JPS6257460A - Thermoplastic polymer film - Google Patents

Thermoplastic polymer film

Info

Publication number
JPS6257460A
JPS6257460A JP19606485A JP19606485A JPS6257460A JP S6257460 A JPS6257460 A JP S6257460A JP 19606485 A JP19606485 A JP 19606485A JP 19606485 A JP19606485 A JP 19606485A JP S6257460 A JPS6257460 A JP S6257460A
Authority
JP
Japan
Prior art keywords
thermoplastic polymer
microcapsules
film
inorganic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19606485A
Other languages
Japanese (ja)
Inventor
Kenji Tsunashima
研二 綱島
Kiyohiko Ito
喜代彦 伊藤
Tomoji Saeki
佐伯 知司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP19606485A priority Critical patent/JPS6257460A/en
Publication of JPS6257460A publication Critical patent/JPS6257460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a thermoplastic polymer film containing inorganic porous microcapsules containing thermoplastic polymer, free from voids formed by the extrusion or drawing process and having excellent impact resistance, light weight and good oscillation characteristics. CONSTITUTION:(A) A thermoplastic polymer, preferably polyester or polyamide is added in an amount of 20-80wt% to (B) a microcapsule prepared from inorganic powder e.g. by an aqueous solution precipitation reaction, having a spherical form with a diameter of 0.1-100mum, containing a cavity 2 and made of a porous wall material (inorganic material such as calcium carbonate) having an average pore diameter of 10-600Angstrom and capable of including a liquid, solid or gas in the cavity in a freely releasable state, and the mixture is mixed homogeneously with a mixer, etc. The produced polymer containing inorganic porous microcapsules including the thermoplastic polymer at a filling ratio of 10-40vol% is formed to obtain the objective film having an apparent spcific gravity of 0.2-0.5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱可塑性重合体フィルムに関し、より詳細には
軽量の無機質多孔性マイクロカプセルが大量に添加され
た熱可塑性重合体シートに関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to thermoplastic polymer films, and more particularly to thermoplastic polymer sheets loaded with lightweight inorganic porous microcapsules.

〔従来技術〕[Prior art]

プラスチックフィルムに、マイクロカプセルを混入する
ことについては、例えば特開昭53−94920号公報
に開示があり、フィルムを低密度化すると共に剛性を高
めてスピーカー用振動板を提供することが記載されてい
る。
Regarding the mixing of microcapsules into a plastic film, for example, Japanese Patent Application Laid-open No. 53-94920 discloses that the density of the film is reduced and the rigidity is increased to provide a speaker diaphragm. There is.

しかしながら、かかる従来の非多孔質マイクロカプセル
を混入したフィルムでは、特にドラフト比の高い溶融押
し出し時や延伸の際にマイクロカプセルと熱可塑性重合
体との接着性が乏しいためにボイドがマイクロカプセル
の近傍に多発し、この結果、得られたフィルムの機械的
性質、特に耐衝撃性の大巾な低下や振動特性の不良化を
回避できない欠点があった。
However, in films containing such conventional non-porous microcapsules, voids are formed near the microcapsules due to poor adhesion between the microcapsules and the thermoplastic polymer, especially during melt extrusion with a high draft ratio or during stretching. As a result, there was an unavoidable drawback that the mechanical properties of the obtained film, especially the impact resistance, were drastically reduced and the vibration characteristics were deteriorated.

〔発明の目的〕[Purpose of the invention]

本発明の熱可塑性重合体フィルムは、かかる従来の欠点
を解消すべくなされたものであり、押し出しや延伸によ
るボイドの発生がなく、例えば耐衝撃性に優れ、かつ軽
量で振動特性の良好な熱可塑性重合体フィルムを提供す
ることを目的とするものである。
The thermoplastic polymer film of the present invention has been made to eliminate such conventional drawbacks, and has no voids caused by extrusion or stretching, has excellent impact resistance, is lightweight, and has good vibration characteristics. The object is to provide a plastic polymer film.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の熱可塑性重合体フィルムは
、熱可塑性重合体に、熱可塑性重合体が充填率10〜4
0体積%で内包された無機質多孔性マイクロカプセルが
20〜80重量%添加されてなり、かつ見掛は比重が0
.2〜0.5であることを特徴とするものである。
The thermoplastic polymer film of the present invention that achieves the above object has a thermoplastic polymer with a filling rate of 10 to 4.
20 to 80% by weight of inorganic porous microcapsules encapsulated at 0% by volume, and the apparent specific gravity is 0%.
.. It is characterized by being 2 to 0.5.

