがS0より低いか
否かを判定する第2車速判定ステツプ207、増速
のためにスロツトル弁の開度を増加させるスロツ
トル開度増加ステツプ208、車速SがS0と(S0
α)との間の不感帯に入つたときにスロツトル弁
の開度を保持するスロツトル開度保持ステツプ
209の各演算の組合せにより車速Sを設定車速S0
の一定値に維持し、上り坂走行に滑らかに移行
し、上り坂走行中は慣性走行を用いずに通常の定
速走行を行なうことができる。
Next, when an uphill slope with a slope greater than a predetermined slope is reached during the above economy driving, an uphill signal is generated from the uphill sensor 3 and is applied to the microcomputer 7. Therefore, in the economy driving control routine 200, the vehicle speed When the uphill judgment step 202 is reached after passing through the calculation step 201, the judgment is NO.
to YES, rhythm driving control routine 3
The process does not proceed to 00, but proceeds to neutral release step 203. As a result, rhythm travel control is stopped. Then, the neutral state is canceled in the neutral release step 203, and the fuel supply state is returned to the fuel supply state in the fuel return step 204, and the vehicle speed S is higher than the value (S 0 + α) of the set vehicle speed S 0 plus the dead zone width α. A first vehicle speed determination step 205 determines whether the vehicle speed S is lower than S0 , a throttle opening reduction step 206 which decreases the opening of the throttle valve for deceleration, and a second vehicle speed determination step 207 which determines whether the vehicle speed S is lower than S0. , a throttle opening increasing step 208 in which the opening of the throttle valve is increased to increase the speed, the vehicle speed S is S 0 and (S 0 +
Throttle opening holding step that maintains the opening of the throttle valve when it enters the dead zone between α)
Set vehicle speed S by combination of each calculation of 209 Vehicle speed S 0
is maintained at a constant value, the vehicle smoothly transitions to uphill running, and normal constant speed running can be performed without using inertia running during uphill running.

その後、上り坂を終えて平地になると、上り坂
センサ3よりの上り坂信号が消えるため、エコノ
ミー走行制御ルーチン200において第3図の車
速計算ステツプ201、上り坂判定ステツプ202から
リズム走行制御ルーチン300に進む演算を繰返
して上記したリズム走行の制御を行ない、慣性走
行を活用した平均的な定速走行に移行することが
できる。
After that, when the uphill slope reaches level ground, the uphill signal from the uphill sensor 3 disappears, so the economy driving control routine 200 starts from the vehicle speed calculation step 201 and the uphill determining step 202 shown in FIG. 3 to the rhythm driving control routine 300. The above-mentioned rhythm running is controlled by repeating the calculations proceeding to step 1, and it is possible to shift to average constant speed running utilizing inertia running.

次に、このエコノミー走行時にブレーキペダル
を踏込むと、ブレーキスイツチ2よりブレーキ信
号が発生してマイクロコンピユータ7に加わるた
め、走行制御プログラムにおけるブレーキ判定ス
テツプ103に到来したときその判定がYESにな
り、エコノミーフラグ解除ステツプ104に進んで
エコノミーフラグを解除する。よつて、次のエコ
ノミーフラグ判定ステツプ111の判定がYESから
NOに反転し、エコノミー走行制御ルーチン20
0に進まずニユートラル解除ステツプ112、クラ
ツチオフステツプ113、燃料復帰ステツプ114に進
む演算処理を実行し、エコノミー走行制御を解除
して通常の走行状態に移行する。
Next, when the brake pedal is depressed during economy driving, a brake signal is generated from the brake switch 2 and applied to the microcomputer 7, so when the brake judgment step 103 in the driving control program is reached, the judgment becomes YES. Proceed to economy flag release step 104 to release the economy flag. Therefore, the next economy flag judgment step 111 will be judged as YES.
Reverse to NO, economy driving control routine 20
Instead of proceeding to 0, arithmetic processing is executed to proceed to a neutral release step 112, a clutch off step 113, and a fuel return step 114, thereby canceling the economy driving control and shifting to a normal driving state.

