JPH0238098B2 - - Google Patents

Info

Publication number
JPH0238098B2
JPH0238098B2 JP57213844A JP21384482A JPH0238098B2 JP H0238098 B2 JPH0238098 B2 JP H0238098B2 JP 57213844 A JP57213844 A JP 57213844A JP 21384482 A JP21384482 A JP 21384482A JP H0238098 B2 JPH0238098 B2 JP H0238098B2
Authority
JP
Japan
Prior art keywords
sheet
filler
stretching
particle size
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213844A
Other languages
Japanese (ja)
Other versions
JPS59105035A (en
Inventor
Shingo Kaneko
Kenji Okamura
Kyoshi Sumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP21384482A priority Critical patent/JPS59105035A/en
Publication of JPS59105035A publication Critical patent/JPS59105035A/en
Publication of JPH0238098B2 publication Critical patent/JPH0238098B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は也匏法による新芏な熱可塑性暹脂より
なる埮倚孔シヌトの補造方法に関する。詳しく
は、それぞれ粒埄及び厚さが特定された充填剀を
含む耇数の熱可塑性暹脂シヌトをラミネヌトした
埌、延䌞するこずを特城ずする埮倚孔シヌトの補
造方法である。 近幎、電池セパレヌタヌ及び血液、゚マルゞペ
ンの分離等の分野においお合成暹脂の倚孔シヌト
が甚いられおいる。これらの分野に甚いられるシ
ヌトずしおは、䟋えば孔埄が1Ό以䞋の埮倚孔を
有するもので、濟過性、耐薬品性及び匷床等に優
れたものが芁求される。 埓来、倚孔性シヌトを補造する方法ずしおは、
䟋えば熱可塑性暹脂䞭に充填剀を混合し成圢しお
埗たシヌトを延䌞する也匏方法、或いは熱可塑性
暹脂䞭に充填剀を混合したものをシヌト化した
埌、該充填剀を溶剀等で抜出する湿匏方法等があ
る。 ずころが前者の也匏方法においおは、䞀般にシ
ヌトの孔埄は充填剀の粒埄や延䌞倍率に巊右さ
れ、しかも均䞀な孔埄を埗ようずすれば甚いる充
填剀の粒埄を均䞀にか぀延䌞倍率を均䞀にする必
芁がある。即ち、䞀般に無機質充填剀を倚量に充
填したシヌト状物を延䌞しお倚孔質シヌトを埗る
堎合、延䌞時における癜化珟象、すなわち充填剀
ず暹脂マトリツクスの界面剥離珟象を劂䜕に均䞀
に行わせるかが重芁である。埓来、かかる均䞀な
癜化珟象を行わしめるために無機質充填剀に衚面
凊理を斜す方法や、ガラス転移点以䞊、軟化点以
䞋の枩床範囲で出来るかぎり䜎枩偎で予備的に埮
小延䌞させお界面剥離を行わしめる方法等によ぀
お達成されおいる。しかしながら、埮倚孔質シヌ
トを埗るために、粒埄が1Ό以䞋でか぀倚量に無
機質充填剀を甚いる堎合には、均䞀癜化珟象を行
わしめるのは困難であ぀た。すなわち、粒子埄
1Ό以䞋の無機質充填剀を倚量特に50重量以䞊
に充填し、䞊述の方法をず぀おも、延䌞時におい
お局郚的に延䌞され均質な倚孔質シヌトは埗られ
ないばかりか、所定の延䌞倍率になるたでに砎断
する等のトラブルが生じ、実質的に埮倚孔質シヌ
トは埗られなか぀た。 これに察しお埌者の湿匏方法においおは、充填
剀を抜出埌のシヌトの孔埄がほゞ充填剀の粒埄に
より決定されるため均䞀な埮倚孔シヌトを埗るこ
ずが出来る。たたこのシヌトを曎に延䌞によ぀お
高い倚孔床を有する埮倚孔性シヌトを補造する方
法も知られおいる。しかし、これら湿匏方法では
充填剀、可塑剀等の抜出に無機薬品や有機溶剀を
䜿甚するため、時間や費甚を芁し煩雑である。さ
らに埓来、充填剀を含有したシヌトを積局し延䌞
するこずによ぀お合成玙を補造する方法が開瀺さ
