JPS625696B2 - - Google Patents

Info

Publication number
JPS625696B2
JPS625696B2 JP3399182A JP3399182A JPS625696B2 JP S625696 B2 JPS625696 B2 JP S625696B2 JP 3399182 A JP3399182 A JP 3399182A JP 3399182 A JP3399182 A JP 3399182A JP S625696 B2 JPS625696 B2 JP S625696B2
Authority
JP
Japan
Prior art keywords
composite
cylinder liner
wear resistance
wear
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3399182A
Other languages
Japanese (ja)
Other versions
JPS58151935A (en
Inventor
Saburo Shimamura
Masahide Ike
Masaji Arita
Susumu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3399182A priority Critical patent/JPS58151935A/en
Publication of JPS58151935A publication Critical patent/JPS58151935A/en
Publication of JPS625696B2 publication Critical patent/JPS625696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C33/00Feeding extrusion presses with metal to be extruded ; Loading the dummy block
    • B21C33/004Composite billet

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複合シリンダライナ粗材の製造方法
に係り、特にシリンダライナ内面の耐摩耗性がピ
ストン上死点側において著しく大きく、それ以外
の個所においては通常の耐摩耗性を有し、ピスト
ンの上下行程におけるシリンダライナ内面とピス
トンとの摩耗特性に十分対応して、シリンダライ
ナ内面の偏摩耗を防止し得る複合シリンダライナ
粗材の製造方法に関する。 従来のシリンダライナ粗材は、一般に鋳造によ
り得ている。このように鋳造により得る場合に
は、シリンダライナ粗材の材質としては、耐摩耗
性を有する金属、例えば鋳鉄(パーライト系鋳
鉄、高炭素共晶鋳鉄、高炭素ベイナイト鋳鉄
等)、あるいは、Al−Si系合金においてSiを共晶
成分(12.2重量%)より多く含有するアルミニウ
ム合金等のみからなり、鋳造後に切削加工、ホー
ニング加工等の機械加工を施し、又シリンダライ
ナ内面の耐摩耗性は全域にわたり一様である。 ところで、ピストンの往復行程におけるシリン
ダライナ内面とピストンとの摩耗特性の変化は、
ピストン上死点近傍(上死点におけるトツプリン
グ位置)で摩耗量が大きく、同下死点近傍で小さ
くなるので、シリンダライナ内面の耐摩耗性がピ
ストン上死点側で大きく、それ以外の個所では通
常の耐摩耗性、すなわちある程度の耐摩耗性を有
すれば足りる。 上記のようなシリンダライナ内面の耐摩耗性が
変化する複合シリンダライナ粗材を得るための製
造方法としては、メツキあるいは溶射等の表面処
理技術によることが考えられる。上記メツキによ
る場合には、鋳造より得られたシリンダライナ粗
材内面のピストン上死点側をそれ以外の個所より
メツキ層の厚さに相当する分だけ内径を拡げてお
き、当該部分に耐摩耗性に優れた金属等を別途メ
ツキし、その後シリンダライナ内面全域をホーニ
ング加工することによりシリンダライナ内面の耐
摩耗性が変化するシリンダライナを得ることがで
きる。 しかし、メツキによる場合には、メツキ工程に
おける廃液処理の問題が多く、かつメツキ処理に
比較的長い時間を要し、しかも前加工としてのシ
リンダライナ内面の機械加工が煩雑であり、これ
らの事情により製造コストが著しく高くなるとい
う問題点がある。 また溶射による場合には、前記メツキによる場
合と同様に溶射層の厚さに相当する分だけシリン
ダライナ粗材のピストン上死点側の内径をそれ以
外の個所より拡げておき、当該部分に耐摩耗性に
優れた金属等を溶射し、その後シリンダライナ粗
材内面全域をホーニング加工して、シリンダライ
ナ内面の耐摩耗性が変化するシリンダライナを得
ようとするものであるが、この溶射による場合も
溶射層の厚みを均一に形成するには非常に多くの
工数を必要とし、前工程としてしシリンダライナ
粗材内面の機械加工も煩雑であり、これらにより
製造コストが非常に高くなるという問題がある。 そこで、前記メツキあるいは溶射による表面処
理技術に基づく前述の問題点を解決するため、発
明者らはピストン上死点側に対応する内側部分を
塑性変形能が低くかつ耐摩耗性に優れた素材で構
成し、それ以外の部分を塑性変形能を有し、かつ
ある程度の耐摩耗性を有する素材で構成する複合
シリンダライナ粗材を成形し、もつて所期の目的
を達成する複合シリンダライナ粗材の製造方法を
開発した。 すなわちその概要について説明すると、第1図
aは上記製造方法により複合シリンダライナ粗材
を得る一例の工程を示し、同図において耐摩耗性
に優れかつ塑性変形能が低い素材Aと、塑性変形
能が高くかつある程度耐摩耗性を有する素材Bと
からなる積層円板スラグM′を用い、ポンチ1側
にはより耐摩耗性に優れた素材Aが、ダイ2側に
はより塑性変形能に優れた素材Bが位置するよう
に積層円板スラグM′を装入し、装入後にポンチ
1を下動して積層円板スラグM′の上端M′aを加圧
して後方容器押出しによりポンチ1とダイ2との
隙間2aからポンチ1の下動方向と逆方向に積層
円板スラグM′を押出させて複合シリンダライナ
粗材P′(容器粗材)が成形させるようになされた
ものである。 上記製造方法によつて得られた複合シリンダラ
イナ粗材P′は、素材Bが素材Aより塑性変形能が
優れているため、容器粗材P′となつたとき軸対称
面における材料断面は第2図aに示すようにな
り、シリンダライナ粗材内面の耐摩耗性がピスト
ン上死点付近で大きく、それ以外ではある程度の
耐摩耗性を有する中空複合シリンダライナ粗材が
得られる。しかしながら、素材Bが素材Aよりも
相当に高い塑性変形能を有していないと成形がむ
ずかしい。 また上記製造方法の変形例として、第1図bに
示すようにすると、積層円板スラグM′の界面は
ダイ内壁2bに接触することがなく、前記第2図
aに示した材料断面を有する容器粗材を得ること
ができる。 しかしながら、前記第1図bの製造方法におい
ては、積層円板スラグM′の面取りをどの程度ま
たその角度はどの程度にするか、また第1図cの
製造方法においてはクリアランスxの大きさをど
の程度にするかによつて、第1図aに示した材料
断面において所望のLA:LBの比を確実に得るこ
とが困難であるという問題が生じた。 さらに、第1図dに示すように、より耐摩耗性
に優れた素材Aをより塑性変形能に優れた素材B
に埋設した埋込複合円板スラグM′を用い、この
素材の複合界面が後方容器押出しの初期過程にお
いてダイ内壁に接触しないようにしながら成形す
る。これにより所望のLA:LBの比を確実に得ら
れるが、第2図bに示すように第2図aの複合シ
リンダライナ粗材P′の底部P′cを打抜いた場合、
複合界面P′aがシリンダ内面に露出するため、素
材Bに相当する部分P′bを切削加工等により除去
する必要があり、材料歩留が悪くなるという問題
点が生じた。 本発明は、上記方法をさらに改良し、上記問題
点を解決することのできる複合シリンダライナの
製造方法を提供することを目的としてなされたも
ので、シリンダライナ内面の耐摩耗性がピストン
上死点付近で大きく、それ以外の個所では通常の
耐摩耗性を有する複合シリンダライナとして、従
来のシリンダライナ内面における偏摩耗を防止す
ると共に、メツキあるいは溶射等による解決策に
おける問題点を解消し、併せて素材の界面のダイ
内壁による摩擦力の影響の回避を図り、さらに材
料歩留を向上すべく、前記複合シリンダライナ粗
材を、同心複合円板素材を用い、この素材の界面
が後方容器押し出しの初期過程においてダイ内壁
に接触しないようにしながら後方容器押出しによ
つて成形し、これにより初期の材料面を有し、容
器底部がより耐摩耗性に優れた素材からなる複合
シリンダライナ素材の製造を容易にし、生産性を
著しく高め、コストダウンに大きく寄与し得るよ
うにしたものである。 つぎに本発明を第3図ないし第5図に示す実施
例を参照して説明する。 第3図は、本発明において用いる素材の製造工
程の概略を示すもので、塑性変形能と、ある程度
の摩耗性を有する素材Bを、プレスまたは機械加
工により、円板状でかつ円心の内径を有する円筒
形に形成する[第3図a]。ついで、上記素材B
の円筒内部、すなわち中空部4内に、耐摩耗性に
優れた素材Aを複合して同心複合円板素材Mを得
る。 上記素材Aの埋設工程は、第3図b〜第3図e
に示す方法がある。即第3図bに示す方法は、素
材Bの中空部4内に、素材Aの粉末を充填したの
ち、焼結させて得る。また第3図cの方法は、金
型21の上に円筒状素材Bを載置し、該金型21
を介して予め加熱した素材Bの中空部4内に容湯
を注ぎ込む。さらに、第3図dの方法は、金型2
1の上に素材Bを載置し、素材Bの中空部4内に
粗材Aのビレツトを装入し、矢印31の方向に加
圧しつつ矢印32の方向に回転して摩擦圧接し、
圧接後、仮想線Cに沿つて切断することにより素
材Aと素材Bを複合化することによつて得る。さ
らに、第3図eの方法は、金型22の上に素材B
を載置し、ついで素材Bの中空部4内に素材Aを
配置したのち、矢印31の方向に加圧して鍛造に
より圧接して第3図fに示すように複合化して複
合円板素材Mを得る。 第3図による方法以外に、素材Aと素材Bを連
続的に複合化する方向としては、第4図に示すよ
うな押出加工による場合がある。すなわち、第4
図aに示すようにある程度耐摩耗性を有する円筒
状素材Bからなる押出管に、耐摩耗性を有する素
材Aの粉末を充填し、その一端を素材Bからなる
円板B′で塞ぎ、ろう接、溶接等より固定して複合
されたビレツトSを得る[第4図b]。このよう
にして得られたビレツトSを加熱し、第4図cに
示すようにコンテナ13内に装入し、複合ビレツ
トSの一端を塞いでない側Saをラム11により
加圧し、ダイ12を通して押圧成形する。複合ビ
レツトSの熱間前方押出により、素材Aからなる
粉末は焼結されるとともに、素材Bからなる中空
管と強固に接合されて第4図dに示すように素材
Aおよび素材Bからなる複合棒Tを得る。この複
合棒Tより第4図dに示す仮想線Cに沿つて切断
することにより、第3図fに示す同心円板素材M
が得られる。また、第4図に示した熱間前方押出
により素材Aと素材Bからなる複合棒Tを得る
際、第4図aに示す素材Aとして、粉末ではなく
素材Aの溶湯を素材Bからなる押出管に鋳込んで
もよい。第4図cに示す熱間前方押出により素材
A内の鋳造欠陥(巣等の空孔)が消滅し、かつ素
材Aと素材Bの強固な接合が得られる。 上述の方法により第3図fに示すような直径d
A、厚さhを有し素材Aを中空部4内に内蔵する
同心複合円板素材Mを得ることができる。ただ
し、図中dBおよびhはそれぞれ素材Bの直径お
よび厚さである。なお、素材Aに素材Bを複合化
させるための方法としては、上記5種類に限られ
るものではない。 つぎに、上記のようにして形成された同心複合
円板素材Mを後方容器押出しにより中空複合シリ
ンダライナ粗材を成形するには、第5図aに示す
ようにポンチ1、およびストリツパ3からなる金
型に同心複合円板素材Mを装入する。ついで、第
5図bのように、ポンチ1を作動させて同心複合
円板素材Mの上端Maを加圧すると、ポンチ1と
