JPS6257081B2 - - Google Patents

Info

Publication number
JPS6257081B2
JPS6257081B2 JP55177799A JP17779980A JPS6257081B2 JP S6257081 B2 JPS6257081 B2 JP S6257081B2 JP 55177799 A JP55177799 A JP 55177799A JP 17779980 A JP17779980 A JP 17779980A JP S6257081 B2 JPS6257081 B2 JP S6257081B2
Authority
JP
Japan
Prior art keywords
oxide
mol
composition
zinc oxide
resistance layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55177799A
Other languages
Japanese (ja)
Other versions
JPS57100702A (en
Inventor
Yoshio Takada
Ken Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55177799A priority Critical patent/JPS57100702A/en
Publication of JPS57100702A publication Critical patent/JPS57100702A/en
Publication of JPS6257081B2 publication Critical patent/JPS6257081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な電圧非直線低抗体の製造方法に
関する。さらに詳しくは、素子側面に雷インパル
スなどの飛来時に素子の外部閃絡を防止するため
に設けられる高抵抗層を形成せしめたギヤツプの
ない避雷器に使用される酸化亜鉛を主成分とする
電圧非直線低抗体の製造方法に関する。 避雷器の機能要素として、従来より使用されて
きた炭化ケイ素と空気ギヤツプとの組合わせにと
つてかわり、近年酸化亜鉛を主成分とする電圧非
直線低抗体がギヤツプなし避雷器として主流にな
りつつある。 この低抗体は酸化亜鉛を主成分とし、他に酸化
ビスマス、酸化アンチモン、酸化コバルトなど数
種の金属酸化物を含んだもので、そのすぐれた電
圧非直線性のため、ギヤツプが不用になること、
すなわちギヤツプ使用による続流遮断、ギヤツプ
調整、放電の安定性の問題が解決されるなどのす
ぐれた点がある。 一方、避雷器の主要な機能として、大電流サー
ジの吸収がある。このとき素子の側面の表面状態
が不安定で、その抵抗値が内部より相対的に低い
ものであつたりすれば、外部閃絡を起こし、素子
破壊、電路形成による洩れ電流の増加などにより
避雷器自体の寿命をそこなうといつた問題があ
る。 炭化ケイ素を使用する以前には、無機粘度質材
料が素子の側面に設けられ、その保護に使用され
ていた。小電力用電圧非直線低抗体のばあいに
は、エポキシ系などの樹脂層が素子の側面に形成
され、外部閃絡防止用として使用されてきてい
る。 通常の電力用の酸化亜鉛を主成分とする素子の
側面処理方法の代表例としては、酸化ビスマス、
酸化ケイ素、酸化アンチモンを側面に塗布して
800〜1500℃で焼成し、素体と反応させて高抵抗
層を形成する方法が採られている。このように形
成された側面の高抵抗層が素子自体の安定性や外
部閃絡に対して有用であることは、たとえば特開
昭50−150896号公報の記載からもわかる。 通常の電力用としてもつとも望ましいとされて
いる前記酸化ビスマス、酸化アンチモン、酸化ケ
イ素の三元系金属酸化物の組成は、従来、酸化ビ
スマス(Bi2O3)0〜20%モル、酸化アンチモン
(Sb2O3)5〜50モル%、酸化ケイ素(SiO2)5
〜50モル%からなる範囲とされているが、かかる
組成物の塗布、焼成により形成される高抵抗層に
もつぎのような問題点があることがわかつてき
た。すなわち、 (1) 各粉体成分間にかなり密度差があり、均一混
合が困難である(酸化ビスマスのd=8.9g/
cm3、酸化ケイ素のd=2.3g/cm3、酸化アンチ
モンのd=5.2g/cm3)、 (2) 混合粉末と有機溶剤間の密度差も大きく、ペ
ースト状態で放置すると、液−粉末の分離が起
こりやすい、 (3) ペーストの塗布後、乾燥時のダレが大きく、
充分な高さの高抵抗層がえられない、 などの問題点に起因して、塗布物質が均一化しに
くく、極端な塗りむらが生じることもあり、厚さ
も充分でない。また前記のことが原因となり、イ
ンパルスによる外部閃絡が起こりやすく、歩留り
低下に結びついていることも判明している。 本発明者らは叙上の問題点を解決するべく鋭意
研究を重ねた結果、素子側面に設けられる高抵抗
層形成物質として 酸化ビスマス 0〜10モル% 酸化アンチモン 55〜90モル% 酸化ケイ素 0〜45モル% からなる組成物を塗布した成形体を、酸化亜鉛を
主成分とした物質中に埋没させた状態で焼成する
ことを特徴とする電圧非直線低抗体の製造方法を
見出し、本発明を完成するにいたつた。 本発明を詳細に説明すると、酸化ビスマス、酸
化アンチモンおよび酸化ケイ素からなる三元系組
成物により高抵抗層が形成されるのは、酸化ケイ
素や酸化アンチモンが酸化亜鉛と反応して、高絶
縁性のZn2SiO4やZn7Sb2O12が生成するためであ
り、酸化ビスマスは主としてフラツクスの役割を
荷い、本質的に生成物中の成分を構成するもので
はない。 一方、同一組成のペースト物質の塗布量とイン
パルス耐量との関係としては、閃絡防止のために
はある程度以上の厚さが必要であることが判明し
ている。塗布量はある一定値以上は極端に増加さ
せえないから、酸化ビスマスの量を10モル%より
多くすれば酸化アンチモンや酸化ケイ素の量は相
対的に減少し、塗布物を反応させて生成させる高
絶縁性物の厚さを増加させるには不利である。酸
化アンチモンの量が55モル%より少なかつたり、
酸化ケイ素の量が45モル%より多かつたりする
と、均一混合物をうることが容易でなくなつた
り、反応生成物の適正な厚さがえられなくなつた
りして好ましくない。 その他に酸化ビスマスが他の金属酸化物に比し
て高価であることなどから、酸化ビスマスの添加
なしでインパルス放電耐量に対して有用な高抵抗
層をうることができれば一層好ましいわけであ
る。 本発明は、前記のごとく酸化ビスマスの量を0
〜10モル%、実質的には使用しない配合組成の範
囲で三元または二元系組成物を、適当な有機バイ
ンダーでペーストにして塗布した成形体を酸化亜
鉛を主成分とする物質中に埋没させ、通常の温度
で焼成することによつてすぐれた電圧非直線低抗
体をうることに成功したものである。本発明は、
前記特定の組成物を塗布した成形体を酸化亜鉛中
で焼成することが大きな特徴であるが、酸化亜鉛
中には他の酸化物が微量混在していても、主成分
が酸化亜鉛であれば何らさしつかえない。 ここで第1図として避雷器用の非直線要素の構
成を示す。第1図において1は従来法または本発
明の方法による素子の側面の高抵抗層、2は電
極、3は炭化ケイ素または酸化亜鉛などを主成分
とする素子本体である。 つぎに本発明の電圧非直線低抗体の製造方法を
実施例をあげて詳細に説明する。 実施例 1 通常のセラミツクス製造方法によりえられた成
形体側面に酸化アンチモン90モル%および酸化ケ
イ素10モル%からなる組成物を適当な有機バイン
ダー、たとえばニトロセルロースを2%含有する
イソアミルアセテート溶液を用いてペースト状に
して40〜50mg/cm2となるように塗布し、ついで酸
化亜鉛を主成分とする物質中に埋没させ、通常の
