JP2019065315A - Sintered component for internal chill and light-metal composite material - Google Patents

Sintered component for internal chill and light-metal composite material Download PDF

Info

Publication number
JP2019065315A
JP2019065315A JP2017188460A JP2017188460A JP2019065315A JP 2019065315 A JP2019065315 A JP 2019065315A JP 2017188460 A JP2017188460 A JP 2017188460A JP 2017188460 A JP2017188460 A JP 2017188460A JP 2019065315 A JP2019065315 A JP 2019065315A
Authority
JP
Japan
Prior art keywords
cast
sintered member
light metal
sintered
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017188460A
Other languages
Japanese (ja)
Inventor
昇吾 武
Shogo Take
昇吾 武
次郎 榊
Jiro Sakaki
次郎 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017188460A priority Critical patent/JP2019065315A/en
Publication of JP2019065315A publication Critical patent/JP2019065315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a sintered component for internal chill excellent in the strength of a sintered component and the adhesion and bond strength of a light-metal alloy.SOLUTION: A sintered component for internal chill 1 is used by being inserted in a light-metal alloy. The sintered component for internal chill 1 comprises a body part 10 and a bonding part 20. The body part 10 has a density ratio of 86% or higher and 91% or lower and the bonding part 20 has a density ratio of 80% or higher and 84% or lower.SELECTED DRAWING: Figure 1

Description

本発明は、軽金属合金に鋳包まれて使用される鋳包み用焼結部材に係り、特に、軽金属合金との密着性及び接合強度に優れる鋳包み用焼結部材及び軽金属複合部材に関する。   The present invention relates to a cast-in-place sintered member that is cast and used in a light metal alloy, and more particularly to a cast-in-place sintered member and a light metal composite member that have excellent adhesion to the light metal alloy and bonding strength.

自動車部品においては、部品を軽量化して燃費向上を図るため、アルミニウム合金等の軽金属合金の適用が進められてきている。しかしながら、軽金属合金は、強度及び剛性等の機械的特性が低いこと、また、耐摩耗性が低く摺動特性が低いことから、その適用が一部の自動車用構造部品にとどまっている。そのような自動車用構造部品においては、アルミニウム合金等の軽金属合金で構成された部品と、従来からの鋳鉄等で構成された部品とが互いに組み合わせて用いられることがある。   In automobile parts, application of light metal alloys such as aluminum alloys has been promoted in order to reduce parts weight and improve fuel consumption. However, light metal alloys have low mechanical properties such as strength and rigidity, and low wear resistance and low sliding properties, so that their application is limited to some automotive structural parts. In such automobile structural parts, a part made of a light metal alloy such as an aluminum alloy and a part made of a conventional cast iron or the like may be used in combination with each other.