ダイ2との隙間2aからポンチ1の下動方向とは
逆方向に素材Mが押出される。このポンチの加圧
による後方押出初期、すなわち、素材Mの押出さ
れる先端がダイ内壁2bを離れるまでの工程[第
5図c]においては、素材の押出方向とは逆方向
にダイ内壁による摩擦力が作用することになる
が、上記第5図bおよびcからもわかるように、
同心複合円板素材Mを構成する素材Aと素材Bと
の複合界面はダイ内壁2bとは全く接触しておら
ず、このため前記素材Mを構成する素材Aと素材
Bとの双方とも同時にポンチ1による加圧により
押し出しが開始される。 一方、後方押出し中期から後期にかけての工程
[第5図d]においては、素材Bの方が素材Aよ
り塑性変形能が優れているため、容器粗材Pの軸
対称面における材料断面は第6図に示す形能とな
る。また、素材Aと素材Bの複合形状を同心とし
たため、第6図に示すように後方容器押出しによ
り成形された容器粗材Pの底部Pcは粗材Aだけ
にすることができる。さらに、第5図eおよびf
に示すように、容器粗材Pを金型から取出し、つ
いで容器粗材Pの底部Pcを打抜いて中空複合シ
リンダ粗材を得る。 なお、上記同心複合円板素材Mを構成する耐摩
耗性に優れた素材Aとしては、Al−Si系合金の共
晶成分(12.2重量%Si)よりSi含有量の大きい、
例えば22重量%Siを含有するAl合金が、また塑性
変形能とある程度の耐摩耗性を有する素材Bとし
ては、Al−Si合金の共晶成分(12.2重量%Si)の
12.2重量%Siを含有するAl合金(JIS規格A4032
相当)が用いられる。前記の22重量%Si含有のAl
合金は、初晶Si量が多いため、素材表面における
Si表面積が増え、耐摩耗性が著しく向上する。し
かし変形しない初晶Siが増加するため、その塑性
変形能は著しく劣る。 また前記JIS規格A4032合金は、型打ち鍛造用
Al合金の一種であり、通常350〜450℃における
鍛造が行なわれ、その塑性変形能は高い。そして
この合金を前記の22重量%Si含有のAl合金と積層
することにより当該合金の塑性変形能の不足を補
なう。この場合、加工温度を350〜450℃として素
材Aと素材Bとの形状比、すなわち直径の比d
A/dB[第3図f]を適宜変化させることによ
り、シリンダライナ内面のSi含有量の異なる部分
A:LBを変化させることができた。 さらに、他の実施例としては、第4図に示した
ように、熱間前方押出しにより連続的に同心複合
素材Mを作る場合、耐摩耗性に優れた素材Aとし
て、 (1) 銅被膜グラフアイト粉末−Cu粉末−Si粉末
−Mg粉末−残部Al粉末 (2) 銅被覆MoS2粉末−Cu粉末−Si粉末−Mg粉末
−残部Al粉末 (3) Si粉末−Cu粉末−Mg粉末−Pb粉末−セラミ
ツク(例えばAl2O3・SiO2・Si3N4)粉末−残部
Al粉末 からなるAl粉末合金を用いる。具体的な組成と
しては、第1表に示す。また、塑性変形能をある
程度の耐摩耗性を有する素材BとしてはA390合
金(16〜18重量%Si−4.0〜5.0重量%Cu−0.6〜
1.15重量%Fe−0.45〜0.65重量%Mg−0.1重量%
Mn−0.1重量%以下Zn−0.2重量%以下Ti−0.02
重量%以下P)の押出管を用いる。 第1表に示すAl粉末合金のうち、粉末(1)およ
び(2)は通常の成形および焼結条件で焼結したもの
はチムケン摩耗試験による耐摩耗性を測定した結
果、摩耗量はそれぞれ3.8mmおよび2.5mmであつ
た。これに対し、前者の実施例のAl−過共晶Si合
金の溶製材では5.0mm程度であるので、より摩耗
条件のより厳しい場合に適している。なお、ケム
チン摩耗試験条件は、荷重20bs、周速2m/
sec、潤滑油(機械油#50)0.5シリンダライナ/
min、試験時間50時間である。相手材はねずみ鋳
鉄(JIS規格FC20相当)を用い、これをリング形
状にして前記粉末(1)および(2)からなる試験片例に
形成された摩耗痕幅を求めた。さらに、第1表に
示すAl粉末合金のうち、粉末(3A)、(3B)およ
び(3C)について通常の成形方法および焼結条
件で成型したものをピンデイスク型摩耗試験機を
用いて摩耗量と摩擦係数を測定した。その結果を
第2表に示す。前者の実施例のAl−過共晶Si合金
の容製材では、ピンとデイスクの摩耗量および摩
擦係数は、それぞれ250μm、20μmおよび0.04
であるので、より摩耗条件の厳しい場合に適して
いる。なお、ピンデイスク型摩耗試験は、第7図
aおよびbに示す試験機を用い、5mmx10mmの角
柱状ピンを試験片として行なつた。すなわち、回
転部材60と表面をクロムメツキしたデイスク6
2との間に前記試験片61を挟持させ、油注入口
より所定量の油を注入して矢印64の方向に加圧
し、回転部材60を回転させて矢印67の方向に
摩擦させ、ロードセル65の負荷を記録計66で
記録させる。摩耗試験条件および摩耗係数を求め
る摩擦係数試験条件をそれぞれ第3表および第4
表に示す。 また、前記A390合金は、400℃以上に加熱する
と、鍛造性は十分あり、塑性変形能は高く(第8
図)、同心複合円板素材とすることにより前記Al
粉末合金の塑性変形能不足を補う。 上記Al合金粉末(素材A)を上記A390合金の
中空管(素材B)に充填して圧粉したのち、
A390合金からなる円板B′で一端を塞ぎ、ろう接
する〔第4図a,b〕。ついで、第4図cに示す
ように予熱したコンテナ13内に、450℃に加熱
した複合ビレツトSを装入し、ラム11で前方押
出しする。熱間前方押出しに用いたA390合金の
中空管の寸法は、外径が199mm、内径が148mm、
125mmおよび102mmである。前記寸法の中空管と
Al粉末合金からなる複合ビレツトSを押出比
(前断面積/押出後断面積)を5に設定して熱間
前方押出しする。その後、第4図に示すように厚
さ49mmに鋸切断する。 上記の方法により第3図fに示す寸法dA、dB
およびhがそれぞれ89、66、49mm、89、56、49
mm、89、46、49mmである3種類の同心複合円板素
材Mが得られた〔第9図a〕。第9図bは、粉末
3Aを用いた場合のX部の複合界面を示すが、素
材Aと素材Bとの完全な接合が上記方法により達
成された。 つぎに、上記のように形成された同心複合円板
素材Mを、第5図に示したような方法で後方容器
押し出しを行ない、第10図aに示すような中空
複合シリンダライナ粗材Pが得られた。第10図
bは、第10図aのY部の複合界面を示すが、第
6図に示すように、中空複合シリンダライナ粗材
の内面をLA:LBでできると同時に底部Pcも素
材Bからなり、底部Pcを打抜くだけでよい。第
10図cには、第1図dに示すような埋込複合円
板素材M′を用いて後方容器押し出しを行なつた
場合の中空複合シリンダライナ粗材P′を示す。埋
込複合シリンダライナ粗材の内面をLA:LBにで
きるが、第10図cのZ部の複合界面を示す第1
0図dに見られるように、底部P′cは素材Aと素
材Bからなり、底部を打抜くと複合界面P′bが露
出す。 なお、第6図に示した後方容器押し出しの加工
条件を第5表に示す。直径88mm、厚さ49mmの同心
複合円板素材Mから外径89mm、内径76mm、容器高
さ155mm、容器底厚さ10mmの中空複合シリンダラ
イナ粗材Pが成形できた。また、第3図fに示す
素材Aと素材Bの直径dA/dB=88/66、88/56
および88/46の同心複合円板素材Mより第6図に
示すLA:LB=140/15、112/43および70/85の
中空複合シリンダライナ粗材Pが得られた。 さらに、第4図に示す熱間前方押出しにより同
心複合円板素材Mを製造する場合の耐摩耗性に優
れた素材Aとして黒鉛、活性炭、セラミツク
(Al2・SiO2・Si3N4等)等の耐摩耗性粒子を含む
Alコンポキヤスト材を用いることもできる。具
体的な組成としては、Al−2〜4重量%Cu−8.5
〜10.5重量%Si−0.5〜15.0重量%Mg−0.50〜1.50
重量%Ni(JIS規格のAC8B)のAl鋳造用合金と
5重量%Al2O3−5重量%黒鉛とであり、前記の
Al鋳造用合金の固液共存状態で撹拌して、前記
の耐摩耗性粒子を添加して得られるAlコンポキ
ヤスト材を、A390合金製の押出管に鋳込む。つ
いで、第4図に示すような熱間前方押出しにより
素材A(Alコンポキヤスト材)と素材B(A390
合金)の複合棒Tができ、第4図dに示す仮想線
Cに沿つて切断し、同心複合円板素材Mが得られ
る。素材Aと素材Bとの複合界面は第9図に示す
写真と同様であり、完全な接合が上記の方法で達
成された。 なお、上記のAlコンポキヤスト材(AC85−5
重量%Al2O3−5重量%黒鉛)は、前述の条件に
よるピンデイスク型摩耗試験によるピンとデイス
クの摩耗両および摩擦係数はそれぞれ30μm、5
μmおよび0.028であり、より摩耗条件の厳しい
場合に適している。 上記Alコンポキヤスト材(素材A)と上記
A390合金(素材B)からなる同心複合円板素材
Mを第5図に示すような方法で、前述の加工条件
(第5表)により後方容器押出しすると、第10
図aに示す中空複合シリンダライナ粗材Pが得ら
れた。 以上の説明から明らかなように、本発明によれ
ば、耐摩耗性に優れた素材と、塑性変形能および
ある程度の耐摩耗性を有する素材とで構成される
遠心複合円板素材を用い、この同心複合円板素材
をポンチにより後方容器押出ししてその初期過程
において該同心複合円板素材の複合界面がダイ内
壁に接触しないように後方容器押し出しを継続し
ながら、ピストンの上下工程におけるシリンダラ
イナ内面の摩耗特性に応じシリンダライナ内面の
ピストン上死点近傍の耐摩耗性をその以外の個所
の耐摩耗性より大きくなるようにした中空複合シ
リンダライナ粗材を確実に、しかも容易に成形す
ることができる。さらに、同心複合円板素板とし
たため、中空複合シリンダライナ粗材の容器底部
も耐摩耗性に優れた素材にすることができたた
め、材料歩留が向上する。したがつて、この種の
中空シリンダライナの生産性を高め、材料歩留を
向上しつつコストダウンに大きく寄与することが
できる。
The present invention relates to a method for manufacturing a composite cylinder liner raw material, and in particular, the wear resistance of the inner surface of the cylinder liner is extremely high on the piston top dead center side, and the other parts have normal wear resistance. The present invention relates to a method for manufacturing a composite cylinder liner raw material that can sufficiently cope with the wear characteristics between the cylinder liner inner surface and the piston during up-and-down strokes and prevent uneven wear on the cylinder liner inner surface. Conventional cylinder liner rough material is generally obtained by casting. When obtained by casting in this way, the material of the cylinder liner rough material is a wear-resistant metal such as cast iron (pearlite cast iron, high carbon eutectic cast iron, high carbon bainitic cast iron, etc.) or Al- Consisting only of aluminum alloys that contain more Si than the eutectic component (12.2% by weight) of Si-based alloys, the cylinder liner is machined by cutting, honing, etc. after casting, and the wear resistance of the inner surface of the cylinder liner is maintained over the entire range. It is uniform. By the way, changes in the wear characteristics between the inner surface of the cylinder liner and the piston during the reciprocating stroke of the piston are as follows:
The amount of wear is large near the top dead center of the piston (the top spring position at the top dead center), and it is small near the bottom dead center of the piston, so the wear resistance of the inner surface of the cylinder liner is large near the top dead center of the piston, and the wear resistance of the other parts is large. Then, it is sufficient to have normal abrasion resistance, that is, a certain degree of abrasion resistance. As a manufacturing method for obtaining a composite cylinder liner rough material in which the wear resistance of the cylinder liner inner surface changes as described above, surface treatment techniques such as plating or thermal spraying may be used. In the case of the plating described above, the inner diameter of the piston top dead center side of the inner surface of the cylinder liner rough material obtained by casting is expanded by an amount corresponding to the thickness of the plating layer from other parts, and the wear-resistant part is By separately plating a metal or the like with excellent durability and then honing the entire inner surface of the cylinder liner, it is possible to obtain a cylinder liner in which the wear resistance of the inner surface of the cylinder liner changes. However, in the case of plating, there are many problems with waste liquid treatment in the plating process, the plating process takes a relatively long time, and the machining of the inner surface of the cylinder liner as a pre-processing is complicated. There is a problem that the manufacturing cost becomes significantly high. In addition, in the case of thermal spraying, the inner diameter of the cylinder liner rough material on the piston top dead center side is expanded by an amount corresponding to the thickness of the thermal sprayed layer, as in the case of plating, and the inner diameter of the cylinder liner rough material on the piston top dead center side is expanded from other parts. This method involves thermal spraying a metal etc. with excellent abrasion resistance, and then honing the entire inner surface of the cylinder liner raw material to obtain a cylinder liner whose inner surface has variable wear resistance. However, it takes a very large number of man-hours to form a sprayed layer with a uniform thickness, and the machining of the inner surface of the cylinder liner rough material as a pre-process is also complicated, which raises the problem of extremely high manufacturing costs. be. Therefore, in order to solve the above-mentioned problems based on surface treatment techniques such as plating or thermal spraying, the inventors made the inner part of the piston, which corresponds to the top dead center side, a material with low plastic deformability and excellent wear resistance. Composite cylinder liner rough material that achieves the intended purpose by molding composite cylinder liner rough material, which is made of a material that has plastic deformability and a certain degree of wear resistance, and the other parts are made of a material that has plastic deformability and a certain degree of wear resistance. Developed a manufacturing method. That is, to explain the outline thereof, Fig. 1a shows an example of the process of obtaining a composite cylinder liner raw material by the above manufacturing method, and in the same figure, material A having excellent wear resistance and low plastic deformability, and material A having low plastic deformability. Using a laminated disc slag M' made of material B which has high wear resistance and a certain degree of wear resistance, material A with better wear resistance is used on the punch 1 side, and material A with better plastic deformability is used on the die 2 side. Charge the laminated disc slug M' so that the material B is located, and after charging, move the punch 1 downward to pressurize the upper end M'a of the laminated disc slag M', and push the punch 1 out by pushing out the rear container. The composite cylinder liner raw material P' (container raw material) is formed by extruding the laminated disk slug M' from the gap 2a between the cylinder liner and the die 2 in the direction opposite to the downward movement direction of the punch 1. . In the composite cylinder liner raw material P' obtained by the above manufacturing method, since the material B has better plastic deformability than the material A, when it becomes the container raw material P', the material cross section in the axial symmetry plane is As shown in Figure 2a, a hollow composite cylinder liner rough material is obtained in which the wear resistance of the inner surface of the cylinder liner rough material is high near the top dead center of the piston, and which has a certain degree of wear resistance elsewhere. However, unless material B has a considerably higher plastic