他方、上記のエコノミー走行時に運転者がキヤ
ンセルスイツチ6をマニユアル操作すると、キヤ
ンセルスイツチ6よりキヤンセル信号が発生して
マイクロコンピユータ7に加わるため、走行制御
プログラムにおけるキヤンセル判定ステツプ102
に到来したときその判定がYESになり、エコノ
ミーフラグ解除ステツプ104に進んでエコノミー
フラグを解除し、上記のブレーキペダルの踏込時
と同様にエコノミーフラグ判定ステツプ111から
ニユートラル解除ステツプ112、クラツチオフス
テツプ113、燃料復帰ステツプ114に進む演算処理
を実行し、エコノミー走行制御を解除して通常の
走行状態に移行する。
On the other hand, when the driver manually operates the cancel switch 6 during the above-mentioned economy driving, a cancel signal is generated from the cancel switch 6 and applied to the microcomputer 7, so that the cancellation determination step 102 in the driving control program is performed.
When the brake pedal is reached, the judgment becomes YES, and the process proceeds to the economy flag release step 104 to release the economy flag, and the process proceeds from the economy flag judgment step 111 to the neutral release step 112 to the clutch off step 113 in the same way as when the brake pedal is depressed. Then, the arithmetic processing that proceeds to the fuel return step 114 is executed, the economy driving control is canceled, and a transition is made to the normal driving state.

なお、上述の実施例では定速走行条件としてセ
ツトスイツチ5のプツシユ操作を用いるものを示
したが、一定時間車速変動の生じない安定走行を
持続したことを検出して自動的に定速走行に移行
するようにしてもよい。
In the above-mentioned embodiment, the push operation of the set switch 5 is used as the constant speed driving condition, but when it is detected that stable driving without any speed fluctuation occurs for a certain period of time is detected, the vehicle automatically shifts to constant speed driving. You may also do so.

また、設定車速S0としてセツトスイツチ5のプ
ツシユ操作時の車速Sをセツト記憶して利用する
ものを示したが、ダイヤル式にて設定車速をマニ
ユアルセツトするものでもよい。
Further, although the vehicle speed S at the time of push operation of the set switch 5 is stored and used as the set vehicle speed S0 , it is also possible to manually set the vehicle speed using a dial.

また、設定車速S0を基準とした所定の速度領域
として(S0+5)Km/h、(S0−5)Km/hの範
囲に定めるものを示したが、その領域幅として10
Km/h分の代わりに設定車速S0の1割(S0/10)
分、或は他の値に定めてもよく、また、設定車速
S0を中心としてその上下に速度領域を定めるもの
を示したが、設定速度S0の上側、或は下側のみに
定めてもよい。
In addition, the predetermined speed range based on the set vehicle speed S 0 is defined as (S 0 +5) Km/h and (S 0 -5) Km/h, but the range width is 10
10% of the set vehicle speed S 0 (S 0 /10) instead of Km/h minute
minutes or other values, or the set vehicle speed.
Although the speed range is defined above and below the set speed S 0 as the center, the speed range may be set only above or below the set speed S 0 .

また、制御手段としてマイクロコンピユータ7
を用いたものを示したが、ハードウエアの電子回
路にて同様の処理を行なうようにしてもよい。
In addition, a microcomputer 7 is used as a control means.
Although a similar process is shown using a hardware electronic circuit, it is also possible to perform similar processing using a hardware electronic circuit.

また、自動変速制御装置15にてニユートラル
状態に切換える代わりにマニユアル変速式自動車
にてクラツチを切離状態に制御してもよい。
Furthermore, instead of switching to the neutral state using the automatic transmission control device 15, the clutch may be controlled to the disengaged state in a manual transmission type vehicle.

さらに、緩加速制御ステツプ311にて10Km/h
分の緩加速ために車速に対応した所定量だけスロ
ツトル開度を増加させるものを示したが車速セン
サ1よりの車速信号に基いて車速を直線的に増加
させるようにスロツトル開度を調整してもよい。
Furthermore, 10Km/h in slow acceleration control step 311
In this example, the throttle opening is increased by a predetermined amount corresponding to the vehicle speed for slow acceleration, but the throttle opening is adjusted so as to linearly increase the vehicle speed based on the vehicle speed signal from the vehicle speed sensor 1. Good too.