上記のようなアルミニウム合金製部材においては、機械的特性及び物理的特性の向上を目的として、異種材料を鋳包む方法が提案されている。しかしながら、高圧のダイカスト鋳造法を用いて、異種材料をアルミニウム合金等に鋳包む際に、所望の界面の接合強度を安定して確保することは難しく、特に、多孔質な焼結部材を軽金属合金で鋳包む場合には、焼結部材の気孔への軽金属合金溶湯の浸入状態が、鋳包み後のアルミニウム合金複合部材の機械的特性及び物理的特性に大きく影響することから、各種の鋳包み用焼結部材が提案されている(例えば、特許文献1、2参照)。   With respect to aluminum alloy members as described above, methods have been proposed for casting dissimilar materials in order to improve mechanical properties and physical properties. However, when casting dissimilar materials in an aluminum alloy or the like using high-pressure die casting, it is difficult to stably secure the desired bonding strength at the interface, and in particular, it is possible to use porous sintered members as light metal alloys. In the case of casting and wrapping, the penetration state of the light metal alloy melt into the pores of the sintered member greatly affects the mechanical properties and physical properties of the casted aluminum alloy composite member. Sintered members have been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、軽金属合金に鋳包まれて使用される鋳包み用焼結部材であって、組成中に、銅(Cu):3〜5質量%及び炭素(C):0.2〜1.2質量%を含み、鉄合金基地中に銅相と気孔が分布する金属組織を呈するとともに、気孔の気孔率は11〜22%であり、銅相は、焼結部材の表面と内部とに分布し、焼結部材表面の銅相が、焼結部材内部の銅相よりも質量%で2.0倍以上多く分布する焼結合金が提案されている。
特許文献1は、合金元素の添加量の少ない低合金の鉄系焼結部材としつつ、焼結部材自体の強度を高めるとともに、鋳造圧力を30〜50MPa程度の低い圧力としても軽金属合金との密着性及び接合強度に優れる鋳包み用焼結部材及びその製造方法が記載されている。
Patent Document 1 relates to a cast-in-place sintered member that is used by being cast and wrapped in a light metal alloy, and in the composition, copper (Cu): 3 to 5 mass% and carbon (C): 0.2 to 0.2 While exhibiting a metal structure containing 1.2% by mass and having a copper phase and pores distributed in the iron alloy matrix, the porosity of the pores is 11 to 22%, and the copper phase is on the surface and inside of the sintered member A sintered alloy is proposed in which the copper phase on the surface of the sintered member is distributed 2.0% or more in mass% more than the copper phase inside the sintered member.
Patent document 1 improves the strength of the sintered member itself while making it a low alloy iron-based sintered member with a small amount of addition of alloy elements, and adheres to the light metal alloy even when the casting pressure is a low pressure of about 30 to 50 MPa. A sintered member for cast-in, which has excellent properties and bonding strength, and a method for producing the same are described.

特許文献2には、断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面を有するアルミニウム系合金母材で鋳包みされ、凹面に沿う断面半円弧状で中心軸芯延在方向に沿って連続する内周面及び中心軸芯延在方向に沿って連続すると共に周方向に間隔をおいて内周面に複数形成された内側溝を備えた金属基複合材形成用鉄系プリフォーム(焼結部材)において、内側溝は、内周面に連続する両端縁にそれぞれ基端が連続して互いに対向する平坦部及び該両平坦部の奥端間に連続形成された溝底部を備えた、中心軸芯に向かって開口する断面ほぼU字形状であって、平坦部の基端から奥端までの寸法をA、溝巾をB、溝底部における中心軸芯と直交する断面形状の曲率半径をC、中心軸芯から溝巾中心に延在する直線状の基準線に対する平坦部の傾斜角をE、隣接する内側溝の各溝巾中心間の間隔をFとすると、0.1mm≦A≦1.0mm、0.5mm≦B≦10.0mm、C≦B、E≦5°でかつF/B≦5である金属基複合材形成用焼結部材が提案されている。
特許文献2は、鋳包み工程において、半円状の凹面と焼結部材の内周面との間の薄肉部に注湯されたアルミニウム系合金溶湯が周方向に多数形成された各内側溝内に侵入し、この薄肉部に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に焼結部材の内周面に沿って周方向に収縮応力が作用したとき、その凝固に伴うアルミニウム系合金溶湯の周方向の収縮が焼結部材の内周面に多数形成された各内側溝によって均等に受け止められ、アルミニウム系合金溶湯の周方向の移動が抑制されることが記載されている。そして、特許文献2は、アルミニウム系合金溶湯の凝固及び収縮時に発生する収縮応力が焼結部材の内周面に沿って均等に分散されてアルミニウム系合金からなる母材に生じる残留応力の軽減及び均等化によって凹面と焼結部材の内周面との間の残留応力が緩和されて該部の割れ等が防止できることが記載されている。
In Patent Document 2, it is cast-wrapped by an aluminum-based alloy base material having a concave surface continuously formed along the central axis center extension direction with a semicircular cross section, and the central axis core extension with a semicircular arc section along the concave surface Iron base material for forming a metal matrix composite having an inner circumferential surface continuous along the direction and a plurality of inner grooves formed on the inner circumferential surface at intervals along the circumferential direction while continuing along the extending direction of the central axis In the preform (sintered member), the inner groove is a flat portion whose base end is continuous to both end edges continuous with the inner circumferential surface and a groove bottom portion continuously formed between the back ends of both flat portions. The cross section of the flat portion opened from the base end to the back end is A, the groove width is B, and the cross section orthogonal to the central axis at the bottom of the groove. Radius of curvature of the shape C, relative to a straight reference line extending from the central axis to the groove width center Assuming that the inclination angle of the flat portion is E, and the distance between the groove width centers of adjacent inner grooves is F, 0.1 mm ≦ A ≦ 1.0 mm, 0.5 mm ≦ B ≦ 10.0 mm, C ≦ B, E A sintered member for forming a metal matrix composite, which is ≦ 5 ° and F / B ≦ 5, has been proposed.
According to Patent Document 2, each inner groove is formed in the circumferential direction with a large number of molten aluminum-based alloy molten metal poured in a thin-walled portion between the semicircular concave surface and the inner peripheral surface of the sintered member in the casting process. When a contraction stress is applied in the circumferential direction along the inner peripheral surface of the sintered member during solidification and contraction of the molten aluminum-based alloy molten metal poured into the thin-walled portion, the molten aluminum-based alloy melt It is described that contraction in the circumferential direction is equally received by the inner grooves formed in large numbers on the inner circumferential surface of the sintered member, and movement of the molten aluminum-based alloy in the circumferential direction is suppressed. Further, Patent Document 2 reduces the residual stress generated in the base material made of an aluminum-based alloy, in which the contraction stress generated at the time of solidification and contraction of the aluminum-based alloy molten metal is uniformly dispersed along the inner peripheral surface of the sintered member It is described that the residual stress between the concave surface and the inner circumferential surface of the sintered member can be alleviated by the equalization, and the cracking and the like of the portion can be prevented.