焼成温度1200℃で5時間焼成した。その際酸化亜
鉛を主成分とする物質は予備焼成しておき、適度
に粒を成長させて28メツシユ以上のあらい粒子に
しておいた方が作業上望ましい。ついで焼成して
えられたものの研磨、電極づけを行ない、インパ
ルス放電耐量を調べた。結果を第2表に示す。第
2表中の〇は外部閃絡を起こさなかつたもの、×
は外部閃絡または破壊を起こしたものを示す。 実施例 2〜4 酸化アンチモン90モル%および酸化ケイ素10モ
ル%からなる組成物に代えて酸化アンチモンおよ
び酸化ケイ素をそれぞれ第1表に示す配合割合の
二元系組成物を用いたほかは実施例1と同様の条
件で実験を行なつた。結果を第2表に示す。 実施例5および比較例1〜5 酸化アンチモン90モル%および酸化ケイ素10モ
ル%からなる組成物に代えて酸化アンチモン、酸
化ケイ素および酸化ビスマスをそれぞれ第1表に
示す配合割合で用いたほかは実施例1と同様の条
件で実験を行なつた。結果を第2表に示す。 なお、比較例3〜5のものでは、酸化アンチモ
ン、酸化ケイ素および酸化ビスマスを均一に混合
し、均質な塗膜を形成させるのが容易でなかつ
た。 比較例 6 酸化亜鉛を主成分とする物質中に埋没せずに大
気中で焼成したほかは実施例1と同様に条件で実
験を行なつた。結果を第2表に示す。 比較例 7 酸化アンチモン90モル%および酸化ケイ素10モ
ル%からなる組成物に代えて酸化アンチモンおよ
び酸化亜鉛からなる二元系組成物を用い、酸化亜
鉛を主成分とする物質中に埋没せずに大気中で焼
成したほかは実施例1と同様の条件で実験を行な
つた。結果を第2表に示す。
The present invention relates to a novel method for producing a voltage nonlinear low antibody. More specifically, we will introduce a voltage non-linear product mainly composed of zinc oxide used in non-gap lightning arresters that have a high resistance layer formed on the side of the element to prevent external flashover of the element when lightning impulses strike. This invention relates to a method for producing a low antibody. As a functional element of a lightning arrester, the conventional combination of silicon carbide and an air gap has been replaced by a non-linear voltage suppressor mainly composed of zinc oxide, which has recently become mainstream as a non-gap lightning arrester. This low antibody has zinc oxide as its main component and also contains several metal oxides such as bismuth oxide, antimony oxide, and cobalt oxide, and its excellent voltage nonlinearity eliminates the need for a gap. ,
In other words, it has the advantage of solving the problems of follow-on current interruption, gap adjustment, and discharge stability due to the use of a gap. On the other hand, the main function of lightning arresters is to absorb large current surges. At this time, if the surface condition of the side surface of the element is unstable and its resistance value is relatively lower than the internal resistance, external flash short may occur, element destruction, and increase in leakage current due to the formation of electrical circuits may occur, causing the arrester itself to deteriorate. There is a problem that can damage the lifespan of the machine. Prior to the use of silicon carbide, inorganic viscous materials were placed on the sides of the device and used to protect it. In the case of low voltage non-linear low voltage antibodies for low power applications, a resin layer such as epoxy resin is formed on the side surface of the device and has been used to prevent external flashover. Typical examples of side treatment methods for devices containing zinc oxide as the main component for normal power use include bismuth oxide,
Apply silicon oxide and antimony oxide to the sides.
A method is used in which a high-resistance layer is formed by firing at 800-1500°C and reacting with the element body. It can be seen, for example, from the description in JP-A-50-150896 that the high resistance layer on the side surface formed in this manner is useful for the stability of the element itself and for preventing external flashover. The composition of the ternary metal oxide of bismuth oxide, antimony oxide, and silicon oxide, which is considered desirable for ordinary electric power use, is conventionally composed of 0 to 20% mole of bismuth oxide (Bi 2 O 3 ), antimony oxide ( Sb 2 O 3 ) 5 to 50 mol%, silicon oxide (SiO 2 ) 5