れおいる特公昭50−38665、特公昭57−49011。
しかし、かかる合成玙の補造方法においおは延䌞
による埮现空孔化が瀺されおいるものの、その目
的ずするずころは䞻に匷床を保持、改良させるた
めに積局されるものであり、積局されたシヌトは
良奜な透過性をも぀ものずはいえない。これに察
しお本発明は衚面局が埮现な倚孔質であり、基材
局も高床に倚孔化した構造を有する埮倚孔シヌト
の補造を目的ずするもので、明らかに異なるもの
である。 本発明者等は䞊蚘の目的を達成するために鋭意
研究の結果、特定の埮粒埄の充填剀を特定量含有
する暹脂シヌトを予め特定の暹脂シヌトにラミネ
ヌトするこずにより延䌞が可胜になり、所望の埮
倚孔シヌトを容易に埗るこずを芋い出し本発明を
提䟛するに至぀た。 即ち、本発明は粒埄1Ό以䞋の充填剀を30〜80
重量含む熱可塑性暹脂シヌト(A)ず、該シヌト(A)
の倍以䞊の厚みを有し䞊蚘粒埄より倧なる充填
剀を30〜80重量含む熱可塑性暹脂シヌト(B)ずを
ラミネヌトした埌、延䌞するこずを特城ずする埮
倚孔シヌトの補造方法である。 本発明の方法により埗られる埮倚孔シヌトは
シヌト面が埮倚孔なシヌトであり、シヌト面は
シヌト面より倧なる孔埄を有する。本発明の埮
倚孔シヌトずはシヌトずシヌトをラミネヌト
した埌、延䌞した耇合シヌトでもよく、曎に該延
䌞シヌトよりシヌトを剥離させたものも含む総
称である。 本発明においお最も重芁なこずは、特定の粒埄
の充填剀を特定量含むシヌトをそれぞれ特定の厚
みでラミネヌトした埌延䌞するこずにある。即
ち、䞀般に1Ό以䞋の粒埄の極めお小さい充填剀
を熱可塑性暹脂に所定量混合した埌、シヌト化し
たものシヌトは、ネツキング延䌞状態、す
なわち、䞀郚分から延䌞され延䌞倚孔が䞍均䞀ず
なるばかりでなく、所望の延䌞倍率に達する前に
切断するなどの珟象が生じる。ずころが、該シヌ
トに特定の補助シヌトシヌトをラミネヌト
するこずによりシヌトも均䞀に癜化された延䌞
埮倚孔シヌトを埗るこずが可胜になる。 本発明においおは、目的ずする埮倚孔性を有す
るためのシヌトがシヌトであり、シヌトだけ
では延䌞できないためにシヌトずずもにラミネ
ヌトするものでシヌトは所謂シヌトを延䌞す
るための䞀皮の補助シヌトである。そしお、これ
らはラミネヌト、延䌞した埌は䞀連の倚孔シヌト
ずなるが、この際少なくずも衚面片面が埮倚
孔シヌトを延䌞した埮倚孔シヌトでそれ以
倖のシヌトは該倚孔床より倧きいものであればよ
い。 本発明においおは、皮の各々のシヌトに含有
する充填剀の粒埄をそれぞれ特定するこずが重芁
であり、即ち、シヌトには最倧粒埄1Ό以䞋、
奜たしくは0.01〜0.5Όの充填剀を甚いるのに察し
おシヌトには平均粒埄が䞀般に〜50Ό、奜た
しくは〜20Όで䞔぀シヌトの充填剀より粒埄
の倧きな充填剀を䜿甚するこずが必芁である。
シヌトに含有する充填剀の粒埄が、䞊蚘シヌト
の充填剀の粒埄より小さい堎合、延䌞時においお
シヌトが䞀郚分から延䌞され延䌞倚孔が䞍均䞀
ずなるばかりか、堎合によ぀おは所定の延䌞倍率
になるたでに砎断が生じたりする。 本発明に䜿甚し埗る充填剀は通垞ゎム又はプラ
スチツク䞭に混合される充填剀、䟋えば炭酞カル
シりム、石膏、亜硫酞カルシりム、りん酞カルシ
りム、炭酞マグネシりム、塩基性炭酞マグネシり
ム、氎酞化マグネシりム、硫酞マグネシりム、氎
和珪酞、無氎珪酞、゜ヌダ灰、塩化ナトリりム、
硫酞ナトリりム、クレヌ、各皮セメント、火山
灰、シラス、酞化チタン、酞化鉄、カヌボンブラ
ツク、皮々の金属粉、その他の無機物又は無機物
を䞻䜓ずする有機物金属塩等であり、䞀般に50ミ
クロン以䞋の平均粒埄を有するものである。ずり
わけシヌトに混合される充填剀ずしおは1Ό以
䞋に埮粉砕されたもの、あるいは合成によ぀お
1Ό以䞋ず成したものであ぀お、埌者は特に均䞀
な粒子埄を埗る方法ずしお奜たしく、これに属す
るものずしお炭酞カルシりム、氎酞化マグネシり
ム、無氎珪酞、酞化チタン等が奜適に䜿甚され
る。又、本発明においおのシヌトに充填する充
填剀の粒埄は予め最倧粒埄が1Ό以䞋にしおも、
或いは暹脂の混緎等の段階で1Ό以䞋ずなるよう
にしおもよい。これらは暹脂䞭に所望の倚孔床に
保おる量、奜たしくは30〜80重量、特に奜たし
くは50〜80重量含有するように添加する。即
ち、皮の各々のシヌトに含有する充填剀の含有
量が、30重量に満たない堎合、暹脂䞭に有効な