deformability than material A, it will be difficult to form it. Further, as a modification of the above manufacturing method, if the manufacturing method is as shown in FIG. 1b, the interface of the laminated disc slug M' does not come into contact with the die inner wall 2b, and has the material cross section shown in FIG. 2a. Container raw materials can be obtained. However, in the manufacturing method shown in FIG. 1b, the degree and angle of chamfering of the laminated disk slug M' must be determined, and in the manufacturing method shown in FIG. 1c, the size of the clearance x must be determined. Depending on the extent, a problem arose in that it was difficult to reliably obtain the desired ratio of L A :L B in the cross section of the material shown in FIG. 1a. Furthermore, as shown in Figure 1d, material A with better wear resistance is replaced with material B with better plastic deformability.
Using the embedded composite disc slug M' embedded in the mold, the composite interface of this material is molded so as not to come into contact with the inner wall of the die during the initial process of extruding the rear container. This ensures that the desired L A :L B ratio is obtained. However, if the bottom P'c of the composite cylinder liner rough material P' of FIG. 2a is punched out as shown in FIG. 2b,
Since the composite interface P'a is exposed on the inner surface of the cylinder, it is necessary to remove the portion P'b corresponding to the material B by cutting or the like, resulting in a problem of poor material yield. The present invention has been made for the purpose of providing a manufacturing method for a composite cylinder liner that can further improve the above-mentioned method and solve the above-mentioned problems. As a composite cylinder liner that is large in the vicinity and has normal wear resistance in other parts, it prevents uneven wear on the inner surface of conventional cylinder liners, eliminates problems with solutions such as plating or thermal spraying, and also In order to avoid the influence of frictional force due to the inner wall of the die at the material interface and further improve the material yield, a concentric composite disc material is used as the composite cylinder liner raw material, and the interface of this material is used for rear container extrusion. In the initial process, the cylinder liner material is formed by backward container extrusion while avoiding contact with the inner wall of the die, thereby producing a composite cylinder liner material that has the initial material surface and the bottom of the container is made of a material with excellent wear resistance. This makes it easy to use, significantly increases productivity, and greatly contributes to cost reduction. Next, the present invention will be explained with reference to the embodiments shown in FIGS. 3 to 5. FIG. 3 shows an outline of the manufacturing process of the material used in the present invention. Material B, which has plastic deformability and a certain degree of abrasion resistance, is pressed or machined into a disc-shaped material with an inner diameter of a circular center. [Figure 3a]. Next, the above material B
A concentric composite disk material M is obtained by compounding the material A with excellent wear resistance inside the cylinder, that is, in the hollow portion 4. The burying process of the above material A is shown in Figures 3b to 3e.
There is a method shown below. That is, the method shown in FIG. 3b is obtained by filling the hollow portion 4 of material B with powder of material A and then sintering it. Further, in the method shown in FIG. 3c, the cylindrical material B is placed on the mold 21, and the mold 21
Boiled water is poured into the hollow part 4 of the material B which has been heated in advance. Furthermore, the method of FIG.
A material B is placed on top of the material B, a billet of the raw material A is inserted into the hollow part 4 of the material B, and the material B is pressed in the direction of the arrow 31 and rotated in the direction of the arrow 32 to perform friction welding.
After pressing, material A and material B are combined by cutting along virtual line C to obtain a composite material. Furthermore, in the method shown in FIG. 3e, the material B is placed on the mold 22.
Then, after placing the material A in the hollow part 4 of the material B, pressure is applied in the direction of the arrow 31 and welded together by forging to form a composite disk material M as shown in FIG. 3f. get. In addition to the method shown in FIG. 3, an extrusion process as shown in FIG. 4 may be used to continuously composite material A and material B. That is, the fourth
As shown in Figure a, an extruded tube made of cylindrical material B that has some degree of wear resistance is filled with powder of material A that has wear resistance, one end of which is closed with a disc B' made of material B, and waxed. A composite billet S is obtained by fixing by bonding, welding, etc. [Fig. 4b]. The billet S thus obtained is heated and charged into a container 13 as shown in FIG. Shape. By hot forward extrusion of the composite billet S, the powder made of material A is sintered and firmly joined to the hollow tube made of material B, resulting in a powder made of material A and material B as shown in Fig. 4d. A composite rod T is obtained. By cutting this composite rod T along the imaginary line C shown in FIG. 4d, the concentric disk material M shown in FIG.