However, it has been found that the high resistance layer formed by coating and baking such a composition also has the following problems. That is, (1) There is a considerable density difference between each powder component, making uniform mixing difficult (d=8.9g/
cm 3 , d for silicon oxide = 2.3 g/cm 3 , d for antimony oxide = 5.2 g/cm 3 ), (2) There is also a large density difference between the mixed powder and the organic solvent, and if left in a paste state, the liquid-powder (3) After applying the paste, there is a large amount of sagging during drying.
Due to problems such as the inability to obtain a high-resistance layer of sufficient height, it is difficult to make the coating material uniform, resulting in extremely uneven coating, and the thickness is not sufficient. It has also been found that external flash flashing due to impulses is likely to occur due to the above-mentioned factors, leading to a decrease in yield. The present inventors have conducted extensive research to solve the above-mentioned problems, and as a result, the high-resistance layer forming materials provided on the side surfaces of the device include bismuth oxide 0-10 mol%, antimony oxide 55-90 mol%, silicon oxide 0- We have discovered a method for producing a voltage nonlinear low antibody characterized by firing a molded article coated with a composition consisting of 45 mol% while immersed in a substance containing zinc oxide as a main component, and have accomplished the present invention. It was about to be completed. To explain the present invention in detail, a high resistance layer is formed by a ternary composition consisting of bismuth oxide, antimony oxide, and silicon oxide because silicon oxide and antimony oxide react with zinc oxide, resulting in a highly insulating layer. This is because Zn 2 SiO 4 and Zn 7 Sb 2 O 12 are generated, and bismuth oxide mainly plays a role as a flux and does not essentially constitute a component in the product. On the other hand, regarding the relationship between the amount of paste material of the same composition applied and the impulse withstand capacity, it has been found that a certain thickness or more is required to prevent flashover. Since the amount applied cannot be increased significantly above a certain value, if the amount of bismuth oxide is increased to more than 10 mol%, the amount of antimony oxide and silicon oxide will be relatively reduced, and the amount of antimony oxide and silicon oxide will be reacted and produced. This is disadvantageous for increasing the thickness of highly insulating materials. The amount of antimony oxide is less than 55 mol%,
If the amount of silicon oxide is more than 45 mol %, it is not preferable because it becomes difficult to obtain a homogeneous mixture or it becomes impossible to obtain an appropriate thickness of the reaction product. In addition, since bismuth oxide is more expensive than other metal oxides, it would be more preferable if a high resistance layer useful for impulse discharge resistance could be obtained without adding bismuth oxide. As mentioned above, the present invention reduces the amount of bismuth oxide to 0.
~10 mol% of a ternary or binary composition with a composition that is not used substantially is applied as a paste with an appropriate organic binder, and a molded article is embedded in a substance whose main component is zinc oxide. We succeeded in obtaining an excellent non-linear voltage-low antibody by calcination at a normal temperature. The present invention