連通孔が少なくなり所望する倚孔性シヌトは埗ら
れず、80重量を越えるず充填剀同士の凝集が生
じ易く、たたシヌト状に成圢するこずが困難にな
り延䌞時に砎断が生じる。 本発明においおは、無機質充填剀の暹脂マトリ
ツクス䞭ぞの分散性の向䞊や延䌞工皋における均
䞀延䌞性の向䞊を目的ずしお、無機質粉䜓にあら
かじめ耐熱性のある可塑剀、滑剀あるいは界面掻
性剀、プロセスオむル等で衚面凊理されたものを
甚いるこずは特にシヌトの堎合奜適ずなる。こ
れらの衚面凊理剀量ずしおは粒埄によ぀お異なる
が、通垞は充填量に察し〜100重量郚の添加量
である。本発明においおは、䞊蚘以倖の皮々の添
加物䟋えば顔料、安定剀、難燃剀等を同時に或い
は別途混合するこずは劚げない。 本発明に甚いられる熱可塑性暹脂は公知のもの
が特に制限なく甚いられる。䟋えば塩化ビニル暹
脂、酢酞ビニル暹脂、ポリスチレン、ABS暹脂、
アクリル暹脂、ポリ゚チレン、ポリプロピレン、
フツ玠暹脂、ポリアミド暹脂、アセタヌル暹脂、
ポリカヌボネヌト、繊維玠プラスチツクなどがあ
るが、加工性及び耐薬品性の面から䞀般にポリプ
ロピレン等のポリオレフむンが奜たしく甚いられ
る。䞊蚘に瀺した充填剀を含有する熱可塑性暹脂
シヌトは、䞀般に0.03〜mmの厚みを有する。 ラミネヌトの方法は、䞊蚘組成よりなるものを
混緎埌、カレンダヌ成圢あるいは抌出成圢等によ
りシヌトをそれぞれ個別に成圢した埌、該シヌト
を圧瞮成圢に貌り合わせ䞀䜓ずするもの、あるい
は−ダむたたは円筒状ダむより暹脂及び暹
脂の溶融組成物を共抌出しお局シヌトずしおも
よいし、たた、シヌトの䞊に抌出ラミネヌト方
法によ぀お局化する方法等、䞀般的な局化の
成圢方法が採甚される。この際、シヌトずシ
ヌトの厚みに぀いお、ラミネヌト埌のシヌトを延
䌞するに際しお、シヌトの厚みがシヌトの厚
みより厚くなるずシヌトの延䌞性が劣るため、
該状態を緩和するためには、シヌトの厚みが
シヌトの倍以䞊ずするこずが必芁である。シ
ヌトずシヌトをラミネヌトする際、該シヌトの
組成及び融点等の物性が倧幅に異なるずラミネヌ
ト郚の匷床等が䜎䞋したり、堎合によ぀おは剥離
するこずも生じるため、シヌトずシヌトは普
通同皮の暹脂を甚いられるが、異皮の暹脂を甚い
るこずもできる。 次に䞊蚘ラミネヌトされたシヌトは少なくずも
方向特に奜たしくは軞方向に延䌞するこずに
よ぀お倚孔質シヌトを埗る。該延䌞方向及び装眮
に぀いおは、公知のものが甚いられるが、通垞、
熱可塑性暹脂の融点以䞋の枩床で1.5倍以䞊、奜
たしくは倍皋床延䌞するこずによ぀おシヌトに
现孔を成圢させる。又、延䌞埌、シヌトを剥離
させるこずも可胜である。埗られた埮倚孔性シヌ
トは䞀般に厚みが0.03乃至mm、空孔率60〜90
、最倧孔埄1Ό以䞋のもので孔埄分垃が均䞀で
䞔぀匷床に優れたものずなる。埓぀お、本発明に
よ぀お埗られる埮倚孔シヌトは延䌞された埌、こ
のたた、あるいは適圓な溶出剀、䟋えば無機質粉
䜓には酞あるいはアルカリ溶液で抜出したり、あ
るいは添加された可塑剀等はアルコヌル等の有機
溶剀で抜出陀去するこずによ぀お暹脂だけからな
る埮倚孔質シヌトず成しおもよく、前述のような
広範な甚途に利甚される。 以䞋、本発明を具䜓的に説明するための実斜䟋
を瀺すが、本発明は以䞋の実斜䟋に限定されるも
のではない。 なお、性胜評䟡項目の枬定方法は以䞋の通り。 (1) 空隙率 空隙率〔〕〔W1−W0W1−W2〕×100 W0詊料片の空䞭重量 W1詊料片の氎含重量 W2詊料片の氎䞭重量 (2) 通気床〜JIS P8117に準ずる。 (3) 最倧孔埄〜ASTM −316−70に準ずる
゚タノヌル䜿甚 実斜䟋及び比范䟋、 重質炭酞カルシりム癜石カルシりム瀟補、商
品名ホワむトン−、粒埄7Ό70重量、ポ
リプロピレン粉末埳山曹達瀟補、商品名埳山
ポリプロYE−12030重量、及びポリ゚ステル
系可塑剀倧日本むンキ瀟補、商品名ポリサむ
ザヌ−23003.0PHRより成る組成物を3″ロヌ
ルにお200℃で混緎埌、プレス機で厚さ0.3
のシヌトシヌトを䜜成した。次いで第衚
に瀺す充填剀及び分散剀を甚いお同様に厚さ0.1
のシヌトシヌトを䜜成し、䞊蚘シヌ
ト(B)ずシヌト(A)を170℃で厚さ厚さ0.35の
型枠の䞭で積局し、プレスし厚さ0.35のシ
ヌトを埗た。次いで前蚘シヌトを実隓甚二軞延䌞
機で130℃、タテ×ペコが×倍に同時軞延
䌞し、埗られたシヌトの物性を第衚右欄No.