本発明における熱可塑性重合体は、加熱によって可塑流
動を示すもので、化学構造的には主として線状高分子で
あるが、これに低分子量のオリゴマーが含まれたもので
あってもよい。
The thermoplastic polymer in the present invention exhibits plastic flow upon heating, and is primarily a linear polymer in chemical structure, but may also contain low molecular weight oligomers.

代表的なものとしては、ポリエチレン、ポリプロピレン
、エチレン−酢酸ビニル共重合体、ポリブタジェン、ポ
リスチレン、ポリメチルペンテンなどで代表されるポリ
オレフィン、ポリエチレンテレフタレート、ポリブチレ
ンテレフタレート、ポリエチレンナフタレート、ポリカ
ーボネートなどで代表されるポリエステル、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポ
リフッ化ビニルなどで代表されるハロゲン化ポリマー、
ポリへキサメチレンアジペート(ナイロン66)、ポリ
ε−カプロラクタム(ナイロン6)、ナイロン610な
どで代表されるポリアミド、さらにポリアクリロニトリ
ル、ポリビニルアルコールなどのビニルポリマー、ポリ
アセタール、ポリエーテルスルホン、ポリエーテルケト
ン、ポリフェニレンエーテル、ポリスルホン、ポリフェ
ニレンスルフィドおよびそれらの共重合体や混合体など
であり、特に限定されないが、本発明の場合、ポリエス
テル、ポリフェニレンスルフィド、ポリアミド、ポリス
ルホン、ポリフッ化ビニリデンの使用が好ましい。
Typical examples include polyolefins such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polybutadiene, polystyrene, and polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polycarbonate. Halogenated polymers represented by polyester, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl fluoride, etc.
Polyamides such as polyhexamethylene adipate (nylon 66), polyε-caprolactam (nylon 6), and nylon 610, as well as vinyl polymers such as polyacrylonitrile and polyvinyl alcohol, polyacetals, polyethersulfones, polyetherketones, and polyphenylenes. These include ether, polysulfone, polyphenylene sulfide, copolymers and mixtures thereof, and are not particularly limited, but in the case of the present invention, polyester, polyphenylene sulfide, polyamide, polysulfone, and polyvinylidene fluoride are preferably used.

また、本発明で使用する無機質多孔性マイクロカプセル
(以下、単にマイクロカプセルと略称する)とは、その
粒子の一つの径が0.1μmから100μmと微小で、
第1図に示すように壁材1が平均10〜600人の平均
細孔の多孔質で球形の容器であり、内部に中空部2を有
しており、必要に応じて中空部2に液体、固体や気体を
自由に封入・放出することもできる。
In addition, the inorganic porous microcapsules (hereinafter simply referred to as microcapsules) used in the present invention are minute particles with a diameter of 0.1 μm to 100 μm.
As shown in Fig. 1, the wall material 1 is a porous, spherical container with an average pore size of 10 to 600, and has a hollow part 2 inside. It is also possible to freely enclose and release solids and gases.

代表的な製造方法としては、例えば特公昭54−625
1号公報、特公昭57−55454号公報、特公昭55
−43404号公報などに記載されている[界面反応法
」、すなわち水溶液沈澱反応によって無機粉体を調整す
る方法であるが、その調整過程において、油中水滴型作
10タイプ)エマルジョンを用いることによって中空・
球形・多孔質の無機粉体微粒子を調整することにより製
造することができる。
As a typical manufacturing method, for example, Japanese Patent Publication No. 54-625
Publication No. 1, Special Publication No. 57-55454, Special Publication No. 55
This is the "interfacial reaction method" described in Publication No. 43404, that is, the method of preparing inorganic powder by an aqueous solution precipitation reaction, but in the preparation process, by using a water-in-oil emulsion Hollow・
It can be manufactured by adjusting spherical and porous inorganic powder particles.