以上述べたように本発明によると、定速走行条
件が生じたときの設定車速を基準とする所定の速
度領域を定め、この速度領域の下限値と上限値の
間にて緩加速走行、慣性走行を繰返しており、し
かも、慣性走行時においては、エンジンによる駆
動力の車輪への伝達を積極的に遮断し、且つ、そ
のエンジンへの燃料供給を積極的に遮断している
事からより一層の燃費向上を図り、しかも平均的
に定速走行を行なう事ができるという優れた効果
がある。
As described above, according to the present invention, a predetermined speed range is defined based on the set vehicle speed when a constant speed running condition occurs, and between the lower limit value and the upper limit value of this speed range, slow acceleration running, inertia The vehicle is repeatedly driven, and when running inertia, the transmission of driving force from the engine to the wheels is actively cut off, and the fuel supply to the engine is actively cut off, making it even more difficult. This has the excellent effect of improving the fuel efficiency of the vehicle and also allowing the driver to drive at a constant speed on average.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、
第2図は第1図中のマイクロコンピユータの演算
処理を示す演算流れ図、第3図は第2図中のエコ
ノミー走行制御ルーチンの詳細な演算処理を示す
演算流れ図、第4図は第3図中のリズム走行制御
ルーチンの詳細な演算処理を示す演算流れ図、第
5図は本発明の作動説明に供する特性図、第6図
は本発明の構成を表す発明構成図である。 1……車速センサ、5……セツトスイツチ、
7,9,10,12,14……制御手段をなすマ
イクロコンピユータとクラツチ駆動回路とモータ
駆動回路とバルブ駆動回路とニユートラル制御回
路、11……加減速調整機構をなすスロツトルア
クチエータ、13,15……慣性走行手段をなす
燃料カツトバルブと自動変速制御装置。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Figure 2 is a calculation flowchart showing the calculation processing of the microcomputer in Figure 1, Figure 3 is a calculation flowchart showing the detailed calculation processing of the economy driving control routine in Figure 2, and Figure 4 is the calculation flowchart in Figure 3. FIG. 5 is a characteristic diagram for explaining the operation of the present invention, and FIG. 6 is an inventive configuration diagram showing the configuration of the present invention. 1...Vehicle speed sensor, 5...Set switch,
7, 9, 10, 12, 14... A microcomputer, a clutch drive circuit, a motor drive circuit, a valve drive circuit, and a neutral control circuit forming a control means, 11... A throttle actuator forming an acceleration/deceleration adjustment mechanism, 13, 15...Fuel cut valve and automatic transmission control device that constitute inertial traveling means.

Claims (1)

【特許請求の範囲】 1 車両の走行速度を検出する車速センサを備
え、定速走行条件が生じるとその設定車速に対す
る走行速度のずれにより加減速調整機構を自動制
御し、定速走行を行なう車両走行制御装置におい
て、 前記設定車速を基準として所定の速度領域を定
め、その上限値に向つて緩慢な加速走行のために
緩加速信号を前記加減速調整機構に加えるととも
に、走行速度が上限値に達すると前記緩加速信号
の発生を停止して慣性走行信号を発生する制御手
段、および この制御手段よりの慣性走行信号を受けて、エ
ンジンによる駆動力の車輪への伝達を遮断し、且
つ、前記エンジンへの燃料供給を遮断する事によ
り、通常走行から慣性走行に切換える慣性走行手
段 を設けることを特徴とする車両走行制御装置。
[Scope of Claims] 1. A vehicle that is equipped with a vehicle speed sensor that detects the running speed of the vehicle, and when a constant speed running condition occurs, an acceleration/deceleration adjustment mechanism is automatically controlled based on the deviation of the running speed from the set vehicle speed, and the vehicle runs at a constant speed. In the travel control device, a predetermined speed range is defined based on the set vehicle speed, and a slow acceleration signal is applied to the acceleration/deceleration adjustment mechanism for slow acceleration toward the upper limit value, and when the travel speed reaches the upper limit value. control means for stopping the generation of the slow acceleration signal and generating an inertia drive signal when the slow acceleration signal is reached; A vehicle running control device comprising an inertial running means that switches from normal running to inertial running by cutting off fuel supply to an engine.
JP9851579A 1979-07-31 1979-07-31 Method and device for running control of car Granted JPS5622113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9851579A JPS5622113A (en) 1979-07-31 1979-07-31 Method and device for running control of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9851579A JPS5622113A (en) 1979-07-31 1979-07-31 Method and device for running control of car