A major feature is that the molded product coated with the above-mentioned specific composition is fired in zinc oxide, but even if zinc oxide contains trace amounts of other oxides, if the main component is zinc oxide, There is nothing wrong with that. Here, FIG. 1 shows the configuration of a non-linear element for a lightning arrester. In FIG. 1, reference numeral 1 indicates a high-resistance layer on the side surface of an element formed by the conventional method or the method of the present invention, 2 an electrode, and 3 an element body whose main component is silicon carbide or zinc oxide. Next, the method for producing a voltage nonlinear low antibody according to the present invention will be explained in detail with reference to Examples. Example 1 A composition consisting of 90 mol% antimony oxide and 10 mol% silicon oxide was applied to the side surface of a molded body obtained by a conventional ceramic manufacturing method using an isoamyl acetate solution containing 2% nitrocellulose as a suitable organic binder. The paste was made into a paste and applied at a concentration of 40 to 50 mg/cm 2 , then embedded in a substance containing zinc oxide as a main component, and fired at a normal firing temperature of 1200°C for 5 hours. At this time, it is preferable for the work to pre-calcine the substance whose main component is zinc oxide and allow the grains to grow appropriately to form coarse grains of 28 meshes or more. The fired material was then polished and electroded, and its impulse discharge resistance was examined. The results are shown in Table 2. 〇 in Table 2 means that no external flash flash occurred, ×
indicates external flash or destruction. Examples 2 to 4 Examples except that instead of the composition consisting of 90 mol% antimony oxide and 10 mol% silicon oxide, a binary composition containing antimony oxide and silicon oxide in the proportions shown in Table 1 was used. The experiment was conducted under the same conditions as in Example 1. The results are shown in Table 2. Example 5 and Comparative Examples 1 to 5 Examples were carried out except that antimony oxide, silicon oxide, and bismuth oxide were used in the proportions shown in Table 1 instead of the composition consisting of 90 mol% antimony oxide and 10 mol% silicon oxide. The experiment was conducted under the same conditions as in Example 1. The results are shown in Table 2. In Comparative Examples 3 to 5, it was not easy to uniformly mix antimony oxide, silicon oxide, and bismuth oxide to form a homogeneous coating film. Comparative Example 6 An experiment was conducted under the same conditions as in Example 1, except that the material was fired in the air without being buried in a substance containing zinc oxide as a main component. The results are shown in Table 2. Comparative Example 7 A binary composition consisting of antimony oxide and zinc oxide was used instead of a composition consisting of 90 mol% antimony oxide and 10 mol% silicon oxide, and the composition was not buried in a substance whose main component was zinc oxide. The experiment was conducted under the same conditions as in Example 1 except that the firing was performed in the atmosphere. The results are shown in Table 2.