マイクロカプセルを構成する無機材料の壁材は特に限定
されるものではなく、炭酸カルシウム、炭酸バリウム、
炭酸マグネシウム等のアルカリ土類金属炭酸塩、珪酸カ
ルシウム、珪酸バリウム、珪酸マグネシウムなどのアル
カリ土類金属珪酸塩、リン酸カルシウム、リン酸バリウ
ム、リン酸マグネシウムなどのアルカリ土類金属リン酸
塩、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム
などのアルカリ土類金属硫酸塩、無水珪酸、酸化アルミ
ニウム、酸化亜鉛、酸化鉄、酸化チタン、酸化コバルト
、酸化ニッケル、酸化マンガンなどの金属酸化物、水酸
化鉄、水酸化ニッケル、水酸化アルミニウム、水酸化カ
ルシウム、水酸化クロムなどの金属水酸化物、珪酸亜鉛
、珪酸アルミニウム、珪酸鋼などの金属珪酸塩、炭酸亜
鉛、炭酸アルミニウム、炭酸コバルト、炭酸ニッケル、
塩基性炭酸銅などの金属炭酸塩などを挙げることができ
る。
The inorganic wall material constituting the microcapsules is not particularly limited, and may include calcium carbonate, barium carbonate,
Alkaline earth metal carbonates such as magnesium carbonate, alkaline earth metal silicates such as calcium silicate, barium silicate, and magnesium silicate, alkaline earth metal phosphates such as calcium phosphate, barium phosphate, and magnesium phosphate, calcium sulfate, Alkaline earth metal sulfates such as barium sulfate and magnesium sulfate, metal oxides such as silicic anhydride, aluminum oxide, zinc oxide, iron oxide, titanium oxide, cobalt oxide, nickel oxide, and manganese oxide, iron hydroxide, and nickel hydroxide. , metal hydroxides such as aluminum hydroxide, calcium hydroxide, and chromium hydroxide, metal silicates such as zinc silicate, aluminum silicate, and silicate steel, zinc carbonate, aluminum carbonate, cobalt carbonate, nickel carbonate,
Examples include metal carbonates such as basic copper carbonate.

本発明の場合、特にSiO□、 TiO2のような酸化
物が好ましい。
In the case of the present invention, oxides such as SiO□ and TiO2 are particularly preferred.

マイクロカプセルの大きさは、0.1〜100μmの範
囲に可変であり、本発明の場合、特に0.1〜2μmの
平均粒形分布のシャープな球形ものが、熱可塑性重合体
との相溶性、分布性などがよくて好ましい。
The size of the microcapsules is variable in the range of 0.1 to 100 μm, and in the case of the present invention, sharp spherical ones with an average particle size distribution of 0.1 to 2 μm are particularly preferred since they are compatible with the thermoplastic polymer. , is preferable because of its good distribution.

カプセル粒子表面の細孔径は、BET法で測定して20
〜600人の範囲であるが、本発明の場合、20〜10
0人の範囲に主たる細孔径を有する分布のものが好まし
い。
The pore diameter of the capsule particle surface is 20 as measured by the BET method.
600 people, but in the case of the present invention, 20 to 10
A distribution having a main pore size in the range of 0.000 to 0.000000000000 is preferred.

もちろん形状は、完全な球形であるものが、分散性、流
動性、易滑性、平滑性、耐摩耗性などの点で好ましい。
Of course, a completely spherical shape is preferable in terms of dispersibility, fluidity, slipperiness, smoothness, abrasion resistance, etc.

このように微小球で、しかも細孔を有する多孔質である
ので、その粒子表面は著しく大きく100〜1000r
rr/gにもなり、さらに見掛は比重も小さく、本発明
では0.1〜0.4のものが好ましい。
Since they are microspheres and porous with pores, the particle surface is extremely large and has a diameter of 100 to 1000 r.
rr/g, and the apparent specific gravity is also small, and in the present invention, those with a specific gravity of 0.1 to 0.4 are preferred.

なお、このマイクロカプセルの壁の厚さも、0.01〜
5μmと自由に変えられ、これは外力による変形、破壊
などの力学特性のみならず、マイクロカプセルの添付図
の中空部2の体積比率などによって決められる。
In addition, the thickness of the wall of this microcapsule is also 0.01~
It can be freely changed to 5 μm, and this is determined not only by mechanical properties such as deformation and destruction due to external force, but also by the volume ratio of the hollow part 2 of the microcapsule shown in the attached diagram.

本発明の熱可塑性重合体フィルムに含有されているマイ
クロカプセル内には、該熱可塑性重合体が充填率10〜
40体積%で充填されていなければならない。
The thermoplastic polymer is contained in the microcapsules contained in the thermoplastic polymer film of the present invention at a filling rate of 10 to 10.
Must be filled at 40% by volume.