Publications (2)

Publication Number Publication Date
JPS5622113A JPS5622113A (en) 1981-03-02
JPS6257530B2 true JPS6257530B2 (en) 1987-12-01

Family

ID=14221777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9851579A Granted JPS5622113A (en) 1979-07-31 1979-07-31 Method and device for running control of car

Country Status (1)

Country Link
JP (1) JPS5622113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189799A (en) * 2010-03-12 2011-09-29 Fuji Heavy Ind Ltd Hybrid drive device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144033A (en) * 1984-08-08 1986-03-03 Toyota Motor Corp Constant speed travelling device
JPS6261832A (en) * 1985-09-13 1987-03-18 Mazda Motor Corp Travel control unit for vehicle
JPS6261833A (en) * 1985-09-13 1987-03-18 Mazda Motor Corp Travel control device for vehicle
JPS6385533U (en) * 1986-11-26 1988-06-04
JP2007187090A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Speed-maintaining control device
JP4677945B2 (en) * 2006-04-24 2011-04-27 トヨタ自動車株式会社 Vehicle travel control device
WO2008130288A1 (en) * 2007-04-20 2008-10-30 Volvo Lastvagnar Ab Method for increasing active duration time of an automatic freewheeling function in a vehicle
JP4596016B2 (en) * 2008-02-12 2010-12-08 トヨタ自動車株式会社 Vehicle travel control device
CN102762428B (en) * 2010-02-16 2016-01-06 丰田自动车株式会社 Controller of vehicle
WO2012029178A1 (en) * 2010-09-03 2012-03-08 トヨタ自動車株式会社 Drive control device of vehicle
JPWO2013061414A1 (en) * 2011-10-26 2015-04-02 トヨタ自動車株式会社 Vehicle and vehicle control method
US20140244092A1 (en) * 2011-10-26 2014-08-28 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling vehicle
JP5991220B2 (en) * 2013-02-08 2016-09-14 トヨタ自動車株式会社 Driving assistance device
JP2017171295A (en) * 2017-06-19 2017-09-28 トヨタ自動車株式会社 Vehicular travel control apparatus
JP2020060192A (en) * 2019-12-26 2020-04-16 中松 義郎 Iei (intermittent energy inertia) movable body and movable body operation method
WO2021149114A1 (en) * 2020-01-20 2021-07-29 中松 義郎 Intermittent energy/inertia mobile unit and movement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121223A (en) * 1976-04-02 1977-10-12 Toyota Motor Corp Control system for acceleration and deceleration of vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121223A (en) * 1976-04-02 1977-10-12 Toyota Motor Corp Control system for acceleration and deceleration of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189799A (en) * 2010-03-12 2011-09-29 Fuji Heavy Ind Ltd Hybrid drive device

Also Published As

Publication number Publication date
JPS5622113A (en) 1981-03-02

Similar Documents

Publication Publication Date Title
JPS6257530B2 (en)
US4535865A (en) Cruise control system for automotive vehicle
JPS6357341A (en) Constant speed travel device for vehicle
JPS611549A (en) Car-speed controller for automobile
JPH0210733B2 (en)
JP2776271B2 (en) Motor lock detection device during constant speed traveling control
JP2910581B2 (en) Constant speed cruise control device for vehicles
JPH06144080A (en) Control method of automatic constant speed traveling device
JPS6158332B2 (en)
JPH02274636A (en) Constant speed running device for vehicle
JPH0211452B2 (en)
JPS58103011A (en) Constant-speed traveling device for car
JP3980096B2 (en) Vehicle driving force control device
JP2512296B2 (en) Memory speed change method of constant speed running control device
JPS61129336A (en) Automatic car speed control unit
JP2590590B2 (en) Constant speed traveling equipment for vehicles
JPS6158333B2 (en)
JPS6236889B2 (en)
JPS6158334B2 (en)
JPH07132756A (en) Constant speed running device
JPS59126142A (en) Constant speed running device for car
JPS6157214B2 (en)
JPH0712800B2 (en) Car constant speed running control device
JPH0572304B2 (en)
JPS62231825A (en) Constant speed travel control device for automobile