〜に瀺した。尚No.は比范䟋でシヌト(B)だ
けから成る延䌞シヌトの結果を瀺した。 No.〜はNo.に比べ孔埄が小さく、シヌト(B)
偎の衚面はミクロフむブリル化した埮倚孔質にな
぀おいるこずがわか぀た。No.のシヌト(B)偎衚面
及びシヌト(A)偎衚面の電子顕埮鏡写真を倫々、第
図及び第図に瀺した。 曎に比范䟋ずしおシヌト(B)及びNo.の充填剀
を含有するシヌト(A)を同様にしお、それぞれ
の厚さのプレスシヌトを積局したシヌトを
延䌞したずころ砎断が発生し、該延䌞シヌトは埗
られなか぀た。
The present invention relates to a method for producing a microporous sheet made of a novel thermoplastic resin by a dry method. Specifically, the method for producing a microporous sheet is characterized by laminating a plurality of thermoplastic resin sheets containing fillers each having a specified particle size and thickness, and then stretching the sheets. In recent years, porous sheets of synthetic resin have been used in fields such as battery separators and separation of blood and emulsions. Sheets used in these fields are required to have micropores with a pore diameter of 1 ÎŒm or less, and to have excellent filterability, chemical resistance, strength, etc. Conventionally, methods for manufacturing porous sheets include:
For example, a dry method involves mixing a filler in a thermoplastic resin and stretching the resulting sheet, or a method in which a mixture of a filler in a thermoplastic resin is formed into a sheet, and then the filler is extracted with a solvent or the like. There are wet methods etc. However, in the former dry method, the pore size of the sheet generally depends on the particle size of the filler and the stretching ratio, and in order to obtain a uniform pore size, it is necessary to make the particle size of the filler uniform and the stretching ratio uniform. There is a need to. That is, in general, when a porous sheet is obtained by stretching a sheet material filled with a large amount of inorganic filler, it is important to ensure that the whitening phenomenon during stretching, that is, the interfacial peeling phenomenon between the filler and the resin matrix, occurs uniformly. is important. Conventionally, in order to achieve such a uniform whitening phenomenon, inorganic fillers have been subjected to surface treatment, or interfacial peeling has been achieved by preliminary micro-stretching at the lowest possible temperature within the temperature range above the glass transition point and below the softening point. This is achieved through methods such as implementation. However, when a large amount of inorganic filler with a particle size of 1 ÎŒm or less is used to obtain a microporous sheet, it is difficult to achieve a uniform whitening phenomenon. That is, the particle size
Even if a large amount of inorganic filler of 1Ό or less is filled, especially 50% by weight or more, and the above-mentioned method is used, a porous sheet that is locally stretched and homogeneous cannot be obtained during stretching, and it is not possible to obtain a porous sheet that is locally stretched at a predetermined stretching ratio. Trouble such as breakage occurred before the sheet was completely broken, and a microporous sheet could not be obtained substantially. On the other hand, in the latter wet method, the pore size of the sheet after the filler has been extracted is substantially determined by the particle size of the filler, so that a uniform microporous sheet can be obtained. Also known is a method of producing a microporous sheet having high porosity by further stretching this sheet. However, these wet methods use inorganic chemicals or organic solvents to extract fillers, plasticizers, etc., and are therefore time-consuming, costly, and complicated. Furthermore, a method for producing synthetic paper by laminating and stretching sheets containing fillers has been disclosed (Japanese Patent Publication No. 50-38665, Japanese Patent Publication No. 57-49011).
However, although the manufacturing method of such synthetic paper shows microporous formation by stretching, its purpose is mainly to maintain and improve strength, and the laminated sheets are cannot be said to have good permeability. On the other hand, the present invention is clearly different, as it aims to produce a microporous sheet in which the surface layer is finely porous and the base layer is also highly porous. In order to achieve the above object, the present inventors have conducted intensive research and found that stretching is possible by laminating a resin sheet containing a specific amount of a filler with a specific fine particle size onto a specific resin sheet in advance. The present inventors have discovered that a desired microporous sheet can be easily obtained and have provided the present invention. That is, the present invention uses 30 to 80 particles of filler with a particle size of 1Ό or less.