すなわち、充填率が10体積%未溝の場合は、マイクロ
カプセルと熱可塑性重合体との接着性が弱く、このため
に高ドラフト押し出しや、延伸したりすると、該マイク
ロカプセルの近傍にボイドを生成し、機械的性質に劣っ
たものになってしまう。逆に、充填率が40体積%を越
えると、見掛は比重の小さいフィルムが得られなくなり
、軽量化やエネルギー吸収体とはなりえないためである
That is, when the filling rate is 10% by volume without grooves, the adhesion between the microcapsules and the thermoplastic polymer is weak, and therefore, when high draft extrusion or stretching is performed, voids are generated near the microcapsules. However, the mechanical properties become inferior. On the other hand, if the filling rate exceeds 40% by volume, it will not be possible to obtain a film with an apparent low specific gravity, and the film will not be lightweight or an energy absorber.

また、マイクロカプセルの空隙率は60〜90体積%で
あるのが好ましい。
Further, the porosity of the microcapsules is preferably 60 to 90% by volume.

本発明における無機質多孔性マイクロカプセルの熱可塑
性重合体への添加量は、20〜80重量%である。
In the present invention, the amount of inorganic porous microcapsules added to the thermoplastic polymer is 20 to 80% by weight.

マイクロカプセルの添加量が20重量%に満たないと、
本発明フィルムの見掛は比重が0.5を越え軽量化でき
ず、逆に80重量%を越えるとたとえ多孔質のマイクロ
カプセルを使ってもマイクロカプセルの近傍にボイドが
多発し、機械的性質の大幅な低下となる。
If the amount of microcapsules added is less than 20% by weight,
The apparent weight of the film of the present invention cannot be reduced if the specific gravity exceeds 0.5, and conversely, if the specific gravity exceeds 80% by weight, even if porous microcapsules are used, many voids will occur near the microcapsules, resulting in poor mechanical properties. This is a significant decrease in

更に本発明においては、上記マイクロカプセルが添加さ
れた熱可塑性重合体フィルムの見掛は比重は、好ましく
は0.2〜0.5である。
Furthermore, in the present invention, the apparent specific gravity of the thermoplastic polymer film to which the microcapsules are added is preferably 0.2 to 0.5.

この見掛は比重が0.2に満たないと、機械的性質の劣
ったものしか得られず、また0、5を越えると軽量化で
きず衝撃などのエネルギー吸収体(ショック・アブリー
バ−)となりえないので好ましくない。
If the apparent specific gravity is less than 0.2, only inferior mechanical properties will be obtained, and if it exceeds 0.5, it will not be possible to reduce the weight and will become a shock absorber. I don't like it because it doesn't work.

次に本発明の熱可塑性重合体フィルムの製造方法につい
て述べるが、本発明は必ずしもこれに限定されるもので
はない。
Next, the method for producing the thermoplastic polymer film of the present invention will be described, but the present invention is not necessarily limited thereto.

すなわち、熱可塑性重合体に多孔質無機マイクロカプセ
ルを添加し、ミキサーあるいは乾燥機などで重合体中に
均一にマイクロカプセルを混合する。
That is, porous inorganic microcapsules are added to a thermoplastic polymer, and the microcapsules are uniformly mixed into the polymer using a mixer or dryer.

あるいは、熱可塑性重合体の重合時の完了直前工程でマ
イクロカプセルを添加し、重合することもできるが、本
発明の場合は前者の場合、すなわち熱可塑性重合体の重
合完了後の添加が好ましい。
Alternatively, the microcapsules can be added and polymerized in a step immediately before the completion of polymerization of the thermoplastic polymer, but in the case of the present invention, the former case, that is, addition after the completion of polymerization of the thermoplastic polymer is preferable.

このようにして得られた熱可塑性重合体を、単独で、あ
るいは他の添加剤を添加し、常法により押し出し機に供
給し、重合体の融点以上の温度で溶融させ、口金からフ
ィルム状に押し出し、キャスティングドラムあるいはベ
ルト上に適当な密着手法、例えばエアーナイフ法、静電
印加法、プレスロール法などを用いてキャスティング冷
却固化し、フィルム状に成型する。
The thermoplastic polymer thus obtained, alone or with the addition of other additives, is fed into an extruder in a conventional manner, melted at a temperature above the melting point of the polymer, and extruded into a film from the die. Extrusion, casting onto a casting drum or belt using an appropriate close contact method, such as an air knife method, an electrostatic application method, a press roll method, etc., is cooled and solidified, and is formed into a film.