特許第5525995号公報Patent No. 5525995 特許第4498255号公報Patent No. 4498255

引用文献2の鋳包み用焼結部材は、表面積を増加させることで軽金属合金との密着性及び接合強度を向上させるものであるが、表面積の増加はマクロ的な範囲であり、軽金属との密着性及び接合強度が低いものであった。これに対し、引用文献1の鋳包み用焼結部材は、焼結部材の気孔中に容易にアルミニウム合金の溶湯を浸入しやすくしたものであり、アルミニウム合金との密着性及び接合強度が高いものであるが、より一層の密着性及び接合強度の向上が望まれている。また、焼結部材を鋳包んだアルミニウム合金複合部材においては、焼結部材の強度がアルミニウム合金複合部材の強度を担保することから、アルミニウム合金複合部材のより一層の強度向上のため、焼結部材の高強度化が望まれている。   Although the sintered member for cast-in of the cited reference 2 improves adhesion with a light metal alloy and joint strength by increasing the surface area, the increase of the surface area is in a macroscopic range, and adhesion with the light metal And the bonding strength was low. On the other hand, the cast-in-place sintered member of Patent Document 1 makes it easy to infiltrate the molten metal of the aluminum alloy into the pores of the sintered member, and the adhesion with the aluminum alloy and the bonding strength are high. However, further improvement in adhesion and bonding strength is desired. In addition, in the case of an aluminum alloy composite member in which a sintered member is cast and wrapped, the strength of the sintered member ensures the strength of the aluminum alloy composite member, so that the sintered member is further improved to further improve the strength of the aluminum alloy composite member. It is desired to increase the strength of

本発明の目的は、上記事情に鑑みてなされたものであり、焼結部材の強度と軽金属合金の密着性及び接合強度に優れる鋳包み用焼結部材及び軽金属複合部材を提供することである。   The object of the present invention is made in view of the above-mentioned circumstances, and is to provide a cast-in-place sintered member and a light metal composite member which are excellent in the strength of the sintered member and the adhesion and bonding strength of the light metal alloy.