Thermoplastic resin sheet (A) containing % by weight, and the sheet (A)
A method for producing a microporous sheet, which comprises laminating the thermoplastic resin sheet (B) with a thermoplastic resin sheet (B) having a thickness three times or more and containing 30 to 80% by weight of a filler having a particle size larger than the above particle size, and then stretching the sheet. It is. The microporous sheet obtained by the method of the present invention is A
The sheet surface is microporous, and the B sheet surface has a larger pore diameter than the A sheet surface. The microporous sheet of the present invention may be a composite sheet obtained by laminating sheet A and sheet B and then stretching the sheet, and is a general term that also includes sheets obtained by peeling sheet B from the stretched sheet. The most important thing in the present invention is that sheets containing a specific amount of filler with a specific particle size are laminated to a specific thickness and then stretched. That is, in general, after mixing a predetermined amount of a very small filler with a particle size of 1Ό or less into a thermoplastic resin, the sheet (A sheet) is in a netting stretched state, that is, it is stretched from one part and the stretched pores are non-uniform. Not only this, but also phenomena such as cutting occur before the desired stretching ratio is reached. However, by laminating a specific auxiliary sheet (B sheet) to the sheet, it becomes possible to obtain a stretched microporous sheet in which the A sheet is also uniformly whitened. In the present invention, the sheet to have the desired microporosity is the A sheet, and since the A sheet alone cannot be stretched, it is laminated together with the B sheet, and the B sheet is a type of sheet for stretching the A sheet. This is an auxiliary seat. After laminating and stretching, these become a series of porous sheets, but at this time, at least one surface (one side) is microporous (a microporous sheet made by stretching the A sheet), and the other sheets have a porosity larger than that. That's fine. In the present invention, it is important to specify the particle size of the filler contained in each of the two types of sheets, that is, the A sheet has a maximum particle size of 1Ό or less,
Preferably, a filler with a particle diameter of 0.01 to 0.5Ό is used, whereas a filler with an average particle size of generally 1 to 50Ό, preferably 3 to 20Ό, and a larger particle size than that of the filler in the A sheet is used for the B sheet. It is necessary. B
If the particle size of the filler contained in the sheet is smaller than the particle size of the filler in the A sheet, the A sheet may be partially stretched during stretching, resulting in nonuniform stretching pores, and in some cases, the A sheet may not be uniform. Breakage may occur before the stretching ratio is reached. Fillers which can be used in the present invention are fillers normally mixed into rubber or plastics, such as calcium carbonate, gypsum, calcium sulfite, calcium phosphate, magnesium carbonate, basic magnesium carbonate, magnesium hydroxide, magnesium sulfate, water. Japanese silicic acid, anhydrous silicic acid, soda ash, sodium chloride,
Sodium sulfate, clay, various cements, volcanic ash, shirasu, titanium oxide, iron oxide, carbon black, various metal powders, other inorganic substances or organic metal salts mainly composed of inorganic substances, etc., and generally have an average particle size of 50 microns or less. It has the following. In particular, the filler to be mixed into the A sheet is one that has been finely pulverized to less than 1Ό, or one that has been synthesized.
The latter is particularly preferable as a method for obtaining a uniform particle size, and calcium carbonate, magnesium hydroxide, silicic anhydride, titanium oxide, etc. are preferably used in this category. In addition, even if the particle size of the filler filled in the A sheet in the present invention is set in advance to a maximum particle size of 1Ό or less,
Alternatively, the thickness may be set to 1Ό or less at a stage such as kneading the resin. These are added in an amount sufficient to maintain the desired porosity in the resin, preferably 30 to 80% by weight, particularly preferably 50 to 80% by weight. That is, if the filler content in each of the two types of sheets is less than 30% by weight, the number of effective communicating pores in the resin will decrease and the desired porous sheet will not be obtained; If it exceeds this, the fillers tend to aggregate with each other, making it difficult to form into a sheet and causing breakage during stretching. In the present invention, in order to improve the dispersibility of the inorganic filler in the resin matrix and to improve the uniform stretchability in the stretching process, heat-resistant plasticizers, lubricants, or surfactants are added to the inorganic powder in advance. It is particularly suitable for A sheet to use one whose surface has been treated with oil or the like. The amount of these surface treatment agents varies depending on the particle size, but is usually 3 to 100 parts by weight based on the amount filled. In the present invention, various additives other than those mentioned above, such as pigments, stabilizers, flame retardants, etc., may be mixed simultaneously or separately. As the thermoplastic resin used in the present invention, known thermoplastic resins can be used without particular limitation. For example, vinyl chloride resin, vinyl acetate resin, polystyrene, ABS resin,
Acrylic resin, polyethylene, polypropylene,
Fluorine resin, polyamide resin, acetal resin,
Examples include polycarbonate and cellulose plastic, but polyolefins such as polypropylene are generally preferred from the viewpoint of processability and chemical resistance. Thermoplastic resin sheets containing the fillers shown above generally have a thickness of 0.03 to 3 mm. The laminating method is to knead the above composition, then individually mold the sheets by calender molding or extrusion molding, and then bond the sheets together by compression molding, or by using a T-die or cylindrical shape. A two-layer sheet may be formed by co-extruding the melted composition of resin A and resin B from a die, or a general two-layer sheet may be formed by extrusion lamination on top of the A sheet. A molding method is adopted. At this time, regarding the thickness of the A sheet and the B sheet, when stretching the laminated sheet, if the thickness of the A sheet is thicker than the thickness of the B sheet, the stretchability of the A sheet will be inferior.