必要に応じて、縦および横方向に延伸や圧延したり、更
に熱処理やエンボス加工、カレンダリング、表面処理加
工などをしても良いことは明らかである。
It is clear that stretching and rolling in the longitudinal and transverse directions, as well as heat treatment, embossing, calendering, surface treatment, etc., may be carried out as necessary.

かくして得られたフィルムの厚さは特に限定されないが
、1鶴以下、好ましくは0.5 mm以下、さらに好ま
しくは190μm以下のもので、用途によっては50μ
m以下のものが好ましい。
The thickness of the film obtained in this way is not particularly limited, but it is 1 mm or less, preferably 0.5 mm or less, more preferably 190 μm or less, and depending on the use, it may be 50 μm or less.
m or less is preferable.

〔発明の効果〕〔Effect of the invention〕

以上のべたように本発明の熱可塑性重合体フィルムによ
れば、熱可塑性重合体に、熱可塑性重合体が充填率10
〜40体積%で内包されたマイクロカプセルが20〜8
0重量%添加されてなり、かつ見掛は比重が0.2〜0
.5であるので、下記のような効果を奏することができ
る。
As described above, according to the thermoplastic polymer film of the present invention, the thermoplastic polymer has a filling rate of 10
20-8 microcapsules encapsulated at ~40% by volume
0% by weight is added, and the apparent specific gravity is 0.2 to 0.
.. 5, the following effects can be achieved.

(1)本発明においては、無機質で多孔性な球形マイク
ロカプセルが熱可塑性重合体に添加され、しかも該カプ
セル内に、該熱可塑性重合体がlO〜40体積%充填さ
れているので、押し出しや延伸の際にマイクロカプセル
の近傍におけるボイドの発生を防止することができる。
(1) In the present invention, inorganic porous spherical microcapsules are added to a thermoplastic polymer, and the thermoplastic polymer is filled in the capsules at 10 to 40% by volume, so that extrusion is possible. It is possible to prevent the generation of voids near the microcapsules during stretching.

これは、マイクロカプセル内の重合体が、該カプセルの
多孔性の壁を通ってカプセル外の熱可塑性重合体と物理
的に強固な結合をなすためと推察される。
This is presumably because the polymer within the microcapsule forms a strong physical bond with the thermoplastic polymer outside the capsule through the porous wall of the capsule.

従って本発明による熱可塑性重合体フィルムは、従来の
ように多孔質でないマイクロカプセル混入フィルムのよ
うにボイドの発生に起因する機械的強度の低下を防止す
ることができ、耐衝撃性に優れたシートを得ることがで
きる。
Therefore, the thermoplastic polymer film according to the present invention can prevent a decrease in mechanical strength due to the generation of voids, unlike conventional non-porous microcapsule-containing films, and can provide a sheet with excellent impact resistance. can be obtained.

(2)また本発明では、例えば見掛は比重0.1〜0.
4という低比重の無機質多孔性マイクロカプセルが20
〜80重量%と大量に添加されているので、得られたフ
ィルムの見掛は比重が0.2〜0.5と小さく、軽量な
フィルムが提供される。
(2) Also, in the present invention, for example, the apparent specific gravity is 0.1 to 0.
20 inorganic porous microcapsules with a low specific gravity of 4
Since it is added in a large amount of ~80% by weight, the apparent specific gravity of the obtained film is as small as 0.2 to 0.5, and a lightweight film is provided.

(3)  このように本発明の熱可塑性重合耐フィルム
は、軽量であると共に機械的強度、特に耐摩耗性に優れ
ているので、振動特性が良好であり、スピーカー用コー
ン、振動板として好適に使用される。
(3) As described above, the thermoplastic polymerization-resistant film of the present invention is lightweight and has excellent mechanical strength, especially abrasion resistance, so it has good vibration characteristics and is suitable for use as speaker cones and diaphragms. used.

また、本発明においては、ボイドがフィルム中に生成せ
ず、しかも微小マイクロカプセルが添加されるので、極
薄のフィルムを得ることができ、包装用途に好適である
Further, in the present invention, since no voids are generated in the film and minute microcapsules are added, an extremely thin film can be obtained, which is suitable for packaging applications.

次に本発明において使用した特性測定方法について述べ
る。
Next, the characteristic measuring method used in the present invention will be described.