上記課題を解決するため、本発明者らが検討したところ、軽金属合金に鋳包みされる焼結部材について、高強度の部位と、軽金属合金溶湯の浸入が容易な部位とに分けて構成することで、焼結部材の強度の向上と軽金属合金の密着性及び接合強度の両立が図れること、高強度の部位は、焼結部材の密度を高くすることで形成でき、軽金属合金溶湯の浸入が容易な部位は、焼結部材の密度を低くすること形成できることを見出した。この知見による本発明は、以下のものに関する。
[1]軽金属合金に鋳包まれて使用される鋳包み用焼結部材であって、前記鋳包み用焼結部材は、本体部と、結合部とを備え、前記本体部の密度比は、86%以上91%以下であり、前記結合部の密度比は、80%以上84%以下である鋳包み用焼結部材。
[2]前記結合部は、外部に連通している気孔を有し、前記結合部における前記気孔の気孔率は、11%以上22%以下である[1]の鋳包み用焼結部材。
[3]前記結合部は、表面に凸部が設けられている[1]又は[2]の鋳包み用焼結部材。
[4]前記凸部は、先端が太い逆テーパ形状である[3]の鋳包み用焼結部材。
[5]前記凸部は、少なくとも2個以上存在する[3]又は[4]の鋳包み用焼結部材。
[6][1]〜[5]のいずれかの鋳包み用焼結部材が軽金属合金で鋳包みされた軽金属複合部材。
In order to solve the above-mentioned problems, according to the inventors of the present invention, the sintered member to be cast in a light metal alloy is divided into a portion having high strength and a portion where penetration of the light metal alloy molten metal is easy. Therefore, it is possible to achieve both improvement in the strength of the sintered member and the adhesion and bonding strength of the light metal alloy, and a high strength region can be formed by increasing the density of the sintered member, and penetration of the light metal alloy melt is easy. It has been found that these sites can be formed by lowering the density of the sintered member. The present invention based on this finding relates to the following.
[1] A sintered member for cast-in, which is used by being cast-wrapped in a light metal alloy, wherein the cast-in sintered member comprises a main portion and a joint portion, and the density ratio of the main portion is A sintered member for cast-in, which is 86% or more and 91% or less, and the density ratio of the bonding portion is 80% or more and 84% or less.
[2] The sintered member for cast-in of [1], wherein the bonding portion has pores communicating with the outside, and the porosity of the pores in the bonding portion is 11% or more and 22% or less.
[3] The cast-sintered member according to [1] or [2], wherein the bonding portion is provided with a convex portion on the surface.
[4] The cast-sintered member according to [3], wherein the convex portion has a reverse tapered shape with a thick tip.
[5] The cast-in-part sintered member of [3] or [4], wherein at least two or more of the convex portions are present.
[6] A light metal composite member in which the cast-in-placement sintered member according to any one of [1] to [5] is cast in a light metal alloy.

本発明によれば、焼結部材の強度と軽金属合金の密着性及び接合強度に優れる鋳包み用焼結部材及び軽金属複合部材を提供することができる。   According to the present invention, it is possible to provide a cast-in-place sintered member and a light metal composite member which are excellent in the strength of the sintered member, the adhesion of the light metal alloy, and the bonding strength.