【表】 なお、各実施例および比較例の組成領域および
組成点を第2図に示す。 すなわち第2図は本発明における高抵抗層を形
成する組成物の有効な組成領域を示す三角グラフ
であり、領域Aは本発明における組成物の領域
を、領域Bは従来から電圧非直線低抗体の高抵抗
層形成物質として用いられている組成物の領域を
表わす。
[Table] The composition range and composition point of each Example and Comparative Example are shown in FIG. That is, FIG. 2 is a triangular graph showing the effective composition range of the composition forming the high-resistance layer in the present invention. represents the range of compositions used as high-resistance layer forming materials.

【表】【table】

【表】 第1表、第2表および第2図に示されるよう
に、インパルス放電耐量に対して有効な配合組成
については、第2図の領域Aおよび領域Bで示さ
れる2つの部分がある。さらに第1表および第2
表から、酸化ビスマスはむしろフラツクスとして
有効に作用し、酸化アンチモンおよび酸化ケイ素
からなる二元系組成物を酸化亜鉛を主成分とする
物質中に埋没して焼成する方が良好な結果をもた
らすことがわかる。 実施例でえられた低抗体の特性を比較例でえら
れた低抗体の特性と比較すれば、たとえば酸化ア
ンチモンの多い本発明における配合組成の領域A
では酸化亜鉛が素体内部から供給されるのみなら
ず、埋没している外側周面からも有効に拡散供給
されるので、充分な厚さを有するZn7Sb2O12が生
成するため所望の特性がえられると考えられる。
このことは実際顕微鏡で観察すると厚さ約100μ
m程度のZn7Sb2O12の層が形成されていることか
らも支持される。 しかし、酸化亜鉛を主成分とする物質中に埋没
させずにそのまま大気中で焼成したもののばあい
(比較例6のばあい)には、前記の層の厚さは50
μm以下である。これは酸化アンチモンが、周囲
への蒸発、変成などにより散逸したのが原因であ
ると考えられ、当然このばあいのインパルス放電
耐量は小さい。 さらに、酸化アンチモンと酸化亜鉛の二元系組
成物をあらかじめつくつておきこれを塗布するば
あい(比較例7のばあい)には、塗布量をいちじ
るしく増加させないと有効な高抵抗層の厚さがえ
られないためインパルス放電耐量も60kAと小さ
い値になつたものと考えられる。 以上のように本発明の製造方法によれば、素子
側面の高抵抗層を形成するための組成物の成分の
種類を減らすこともでき、かつ酸化亜鉛を主成分
とする物質中に埋没させて焼成することにより、
充分な厚さを有する高抵抗層をうることができ、
しかも本発明の方法はインパルス放電耐量の向上
した安価な側面の処理方法であり、避雷器性能向
上に重要な寄与をする電圧非直線低抗体を製造す
ることができる。
[Table] As shown in Table 1, Table 2, and Figure 2, there are two parts of the effective blending composition for impulse discharge capacity, shown by Area A and Area B in Figure 2. . Furthermore, Table 1 and 2
From the table, it can be seen that bismuth oxide acts more effectively as a flux, and that better results are obtained when a binary composition consisting of antimony oxide and silicon oxide is buried in a substance whose main component is zinc oxide and fired. I understand. Comparing the characteristics of the low antibody obtained in the Examples with the characteristics of the low antibody obtained in the Comparative Examples, it is found that, for example, in the area A of the formulation composition of the present invention, which contains a large amount of antimony oxide.
In this case, zinc oxide is not only supplied from inside the element body, but also effectively diffused and supplied from the buried outer peripheral surface, so that Zn 7 Sb 2 O 12 with sufficient thickness is generated, so that the desired thickness can be achieved. It is thought that the characteristics can be obtained.
When observed under a microscope, the thickness is approximately 100 μm.
This is also supported by the fact that a layer of Zn 7 Sb 2 O 12 of about 1.0 m thick is formed. However, in the case of a material that is not buried in a substance whose main component is zinc oxide and is fired in the air as it is (in the case of Comparative Example 6), the thickness of the above layer is 50 mm.
It is less than μm. This is thought to be due to the antimony oxide dissipating into the surroundings due to evaporation, metamorphosis, etc., and naturally the impulse discharge capacity in this case is small. Furthermore, when a binary composition of antimony oxide and zinc oxide is prepared in advance and then applied (as in Comparative Example 7), the effective thickness of the high-resistance layer must be increased unless the amount of application is significantly increased. It is thought that this is why the impulse discharge withstand capacity was as small as 60kA. As described above, according to the manufacturing method of the present invention, it is possible to reduce the types of components in the composition for forming the high-resistance layer on the side surface of the element, and to reduce the number of components in the composition, and to reduce the number of components in the composition by embedding it in a material containing zinc oxide as the main component. By firing,
A high resistance layer with sufficient thickness can be obtained,
Moreover, the method of the present invention is an inexpensive processing method with improved impulse discharge capability, and can produce a voltage nonlinear low voltage antibody that makes an important contribution to improving the performance of lightning arresters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は避雷器用の非直線要素の構成を示す断
面図、第2図は本発明における高抵抗層を形成す
る組成物の有効な組成領域を示す三角グラフであ
る。 (図の符号)、1:高抵抗層、2:電極、3:
素子本体。
FIG. 1 is a sectional view showing the configuration of a non-linear element for a lightning arrester, and FIG. 2 is a triangular graph showing the effective composition range of the composition forming the high resistance layer in the present invention. (Symbols in the figure), 1: High resistance layer, 2: Electrode, 3:
Element body.