(1)機械的強度(耐衝撃性): JIS z1707にしたがい、試料の耐衝撃値を測定
し、 IRの値が6以上のものを   ○ 〃 3〜5のものを   △ 〃 2以下のものを   × とする。
(1) Mechanical strength (impact resistance): Measure the impact resistance value of the sample according to JIS z1707. Those with an IR value of 6 or more: ○ Those with an IR value of 3 to 5. △ The ones with an IR value of 2 or less. ×

(2)細孔径: 島原製作所(製)デジソープ2500型を用い、BET
法の収着等温曲線からBJH法にて解析して求める。
(2) Pore diameter: BET using Digisoap 2500 model manufactured by Shimabara Manufacturing Co., Ltd.
It is determined by analyzing the sorption isotherm curve using the BJH method.

(3)粒子の見掛は比重: 見掛は比重は、無機質マイクロカプセル1gを、で与え
られる。
(3) Apparent specific gravity of particles: The apparent specific gravity is given by 1 g of inorganic microcapsules.

(4)比表面積CBET法): (例えば、J、Am、Chem、Soc、、38.22
19(1916)に記載されている。) 窒素分子を粒子表面に吸着させて、この吸着量を測定し
、下記式(1)によって全表面が単分子吸着層で覆われ
たときの吸着気体の容積を求め、これを窒素分子1個の
容積で割って分子数を求めた。この分子数と下記式(2
)の吸着分子1個が表面で占める容積σを掛けることに
よって比表面積を得た。
(4) Specific surface area CBET method): (For example, J, Am, Chem, Soc, 38.22
19 (1916). ) Adsorb nitrogen molecules onto the particle surface, measure the amount of adsorption, calculate the volume of adsorbed gas when the entire surface is covered with a monomolecular adsorption layer using the following formula (1), and calculate this by one nitrogen molecule. The number of molecules was determined by dividing by the volume of . This number of molecules and the following formula (2
) The specific surface area was obtained by multiplying by the volume σ occupied by one adsorbed molecule on the surface.

V = VmCP/(Ps−P) (1+ (C−1)
P/Ps )   (1まただし、Vmは全表面が単分
子吸着層に覆われたときの吸着分子の容積、■は圧力p
における吸着気体の容積、Pは圧力を示し、Psは飽和
蒸気圧、Cは定数である。
V = VmCP/(Ps-P) (1+ (C-1)
P/Ps ) (1) where Vm is the volume of adsorbed molecules when the entire surface is covered with a monomolecular adsorption layer, ■ is the pressure p
The volume of adsorbed gas at , P indicates the pressure, Ps is the saturated vapor pressure, and C is a constant.

σ= 1.091 (M/NP)          
   (2)ここで、σは吸着分子1個が表面で占める
面積、Mは分子量、Nはアボガドロ数、pは表面におけ
る吸着分子層の密度を示す。
σ= 1.091 (M/NP)
(2) Here, σ is the area occupied by one adsorbed molecule on the surface, M is the molecular weight, N is Avogadro's number, and p is the density of the adsorbed molecule layer on the surface.

(5)平均粒径: 粒子を走査型電子顕微鏡にて粒子の画像をキャッチし、
その粒子によって出来る光の濃淡をイメージアナライザ
ー(例えばQTM900:日本レギレーター製)に結び
つけ、次の数値処理によって求めた数平均径φnである
(5) Average particle size: Capture images of particles with a scanning electron microscope,
The number average diameter φn is obtained by connecting the light density produced by the particles to an image analyzer (for example, QTM900, manufactured by Nippon Regulator) and performing the following numerical processing.

Σdn/Σn=φn ただし、nは個数、dは実孔径である。Σdn/Σn=φn However, n is the number and d is the actual pore diameter.

(6)空隙率: 重合体の良溶媒でフィルムを溶解し、添加されている不
活性微粒子を遠心沈降法で分離した。
(6) Porosity: The film was dissolved in a good solvent for the polymer, and the added inert fine particles were separated by centrifugal sedimentation.

この分離不活性微粒子を1Qtorrの真空下、100
℃の温度で十分乾燥させた後、この分離不活性微粒子1
 gr@JIs C2330の灰分含有量試験に基づき
空気雰囲気下で800℃、4時間加熱し、この時得られ
た単離不活性微粒子の重量B(単位gr)を25℃、5
0%RHの雰囲気下で測定した。
The separated inert fine particles were heated under a vacuum of 1 Qtorr at 100
After sufficiently drying at a temperature of ℃, the separated inert fine particles 1
Based on the ash content test of gr@JIs C2330, it was heated at 800°C for 4 hours in an air atmosphere, and the weight B (unit: gr) of the isolated inert fine particles obtained at this time was measured at 25°C, 5
Measurement was performed under an atmosphere of 0% RH.