本発明の実施の形態に係る鋳包み用焼結部材を説明するための正面図、下面図、斜視図である。They are a front view, a bottom view, and a perspective view for explaining a sintered member for cast-in according to an embodiment of the present invention. 本発明の実施の形態に係る結合部の表面形状を説明するための模式図である。It is a schematic diagram for demonstrating the surface shape of the coupling | bond part which concerns on embodiment of this invention. 発明の実施の形態に係る結合部の表面に設けられた凸部を説明するための模式図である。It is a schematic diagram for demonstrating the convex part provided in the surface of the coupling part which concerns on embodiment of invention. 本発明の実施の形態に係る鋳包み用焼結部材を成形するための断面工程図である。It is a cross-sectional process drawing for shape | molding the sintered member for casting according to the embodiment of the present invention. 本発明の実施の形態に係る軽金属複合部材を説明するための正面図である。It is a front view for demonstrating the light metal composite member which concerns on embodiment of this invention. 実施例の試験片を作製するための工程模式図である。It is a process schematic diagram for producing the test piece of an Example. 実施例の試験片に対しての引張り試験を示す模式図である。It is a schematic diagram which shows the tension test with respect to the test piece of an Example. 比較例の試験片を作製するための工程模式図である。It is a process schematic diagram for producing the test piece of a comparative example. 比較例の試験片に対しての引張り試験を示す模式図である。It is a schematic diagram which shows the tension test with respect to the test piece of a comparative example.

本発明の実施の形態に係る鋳包み用焼結部材1(単に、「焼結部材」と称することもある)は、図1に示すように、軽金属合金に鋳包まれて使用される鋳包み用焼結部材1である。鋳包み用焼結部材は、本体部10と、結合部20とを備え、本体部10の密度比は、86%以上91%以下であり、結合部20の密度比は、80%以上84%以下である。   As shown in FIG. 1, the cast-in-place sintered member 1 according to the embodiment of the present invention (simply referred to as "sintered member") is a cast-in type used by being cast and wrapped in a light metal alloy. It is a sintered member 1 for. The cast-in-place sintered member includes the main body portion 10 and the bonding portion 20, the density ratio of the main body portion 10 is 86% or more and 91% or less, and the density ratio of the bonding portion 20 is 80% or more and 84% It is below.

[鋳包み用焼結部材の基地]
鋳包み用焼結部材の組成、金属組織については、特に限定しないが、特許文献1の焼結部材とすることが好ましい。具体的に、鋳包み用焼結部材1は、安価であり、かつ、強度の高い鉄(Fe)−炭素(C)合金を基本の基地組織とすることが好ましい。炭素は、基地のFeと結合しパーライト組織を生成し、強度の向上に寄与する。炭素量は0.2質量%に満たないと生成するパーライトの量が乏しく、強度の低いフェライトが過多となって焼結部材の強度が低いものとなる。このため炭素量は0.2質量%以上が必要である。炭素量が増加するにつれて、生成するパーライト量が増加するとともに、これに比例してフェライト量が低下して、焼結部材の強度が増加する。炭素量が0.8質量%未満では、基地組織はパーライトとフェライトの混合組織となるが、炭素量の下限を0.8質量%以上とするとパーライトの単一組織となり、焼結部材の強度が最大となるため好ましい。
[Base of sintered members for casting]
The composition and metal structure of the cast-in sintered member are not particularly limited, but it is preferable to use the sintered member of Patent Document 1. Specifically, it is preferable that the cast-in-place sintered member 1 be inexpensive and have a high strength iron (Fe) -carbon (C) alloy as a basic base structure. Carbon combines with Fe in the matrix to form a perlite structure, which contributes to the improvement of strength. If the amount of carbon is less than 0.2% by mass, the amount of pearlite to be formed is scarce, and the ferrite having low strength is excessive, and the strength of the sintered member becomes low. Therefore, the amount of carbon needs to be 0.2% by mass or more. As the amount of carbon increases, the amount of pearlite formed increases, and in proportion to this, the amount of ferrite decreases, and the strength of the sintered member increases. When the amount of carbon is less than 0.8% by mass, the base structure is a mixed structure of pearlite and ferrite, but when the lower limit of the amount of carbon is 0.8% by mass or more, the single structure of pearlite is formed, and the strength of the sintered member is It is preferable because it is the largest.