In order to alleviate this condition, the thickness of sheet B must be
It is necessary to make it at least three times the size of the sheet. When laminating A sheet and B sheet, if the composition and physical properties such as melting point of the sheets are significantly different, the strength of the laminated part may decrease, and in some cases, peeling may occur. The sheets are usually made of the same type of resin, but different types of resin can also be used. Next, the laminated sheet is stretched in at least one direction, preferably in two axial directions, to obtain a porous sheet. Regarding the stretching direction and device, known ones can be used, but usually,
Pores are formed in the sheet by stretching it 1.5 times or more, preferably about 2 times, at a temperature below the melting point of the thermoplastic resin. Moreover, it is also possible to peel off the B sheet after stretching. The resulting microporous sheet generally has a thickness of 0.03 to 3 mm and a porosity of 60 to 90.
%, and the maximum pore diameter is 1ÎŒ or less, the pore size distribution is uniform and the strength is excellent. Therefore, after the microporous sheet obtained by the present invention is stretched, it can be used as is, or it can be extracted with an appropriate eluent, such as an acid or alkaline solution for inorganic powder, or an added plasticizer, etc. By extracting and removing the resin with an organic solvent such as alcohol, it may be made into a microporous sheet made only of resin, which can be used for a wide range of applications as described above. EXAMPLES Hereinafter, examples will be shown to specifically explain the present invention, but the present invention is not limited to the following examples. The method for measuring performance evaluation items is as follows. (1) Porosity Porosity [%] = [W 1 −W 0 /W 1 −W 2 ]×100 W 0 ; Weight of sample in air W 1 ; Weight of water content of sample W 2 ; Weight of sample in water Weight (2) Air permeability ~ According to JIS P8117. (3) Maximum pore diameter ~ According to ASTM F-316-70 (using ethanol) Example 1 and Comparative Examples 1 and 2 Heavy calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name: Whiten-B, particle size 7ÎŒ) 70 A composition consisting of 30% by weight of polypropylene powder (manufactured by Tokuyama Soda Co., Ltd., trade name: Tokuyama Polypro YE-120), and 3.0 PHR of polyester plasticizer (manufactured by Dainippon Ink Co., Ltd., trade name: Polycizer W-2300). After kneading with a 3″ roll at 200℃, the thickness is 0.3m/m with a press machine.
A sheet (sheet B) was created. Then, using the fillers and dispersants shown in Table 1, the thickness of 0.1
m/m sheet (sheet A), the above sheet (B) and sheet (A) were laminated at 170℃ in a formwork with a thickness of 0.35 m/m, and pressed to a thickness of 0.35 m. /m sheet was obtained. Next, the sheet was simultaneously biaxially stretched to 2x2 times vertically and horizontally at 130°C using an experimental biaxial stretching machine, and the physical properties of the obtained sheet are shown in the right column of Table 1 (No. 1
-4). Note that No. 4 shows the results of Comparative Example 1, a stretched sheet consisting only of sheet (B). Nos. 1 to 3 have smaller pore diameters than No. 4, and the sheet (B)
The side surface was found to be microporous with microfibrillation. Electron micrographs of the sheet (B) side surface and the sheet (A) side surface of No. 1 are shown in FIGS. 1 and 2, respectively. Further, as Comparative Example 2, sheet (B) and sheet (A) containing No. 1 filler were prepared in the same manner, and 2
When a sheet of laminated press sheets having a thickness of m/m was stretched, breakage occurred and the stretched sheet could not be obtained.