さらに上記単離不活性微粒子の全空孔容積A(単位cc
)を下記に示した浸透法にて求めた。
Furthermore, the total pore volume A (unit: cc) of the isolated inert fine particles is
) was determined by the infiltration method shown below.

これらの値から下記の式(11にて空隙率を求めた。From these values, the porosity was determined using the following formula (11).

ただしρは25℃における重合体の非晶状態における密
度(g/cc)。
However, ρ is the density (g/cc) of the polymer in an amorphous state at 25°C.

なお、前記の浸透法による全空孔容積(cc)の求め方
は、一定量C(gr)の単離不活性微粒子試料を溶媒(
四塩化炭素)中で、76〜78℃の温度で5時間煮沸後
、遠心沈降法にて、粒子試料のみを分離する。次に60
〜70℃の熱風にて、30分間乾燥させ、この時の重J
itD(gr)を測定する。
Note that the method for determining the total pore volume (cc) using the above-mentioned infiltration method is to dissolve a certain amount C (gr) of isolated inert fine particle sample in a solvent (
After boiling in carbon tetrachloride at a temperature of 76 to 78° C. for 5 hours, only the particle sample is separated by centrifugal sedimentation. then 60
Dry with hot air at ~70℃ for 30 minutes, and then
Measure itD(gr).

これらの値から下式(2)にて全空孔容積を求めた。From these values, the total pore volume was determined using the following formula (2).

(7)充填率: 充填率は次式によって求められる。(7) Filling rate: The filling rate is determined by the following formula.

充填率(体積%) = (100−空隙率(χ)〕(8
)熱可塑性重合体中のマイクロカプセルの添加量: 熱可塑性重合体A(単位gr)をJIS C2330の
灰分含有量試験にもとづき、空気雰囲気下800℃、4
時間加熱し、この時得られた残渣の重さをB(単位gr
)とすると、(A/B)X100で求める。
Filling rate (volume %) = (100 - porosity (χ)) (8
) Addition amount of microcapsules in thermoplastic polymer: Based on the ash content test of JIS C2330, thermoplastic polymer A (unit: gr) was heated at 800°C in an air atmosphere at 4.
The weight of the residue obtained at this time is B (unit: gr
), it is determined by (A/B)X100.

(9)フィルムの見掛は比重: ASTM D792にしたがって測定した25℃での値
(g/cc)。
(9) Apparent specific gravity of film: Value at 25°C (g/cc) measured according to ASTM D792.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1、比較例1.2 平均粒径2μm、細孔径200人、見掛は比重0、2の
球径多孔質中空シリカを、ポリエチレンテレフタレート
C以下、PETと略記する。固有粘度(η) =0.6
5、ジエチレングリコール1.5モル%共重合〕に、重
合完了後に35重量%添加し、均一に分散させた。
Example 1, Comparative Example 1.2 A spherical porous hollow silica having an average particle diameter of 2 μm, a pore diameter of 200 μm, and an apparent specific gravity of 0.2 is abbreviated as polyethylene terephthalate C or less, PET. Intrinsic viscosity (η) =0.6
5. Diethylene glycol 1.5 mol % copolymerization] was added in an amount of 35% by weight after the completion of polymerization, and was uniformly dispersed.

得られたPBTを180℃で2時間乾燥後、押し出し機
に供給し、280℃で溶融させた後に100Kg/cd
以上の濾過圧力をかけて口金から吐出させ、静電荷を印
加させながら35℃に保持された鏡面クロムメッキ・ロ
ール上にキャストして無配向シートを得た。
After drying the obtained PBT at 180°C for 2 hours, it was fed to an extruder, and after being melted at 280°C, it was produced at 100Kg/cd.
The above filtration pressure was applied to discharge the mixture from the nozzle, and while applying an electrostatic charge, the mixture was cast onto a mirror-finished chrome-plated roll maintained at 35° C. to obtain a non-oriented sheet.

このシートを縦方向に98℃で3.8倍延伸し、続いて
95℃で4倍、横方向に延伸後、200℃で幅方向に5
%のリラックスを与えながら7秒間熱固定した。
This sheet was stretched 3.8 times in the machine direction at 98°C, then 4 times in the transverse direction at 95°C, and then 5 times in the width direction at 200°C.
% relaxation for 7 seconds.