is obtained. In addition, when obtaining a composite rod T made of material A and material B by hot forward extrusion shown in FIG. 4, as material A shown in FIG. It may also be cast into a pipe. The hot forward extrusion shown in FIG. 4c eliminates casting defects (pores such as cavities) in the material A, and provides a strong bond between the materials A and B. By the method described above, the diameter d as shown in FIG.
It is possible to obtain a concentric composite disc material M having a thickness of A and a thickness h and incorporating the material A in the hollow portion 4. However, in the figure, dB and h are the diameter and thickness of material B, respectively. Note that the method for compounding material B with material A is not limited to the above five methods. Next, in order to form a hollow composite cylinder liner raw material by extruding the concentric composite disk material M formed as described above into a rear container, a punch 1 and a stripper 3 are used as shown in FIG. 5a. The concentric composite disc material M is charged into the mold. Next, as shown in FIG. 5b, when the punch 1 is operated to pressurize the upper end Ma of the concentric composite disc material M, the punch 1 moves from the gap 2a between the punch 1 and the die 2 in a direction opposite to the downward movement direction of the punch 1. The material M is extruded. In the initial stage of backward extrusion due to the pressurization of the punch, that is, in the process until the extruded tip of the material M leaves the die inner wall 2b [Fig. As can be seen from Figure 5 b and c above, a force will be applied.
The composite interface between material A and material B constituting the concentric composite disc material M does not contact the die inner wall 2b at all, and therefore both material A and material B forming the material M are punched at the same time. Extrusion is started by applying pressure by No. 1. On the other hand, in the process from the middle to late stage of backward extrusion [Fig. 5 d], material B has better plastic deformability than material A, so the material cross section in the axially symmetrical plane of container raw material P is It becomes the shape shown in the figure. Further, since the composite shape of the material A and the material B is made concentric, the bottom part Pc of the container raw material P formed by rear container extrusion can be made of only the raw material A, as shown in FIG. Furthermore, Fig. 5 e and f
As shown in , the container blank P is taken out from the mold, and then the bottom Pc of the container blank P is punched out to obtain a hollow composite cylinder blank. In addition, the material A having excellent wear resistance constituting the concentric composite disk material M is a material having a higher Si content than the eutectic component (12.2 wt% Si) of the Al-Si alloy.
For example, an Al alloy containing 22 wt% Si is used as a material B having plastic deformability and a certain degree of wear resistance.
Al alloy containing 12.2 wt% Si (JIS standard A4032
equivalent) is used. Al containing 22 wt% Si as mentioned above
Because the alloy has a large amount of primary Si,
Increases Si surface area and significantly improves wear resistance. However, because the amount of primary Si that does not deform increases, its plastic deformability is significantly inferior. In addition, the JIS standard A4032 alloy is for die forging.
It is a type of Al alloy, and is usually forged at 350 to 450°C, and its plastic deformability is high. By laminating this alloy with the aforementioned Al alloy containing 22% Si by weight, the lack of plastic deformability of the alloy is compensated for. In this case, the processing temperature is 350 to 450°C, and the shape ratio of material A and material B, that is, the diameter ratio d
By appropriately changing A / dB [FIG. 3f], it was possible to change the portions L A :L B with different Si contents on the inner surface of the cylinder liner. Furthermore, as another example, as shown in Fig. 4, when a concentric composite material M is continuously made by hot forward extrusion, as a material A having excellent wear resistance, (1) Copper coating graph Aito powder - Cu powder - Si powder - Mg powder - balance Al powder (2) Copper-coated MoS 2 powder - Cu powder - Si powder - Mg powder - balance Al powder (3) Si powder - Cu powder - Mg powder - Pb powder - Ceramic (e.g. Al 2 O 3 · SiO 2 · Si 3 N 4 ) powder - remainder
An Al powder alloy consisting of Al powder is used. The specific composition is shown in Table 1. In addition, as material B having plastic deformability and wear resistance to a certain extent, A390 alloy (16 to 18 wt% Si-4.0 to 5.0 wt% Cu-0.6 to
1.15wt%Fe−0.45~0.65wt%Mg−0.1wt%
Mn - 0.1% by weight or less Zn - 0.2% by weight or less Ti - 0.02