【衚】 実斜䟋  重質炭酞カルシりム商品名ホワむト゜−
、粒子埄7Ό、癜石カルシりム瀟補100に察
し、3PHRのポリ゚ステル系可塑剀商
品名−2300、倧日本むンキ瀟補で衚面凊理
されたもの70wtずポリプロピレン商品名
YE−120、埳山ポリプロ、埳山曹達瀟補30wt
よりなるペレツト状組成物を30mmのシリンダヌ
埄を有する−ダむ抌出機で厚さ0.3mmのシヌト
状ずしお巻き取぀たシヌト。次に氎酞化マ
グネシりム商品名キスマ4AF、粒埄0.3Ό、協
和化孊瀟補100に察し1010PHRのゞオ
クチルフタレヌトで衚面凊理されたもの55wt
ずポリプロピレン45wtより成るペレツト状組
成物を同䞊の抌出機で厚さ70Όで抌出ながら、䞊
蚘シヌトず抌出ラミネヌシペン法によりニツプ
しながら積局状ずなした。 埗られた積局シヌトを次いで実隓甚延䌞機で瞊
方向に80℃で2.5倍に、暪方向に130℃で2.5倍に
遂次延䌞した。延䌞シヌトは厚さ0.25、空
隙率78、通気床60秒、最倧现孔埄0.8Όであり、
埓来にない埮孔を有し、高い透過性のある埮倚孔
質シヌトであ぀た。 比范䟋  第衚のNo.−の充填剀30重量、ポリプロピ
レン70重量、ポリ゚ステル系可塑剀3.0PHRよ
り成る組成物を実斜䟋ず同様に混緎埌0.3
のシヌトを䜜りシヌト(B)ずした。次いで、実斜
䟋のNo.−ず同じ、厚さ0.1のシヌト(A)
ず䞊蚘シヌト(B)を甚い、実斜䟋ず同様にプレス
しお厚さ0.35のシヌトを埗た。たた、同じ
く実斜䟋のNo.−ず同じ、厚さ0.1のシ
ヌト(A)ず䞊蚘シヌト(B)をプレスしたシヌトも䜜補
した。そしお、䞊蚘各々のシヌトを実斜䟋ず同
じ条件で同時軞延䌞したずころ、いずれのシヌ
トも初期の段階より䞀郚分より䌞長され均䞀に延
䌞するこずなく途䞭で砎断、所定の均䞀な埮倚孔
性シヌトは埗られなか぀た。 比范䟋  シヌト(B)ずしお実斜䟋ず同様の組成を有す厚
さ0.2のシヌトを䜜成し、曎にシヌト(A)ず
しお実斜䟋のNo.−ず同じ組成で厚さ0.2
のシヌトを䜜成した埌、実斜䟋ず同じ条件で
プレスしお0.35のシヌトを埗た。次いで、
実斜䟋ず同じ条件で同時軞延䌞したずころ、
シヌトは䞀郚分より䌞長され均䞀な延䌞ができず
に途䞭より砎断、所定の均䞀な埮倚孔性シヌトは
埗られなか぀た。
[Table] Example 2 Heavy calcium carbonate (product name: White Saw)
B, particle size 7 Ό, manufactured by Shiraishi Calcium Co., Ltd.) per 100 g, 70 wt% of the surface treated with 3 g (3PHR) of polyester plasticizer (product name: W-2300, manufactured by Dainippon Ink Co., Ltd.) and polypropylene (product given name:
YE−120, Tokuyama Polypro, Tokuyama Soda Co., Ltd.) 30wt
% was wound into a sheet with a thickness of 0.3 mm using a T-die extruder having a cylinder diameter of 30 mm (Sheet B). Next, 100g of magnesium hydroxide (product name: Kisuma 4AF, particle size 0.3Ό, manufactured by Kyowa Chemical Co., Ltd.) was surface-treated with 10g (10PHR) of dioctyl phthalate (55wt%).
A pellet composition consisting of 45% by weight of polypropylene was extruded using the same extruder to a thickness of 70 Όm, and laminated with the sheet B by extrusion lamination by nipping. The obtained laminated sheet was then successively stretched in the machine direction by 2.5 times at 80° C. and in the transverse direction by 2.5 times at 130° C. using an experimental stretching machine. The stretched sheet has a thickness of 0.25m/m, a porosity of 78%, an air permeability of 60 seconds, and a maximum pore diameter of 0.8Ό.
It was a microporous sheet with unprecedented micropores and high permeability. Comparative Example 3 A composition consisting of 30% by weight of filler No.-1 in Table 1, 70% by weight of polypropylene, and 3.0 PHR of polyester plasticizer was kneaded in the same manner as in Example 1, and then 0.3 m/min.
A sheet of m was made and designated as sheet (B). Next, a sheet (A) with a thickness of 0.1 m/m, which is the same as No.-1 of Example 1.
The above sheet (B) was pressed in the same manner as in Example 1 to obtain a sheet with a thickness of 0.35 m/m. In addition, a sheet, which was the same as No. 2 of Example 1, was also produced by pressing the sheet (A) with a thickness of 0.1 m/m and the sheet (B). When each of the above-mentioned sheets was simultaneously biaxially stretched under the same conditions as in Example 1, all of the sheets were partially stretched from the initial stage and were not stretched uniformly, but were broken in the middle, resulting in a predetermined uniform microporosity. I couldn't get a sheet. Comparative Example 4 A sheet (B) with a thickness of 0.2 m/m having the same composition as in Example 1 was prepared, and a sheet (A) with the same composition and thickness as No.-1 of Example 1 was prepared. 0.2m/
After creating a sheet of 0.35 m/m, it was pressed under the same conditions as in Example 1 to obtain a sheet of 0.35 m/m. Then,
When simultaneous biaxial stretching was carried out under the same conditions as in Example 1,
The sheet was partially stretched and could not be stretched uniformly and was broken in the middle, making it impossible to obtain the desired uniform microporous sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の実斜䟋に瀺した埮倚孔シヌト
の(B)局偎衚面の電子顕埮鏡写真を、第図は同様
に(A)局偎衚面を瀺す。
FIG. 1 shows an electron micrograph of the surface of the (B) layer side of the microporous sheet shown in the example of the present invention, and FIG. 2 similarly shows the surface of the (A) layer side.