得られた二軸配向フィルムの厚さは、見掛は比重が0.
4、厚さが150μmであり、このフィルム特性を表に
示す。
The thickness of the obtained biaxially oriented film has an apparent specific gravity of 0.
4. The thickness is 150 μm, and the properties of this film are shown in the table.

なお比較例として、ポリ塩化ビニル発泡プラスチック・
シートの場合(比較例2)、および従来の多孔質でない
中空マイクロカプセルを添加した場合(比較例1)の特
性も併記した。
As a comparative example, polyvinyl chloride foam plastic
The properties of the sheet (Comparative Example 2) and the case of adding conventional non-porous hollow microcapsules (Comparative Example 1) are also shown.

(以下余白) この表から明らかなように、本発明の場合にのみ軽量で
機械的強度に良好な熱可塑性重合体フィルムが得られる
(The following is a blank space) As is clear from this table, a thermoplastic polymer film that is lightweight and has good mechanical strength can be obtained only in the case of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明で使用する無機質多孔性マイクロカプセルの
拡大断面図である。 1・・・壁材、2・・・中空部。
The figure is an enlarged sectional view of an inorganic porous microcapsule used in the present invention. 1...Wall material, 2...Hollow part.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性重合体に、熱可塑性重合体が充填率10〜40
体積%で内包された無機質多孔性マイクロカプセルが2
0〜80重量%添加されてなり、かつ見掛け比重が0.
2〜0.5であることを特徴とする熱可塑性重合体フィ
ルム。
The thermoplastic polymer has a filling rate of 10 to 40
Inorganic porous microcapsules encapsulated in a volume% of 2
0 to 80% by weight, and the apparent specific gravity is 0.
A thermoplastic polymer film characterized in that it has a molecular weight of 2 to 0.5.
JP19606485A 1985-09-06 1985-09-06 Thermoplastic polymer film Pending JPS6257460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19606485A JPS6257460A (en) 1985-09-06 1985-09-06 Thermoplastic polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19606485A JPS6257460A (en) 1985-09-06 1985-09-06 Thermoplastic polymer film

Publications (1)

Publication Number Publication Date
JPS6257460A true JPS6257460A (en) 1987-03-13

Family

ID=16351596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19606485A Pending JPS6257460A (en) 1985-09-06 1985-09-06 Thermoplastic polymer film

Country Status (1)

Country Link
JP (1) JPS6257460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032626A (en) * 2009-07-08 2011-02-17 Toyota Boshoku Corp Method for producing fiber molded product and heat-expandable capsule blend

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032626A (en) * 2009-07-08 2011-02-17 Toyota Boshoku Corp Method for producing fiber molded product and heat-expandable capsule blend

Similar Documents

Publication Publication Date Title
AU771197B2 (en) Heat-resistant microporous film
EP0932639B1 (en) Very thin microporous material
US5641565A (en) Separator for a battery using an organic electrolytic solution and method for preparing the same
JP4450442B2 (en) Battery separator and battery
TWI444296B (en) Polyolefins microporous film and the method thereof, spacer useful for battery, and battery
JP2004161899A (en) Film with minute pore and its manufacturing method and use
JP6811300B2 (en) Separator for power storage device and its manufacturing method, and power storage device and its manufacturing method
WO2008094893A2 (en) An ultracapacitor and method of manufacturing the same
WO1999047593A1 (en) Microporous film
CN107210413A (en) Multi-layered separator material and its manufacture method
JP2004149637A (en) Microporous membrane, method for producing the same and use thereof
KR101354708B1 (en) Method of manufacturing a multi-component separator film with ultra high molecule weight polyethylene for lithium secondary battery and a multi-component separator film for lithium secondary battery therefrom
JPH11319522A (en) Finely porous membrane and manufacture thereof
JPS5832171B2 (en) Method for manufacturing porous membrane
JPS6134736B2 (en)
JPS6257460A (en) Thermoplastic polymer film
JP2023501423A (en) Improved powders for additive manufacturing
JPS6223428B2 (en)
JPH0342025A (en) Production of polyolefin porous film
JPH0721078B2 (en) Method for producing microporous film
CN116323772A (en) Coating liquid, porous film, and lithium ion battery
JPH04212265A (en) Polyethylene poromeric film for cell separator
JPH0415964B2 (en)
JPH06508167A (en) Free-flowing powdered polyvinyl chloride composition
JPH0238098B2 (en)