An extruded tube with a weight % or less of P) is used. Among the Al powder alloys shown in Table 1, the wear resistance of powders (1) and (2) sintered under normal molding and sintering conditions was measured by the Chimken wear test, and the wear amount was 3.8 for each. mm and 2.5 mm. On the other hand, the Al-hypereutectic Si alloy material of the former example has a thickness of about 5.0 mm, and is therefore suitable for cases with more severe wear conditions. In addition, the Chemtin wear test conditions were a load of 20 bs and a circumferential speed of 2 m/min.
sec, lubricating oil (machine oil #50) 0.5 cylinder liner/
min, test time is 50 hours. Gray cast iron (equivalent to JIS standard FC20) was used as the mating material, and this was made into a ring shape, and the width of the wear scar formed on the example test piece made of the powders (1) and (2) was determined. Furthermore, among the Al powder alloys shown in Table 1, powders (3A), (3B), and (3C) were molded using the normal molding method and sintering conditions, and the wear amount was measured using a pin disc type abrasion tester. and measured the friction coefficient. The results are shown in Table 2. In the Al-hypereutectic Si alloy material of the former example, the wear amount and friction coefficient of the pin and disk were 250 μm, 20 μm, and 0.04 μm, respectively.
Therefore, it is suitable for cases with more severe wear conditions. The pin disk type wear test was carried out using a test machine shown in FIGS. 7a and 7b, using a 5 mm x 10 mm prismatic pin as a test piece. That is, a rotating member 60 and a disk 6 whose surface is plated with chrome.
The test piece 61 is held between the load cell 65 and the load cell 65, and a predetermined amount of oil is injected from the oil inlet and pressurized in the direction of the arrow 64, and the rotating member 60 is rotated to cause friction in the direction of the arrow 67. The load is recorded by the recorder 66. The wear test conditions and friction coefficient test conditions for determining the wear coefficient are shown in Tables 3 and 4, respectively.
Shown in the table. In addition, when the A390 alloy is heated to 400°C or higher, it has sufficient forgeability and high plastic deformability (8th
(Fig.), the above-mentioned Al
Compensates for the lack of plastic deformability of powder alloys. After filling the above-mentioned Al alloy powder (material A) into the above-mentioned A390 alloy hollow tube (material B) and compacting it,
One end is closed with a disk B' made of A390 alloy and soldered [Fig. 4 a, b]. Then, as shown in FIG. 4c, the composite billet S heated to 450 DEG C. is charged into the preheated container 13 and extruded forward by the ram 11. The A390 alloy hollow tube used for hot forward extrusion has an outer diameter of 199 mm, an inner diameter of 148 mm,
They are 125mm and 102mm. A hollow tube of the above dimensions and
A composite billet S made of an Al powder alloy is hot forward extruded at an extrusion ratio (cross-sectional area before/cross-sectional area after extrusion) set to 5. Thereafter, it is sawn to a thickness of 49 mm as shown in Figure 4. By the above method, the dimensions d A and d B shown in Fig. 3 f are obtained.
and h are 89, 66, 49mm, 89, 56, 49 respectively
Three types of concentric composite disc materials M with sizes of 1.5 mm, 89 mm, 46 mm, and 49 mm were obtained [Fig. 9a]. FIG. 9b shows the composite interface of the X section when powder 3A was used, and complete bonding of material A and material B was achieved by the above method. Next, the concentric composite disk material M formed as described above is extruded into a rear container by the method shown in FIG. 5, and a hollow composite cylinder liner raw material P as shown in FIG. Obtained. Fig. 10b shows the composite interface of the Y section in Fig. 10a, but as shown in Fig. 6, the inner surface of the hollow composite cylinder liner rough material is L A : L B , and at the same time the bottom part Pc is also made of material. B, and all you need to do is punch out the bottom part Pc. FIG. 10c shows a hollow composite cylinder liner raw material P' in which rear container extrusion is performed using the embedded composite disk material M' as shown in FIG. 1d. The inner surface of the embedded composite cylinder liner rough material can be L A :L B , but the first
As seen in Figure 0d, the bottom part P'c consists of material A and material B, and when the bottom part is punched out, the composite interface P'b is exposed. Note that Table 5 shows the processing conditions for extruding the rear container shown in FIG. A hollow composite cylinder liner material P having an outer diameter of 89 mm, an inner diameter of 76 mm, a container height of 155 mm, and a container bottom thickness of 10 mm was formed from a concentric composite disk material M with a diameter of 88 mm and a thickness of 49 mm. Also, the diameters d A / d B of material A and material B shown in Fig. 3 f = 88/66, 88/56
From the 88/46 concentric composite disc material M, hollow composite cylinder liner rough material P shown in FIG. 6 with L A :L B =140/15, 112/43 and 70/85 was obtained. Furthermore, graphite, activated carbon, ceramics (Al 2 / SiO 2 / Si 3 N 4 , etc.) are used as materials A with excellent wear resistance when manufacturing concentric composite disk material M by hot forward extrusion as shown in Fig. 4. Contains wear-resistant particles such as
Al composite cast material can also be used. The specific composition is Al-2 to 4% by weight Cu-8.5