Claims (1)

【特許請求の範囲】 1 素子側面に設けられる高抵抗層形成物質とし
て 酸化ビスマス 0〜10モル% 酸化アンチモン 55〜90モル% 酸化ケイ素 0〜45モル% からなる組成物を塗布した成形体を、酸化亜鉛を
主成分とした物質中に埋没させた状態で焼成する
ことを特徴とする電圧非直線抵抗体の製造方法。
[Scope of Claims] 1. A molded body coated with a composition consisting of bismuth oxide 0 to 10 mol%, antimony oxide 55 to 90 mol%, and silicon oxide 0 to 45 mol% as a high-resistance layer forming substance provided on the side surface of the element, A method for manufacturing a voltage nonlinear resistor, which comprises firing the voltage nonlinear resistor while immersed in a substance containing zinc oxide as a main component.
JP55177799A 1980-12-15 1980-12-15 Voltage non-linear resistor and method of producing same Granted JPS57100702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55177799A JPS57100702A (en) 1980-12-15 1980-12-15 Voltage non-linear resistor and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55177799A JPS57100702A (en) 1980-12-15 1980-12-15 Voltage non-linear resistor and method of producing same

Publications (2)

Publication Number Publication Date
JPS57100702A JPS57100702A (en) 1982-06-23
JPS6257081B2 true JPS6257081B2 (en) 1987-11-30

Family

ID=16037285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55177799A Granted JPS57100702A (en) 1980-12-15 1980-12-15 Voltage non-linear resistor and method of producing same

Country Status (1)

Country Link
JP (1) JPS57100702A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988806B2 (en) * 2012-09-27 2016-09-07 三菱電機株式会社 Method for manufacturing voltage nonlinear resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128294A (en) * 1973-04-13 1974-12-09
JPS5234393A (en) * 1975-09-12 1977-03-16 Matsushita Electric Ind Co Ltd Production method of resistance element with voltage non-linearity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128294A (en) * 1973-04-13 1974-12-09
JPS5234393A (en) * 1975-09-12 1977-03-16 Matsushita Electric Ind Co Ltd Production method of resistance element with voltage non-linearity

Also Published As

Publication number Publication date
JPS57100702A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
JPS63136603A (en) Manufacture of voltage nonlinear resistor
US4038217A (en) Ceramics having non-linear voltage characteristics and method of producing the same
JPH01212264A (en) Varistor material and production thereof
US4033906A (en) Ceramics having nonlinear voltage characteristics and method for producing same
JPS6257081B2 (en)
JPS6317202B2 (en)
US4269898A (en) Resistance material
JPS5910041B2 (en) Manufacturing method of voltage nonlinear resistor
KR920005155B1 (en) Zno-varistor making method
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPS6246961B2 (en)
KR910001109B1 (en) Making process for varistor
JP2621408B2 (en) Manufacturing method of zinc oxide type varistor
JPS649724B2 (en)
JPH09320815A (en) Manufacture of zno varistor
JP2854387B2 (en) Manufacturing method of zinc oxide arrester element
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof
JPS6320001B2 (en)
JPS62101002A (en) Manufacture of nonlinear resistance element
JPS6156843B2 (en)
JPS62208603A (en) Manufacture of voltage nonlinear resistance device
JPS59167001A (en) Oxidized zinc nonlinear resistor