Claims (1)

【特蚱請求の範囲】[Claims]  粒埄1Ό以䞋の充填剀を30〜80重量含む熱
可塑性暹脂シヌト(A)ず、該シヌト(A)の倍以䞊の
厚みを有し䞊蚘粒埄より倧なる充填剀を30〜80重
量含む熱可塑性暹脂シヌト(B)ずをラミネヌトし
た埌、延䌞するこずを特城ずする埮倚孔シヌトの
補造方法。
1. A thermoplastic resin sheet (A) containing 30 to 80% by weight of a filler with a particle size of 1 Ό or less, and 30 to 80% of a filler having a particle size larger than the above and having a thickness of 3 times or more that of the sheet (A). 1. A method for producing a microporous sheet, which comprises laminating a thermoplastic resin sheet (B) containing % by weight and then stretching the sheet.
JP21384482A 1982-12-08 1982-12-08 Production of microporous sheet Granted JPS59105035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21384482A JPS59105035A (en) 1982-12-08 1982-12-08 Production of microporous sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21384482A JPS59105035A (en) 1982-12-08 1982-12-08 Production of microporous sheet

Publications (2)

Publication Number Publication Date
JPS59105035A JPS59105035A (en) 1984-06-18
JPH0238098B2 true JPH0238098B2 (en) 1990-08-29

Family

ID=16645951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21384482A Granted JPS59105035A (en) 1982-12-08 1982-12-08 Production of microporous sheet

Country Status (1)

Country Link
JP (1) JPS59105035A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358602U (en) * 1986-10-03 1988-04-19
JP2625798B2 (en) * 1987-07-04 1997-07-02 東レ株匏䌚瀟 Electrolyte separator
US5762840A (en) * 1996-04-18 1998-06-09 Kimberly-Clark Worldwide, Inc. Process for making microporous fibers with improved properties
JP5070660B2 (en) * 2000-10-30 2012-11-14 䜏友化孊株匏䌚瀟 Porous film, battery separator and battery
JP5309628B2 (en) * 2007-03-23 2013-10-09 䜏友化孊株匏䌚瀟 Porous film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953961A (en) * 1972-09-28 1974-05-25
JPS523666A (en) * 1975-06-25 1977-01-12 Mitsubishi Plastics Ind Manufacturing of synthetic paper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953961A (en) * 1972-09-28 1974-05-25
JPS523666A (en) * 1975-06-25 1977-01-12 Mitsubishi Plastics Ind Manufacturing of synthetic paper

Also Published As

Publication number Publication date
JPS59105035A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
DE2751075C2 (en) Process for the production of permeable membranes
DE69900190T2 (en) Three-layer, microporous battery separator and manufacturing process
DE3882187T2 (en) Breathing composite laminates for housing wrapping.
US4791144A (en) Microporous film and process for production thereof
DE2627229C3 (en) Microporous film and process for its manufacture
US5093197A (en) Microporous filaments and fibers
DE69007130T2 (en) Porous polyvinylidene fluoride membrane and process for its manufacture.
EP1993811B2 (en) Biaxially oriented microporous membrane
US5238735A (en) Microporous shaped article and process for preparation thereof
KR100350546B1 (en) Very thin microporous material
US5230843A (en) Process of forming microporous fibers and filaments
US5230949A (en) Nonwoven webs of microporous fibers and filaments
DE69825392T2 (en) Battery separator of ethylene-vinyl alcohol copolymer
US5126219A (en) Microporous filaments and fibers, and articles made therefrom
JP2622410B2 (en) Non-hollow microporous fiber or filament, method for forming the same, and nonwoven web, wet-laid paper, fabric and battery separator using the same
JP3140464B2 (en) High molecular weight polyethylene biaxially oriented film, method for producing the same, and surface-modified high molecular weight polyethylene biaxially oriented film
US3796778A (en) Method for preparing fibrous polyolefin materials
WO2015143140A1 (en) Embossed microporous membrane battery separator materials and methods of manufacture and use thereof
DE2318831C3 (en) Use of microfiber aggregates made from synthetic polymers as adsorbents
US4067938A (en) Process for producing multicellular articles
JP3965954B2 (en) Porous film
JPH02276833A (en) Microporous membrane produced from cold-rolled precursor film
CA1125944A (en) Process for manufacturing thermoplastic compositions and containers made of such compositions
JPH0238098B2 (en)
WO2003100954A2 (en) Microporous, mixed polymer phase membrane