~10.5wt%Si−0.5~15.0wt%Mg−0.50~1.50
It is an Al casting alloy of 5% by weight Ni (AC8B of JIS standard) and 5% by weight Al 2 O 3 -5% by weight graphite, and the above-mentioned
An Al composite cast material obtained by stirring the Al casting alloy in a solid-liquid coexistence state and adding the wear-resistant particles described above is cast into an extruded tube made of A390 alloy. Next, material A (Al composite cast material) and material B (A390
A composite rod T of the alloy (alloy) is produced and cut along the imaginary line C shown in FIG. 4d to obtain a concentric composite disc material M. The composite interface between materials A and B is similar to the photograph shown in FIG. 9, and complete bonding was achieved by the method described above. In addition, the above Al composite cast material (AC85-5
(wt% Al 2 O 3 -5 wt% graphite), the wear and friction coefficients of the pin and disk were 30 μm and 5, respectively, in the pin-disc wear test under the conditions described above.
μm and 0.028, and is suitable for cases with more severe wear conditions. The above Al composite cast material (material A) and the above
When a concentric composite disc material M made of A390 alloy (material B) is extruded into a rear container in the manner shown in Fig. 5 under the aforementioned processing conditions (Table 5),
A hollow composite cylinder liner rough material P shown in Figure a was obtained. As is clear from the above description, according to the present invention, a centrifugal composite disk material composed of a material with excellent wear resistance and a material with plastic deformability and a certain degree of wear resistance is used. The concentric composite disc material is extruded into a rear container with a punch, and while the rear container extrusion is continued so that the composite interface of the concentric composite disc material does not contact the inner wall of the die during the initial process, the inner surface of the cylinder liner in the up and down process of the piston is It is possible to reliably and easily form a hollow composite cylinder liner raw material in which the wear resistance near the top dead center of the piston on the inner surface of the cylinder liner is greater than that of other parts according to the wear characteristics of the cylinder liner. can. Furthermore, since the concentric composite disk blank is used, the container bottom of the hollow composite cylinder liner raw material can also be made of a material with excellent wear resistance, which improves material yield. Therefore, it is possible to increase the productivity of this type of hollow cylinder liner and greatly contribute to cost reduction while improving material yield.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はa,b,c,dは本発明の発明過程に
おける問題点を示す説明図、第2図a,bは積層
または埋込複合円板素材を用いた場合の中空複合
シリンダライナ粗材の半切縦断正面図、第3図
a,b,c,d,e,fは本発明における同心複
合円板素材およびその製造例を示す説明図、第4
図a,b,c,dは本発明における同心複合円板
素材の熱間前方押出しによる製造例を示す説明
図、第5図a,b,c,d,e,fは本発明の製
造工程を示す説明図、第6図は本発明による中空
シリンダライナ粗材の半切縦断正面図、第7図a
はピンデイスク型摩耗試験機の概略断面図、第7
図bは試験機の正面図、第8図はA390合金の塑
性変形能と温度の関係を示すグラフ、第9図aは
本発明の一実施例に用いられた同心複合円板素材
の断面図、第9図bは第9図aのX部の複合界面
部分の金属組織を示す写真、第10図aは本発明
方法により成形された中空シリンダライナ粗材の
半切縦断面図、第10図bは第10図aのY部の
複合界面部分の金属組織を示す写真、第10図c
は埋込複合円板素材を用いた場合の半切縦断面図
であり、また第10図dは第10図cのZ部の複
合界面部分の金属組織を示す写真である。 1……ポンチ、2……ダイ、3……ストリツ
パ、4……中空部、A,B……素材、M……同心
複合円板素材、11……ラム、12……ダイ、1
3……コンテナ、S……ビレツト、T……複合
棒、21,22……金型。
In Fig. 1, a, b, c, and d are explanatory diagrams showing problems in the inventive process of the present invention, and Fig. 2 a, b are hollow composite cylinder liner roughness when laminated or embedded composite disc materials are used. A half-cut longitudinal sectional front view of the material, FIGS.
Figures a, b, c, and d are explanatory diagrams showing an example of manufacturing a concentric composite disk material by hot forward extrusion in the present invention, and Figures a, b, c, d, e, and f are manufacturing steps of the present invention. FIG. 6 is a half-cut longitudinal sectional front view of the hollow cylinder liner rough material according to the present invention, and FIG. 7a
is a schematic cross-sectional view of the pin disk type abrasion tester, No. 7
Figure b is a front view of the testing machine, Figure 8 is a graph showing the relationship between plastic deformability of A390 alloy and temperature, and Figure 9 a is a cross-sectional view of the concentric composite disc material used in one embodiment of the present invention. , FIG. 9b is a photograph showing the metallographic structure of the composite interface part of the X section in FIG. 9a, FIG. 10a is a half-cut longitudinal sectional view of the hollow cylinder liner rough material formed by the method of the present invention, FIG. b is a photograph showing the metal structure of the composite interface part of the Y part in Fig. 10a, Fig. 10c
10 is a half-cut vertical cross-sectional view when an embedded composite disk material is used, and FIG. 10 d is a photograph showing the metal structure of the composite interface portion of the Z section in FIG. 10 c. 1... Punch, 2... Die, 3... Stripper, 4... Hollow part, A, B... Material, M... Concentric composite disc material, 11... Ram, 12... Die, 1
3... Container, S... Billet, T... Compound rod, 21, 22... Mold.

Claims (1)

【特許請求の範囲】[Claims] 1 耐摩耗性に優れた素材を、塑性変形能および
ある程度の耐摩耗性を有する円板形の素材の中空
部に複合した同心複合円板素材を用い、後方容器
押出しにより中空複合シリンダライナ粗材を成形
することを特徴とする複合シリンダライナ粗材の
製造方法。
1 Using a concentric composite disc material in which a material with excellent wear resistance is combined into the hollow part of a disc-shaped material that has plastic deformability and a certain degree of wear resistance, a hollow composite cylinder liner raw material is made by extruding a rear container. A method for producing a composite cylinder liner rough material, characterized by molding.
JP3399182A 1982-03-05 1982-03-05 Production of composite rough material for cylinder liner Granted JPS58151935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3399182A JPS58151935A (en) 1982-03-05 1982-03-05 Production of composite rough material for cylinder liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3399182A JPS58151935A (en) 1982-03-05 1982-03-05 Production of composite rough material for cylinder liner

Publications (2)

Publication Number Publication Date
JPS58151935A JPS58151935A (en) 1983-09-09
JPS625696B2 true JPS625696B2 (en) 1987-02-06

Family

ID=12401942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3399182A Granted JPS58151935A (en) 1982-03-05 1982-03-05 Production of composite rough material for cylinder liner

Country Status (1)

Country Link
JP (1) JPS58151935A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981669B1 (en) * 2016-02-01 2016-08-31 株式会社イワキ Plunger pump

Also Published As

Publication number Publication date
JPS58151935A (en) 1983-09-09

Similar Documents

Publication Publication Date Title
JP2846263B2 (en) Manufacturing method of half machine parts
US4008051A (en) Composite metal articles
US5654106A (en) Sintered articles
FR2726212A1 (en) ALUMINUM ALLOY / HYPEREUTECTIC SILICON CYLINDER SHAFT TO BE INCORPORATED IN CASTING IN AN ALTERNATIVE PISTON ENGINE BRACKET AND METHOD FOR MANUFACTURING SUCH A SHIRT
US6148685A (en) Duplex sprocket/gear construction and method of making same
FR2842828A1 (en) MECHANICAL PART, AND METHOD FOR MANUFACTURING SUCH A MECHANICAL PART
US5094149A (en) Pistons having a component incorporated therein
US4972898A (en) Method of forming a piston containing a cavity
US5507258A (en) Pistons for internal combustion engines
JPS625696B2 (en)
EP0019569B1 (en) Hollow composite article and process for the manufacture thereof
JP3280516B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPH0246659B2 (en)
JPS6250708B2 (en)
KR102221030B1 (en) Cast iron inserts for cast-bonding process and manufacturing method of ferrous/non-ferrous dissimilar metal members using the same
JP3059958B2 (en) Manufacturing method of sintered alloy member
JPH0211344B2 (en)
JP3457761B2 (en) Manufacturing method of connecting rod with dipper
JP2019065315A (en) Sintered component for internal chill and light-metal composite material
JPS61166935A (en) Composite member superior in wear resistance and its manufacture
JPH09111365A (en) Sliding material, piston, and their production
JP2001073869A (en) Aluminum alloy piston for internal combustion engine with ring groove reinforced with sintered body having grooves in oversurface and undersurface and its manufacture
JPH11131110A (en) Production of wear resistant parts
JPS6312121B2 (en)
JP2001047224A (en) High strength aluminum alloy powder material and composite compacting method