鋳包み用焼結部材1は、要求される寸法精度を得るため焼結後に寸法矯正加工(サイジング加工)、及び、寸法精度の要求が厳しい場合に焼結後に機械加工を施す場合があり、粒界にセメンタイトが過剰に析出するとサイジング加工及び機械加工を施すことが難しくなる。よって、粒界に硬くかつ脆いセメンタイトが析出することなく、焼結部材の強度を確保することができるという観点から、炭素量の上限を1.2質量%とすることが好ましい。   The cast-in-place sintered member 1 may be subjected to dimension correction processing (sizing processing) after sintering to obtain the required dimensional accuracy, and may be machined after sintering if the dimensional accuracy is strictly required. Excessive precipitation of cementite in the world makes it difficult to perform sizing and machining. Therefore, from the viewpoint of securing the strength of the sintered member without precipitation of hard and brittle cementite at grain boundaries, it is preferable to set the upper limit of the amount of carbon to 1.2% by mass.

上記の基地とするため、原料粉末としては、鉄に上記含有量の炭素を与えた鉄−炭素合金粉末を用いると、粉末が硬くなり、圧縮性が低下することとなる。このため、軟質で、圧縮性に優れる鉄粉末に、上記含有量の炭素を全て黒鉛粉末の形態で添加し、その全量を焼結時に鉄基地に拡散させることで上記のような基地組織とする。したがって、鉄粉末に添加する黒鉛粉末の添加量は0.2質量%以上1.2質量%以下とすることが好ましい。   If an iron-carbon alloy powder obtained by adding carbon in the above content to iron is used as the raw material powder to make the base mentioned above, the powder becomes hard and the compressibility decreases. For this reason, all carbon of the above content is added in the form of graphite powder to soft iron powder having excellent compressibility, and the whole amount is diffused to the iron matrix at the time of sintering to obtain the above base structure. . Therefore, it is preferable that the addition amount of the graphite powder added to iron powder sets it as 0.2 mass% or more and 1.2 mass% or less.

上記のように黒鉛粉末の形態で付与される炭素は、焼結時に全量を基地に拡散させる必要があることから、焼結温度は910℃以上とする。また、黒鉛粉末としては、鉄基地に拡散し易いよう、細かい粉末が多いものが好ましい。一方、あまりに微細な粉末は原料粉末の偏析が生じやすくなるため、黒鉛粉末としては、平均粒径が2μm以上22μm以下程度のものを用いることが好ましい。なお、鉄粉末としては、通常の粉末冶金で用いられる平均粒径が50μm以上300μm以下程度のものを用いることができる。   As described above, since it is necessary to diffuse the whole amount of carbon provided in the form of graphite powder to the matrix at the time of sintering, the sintering temperature is set to 910 ° C. or more. Further, as the graphite powder, it is preferable to use many fine powders so as to be easily diffused in the iron matrix. On the other hand, since too fine powder tends to cause segregation of the raw material powder, it is preferable to use a graphite powder having an average particle diameter of about 2 μm to 22 μm. In addition, as an iron powder, the thing of about 50 micrometers-300 micrometers of average particle diameters used by normal powder metallurgy can be used.

[鋳包み用焼結部材の密度比]
本発明の鋳包み用焼結部材1においては、本体部10の密度比は、86%以上91%以下である。本体部10の密度比は、値が高いほど機械的特性が高まることより、87%以上91%以下であることが好ましく、88%以上91%以下であることがより好ましく、89%以上91%以下であることがさらに好ましい。
ここで、密度比とは、焼結部材の密度を鋼材の真密度で除した値をいう。具体的には、焼結部材と鋼材の体積を同一の50cmとした場合、焼結部材の重量が340gであると焼結部材の密度が6.80g/cmであり、鋼材の重量が393gであると鋼材の密度が7.86g/cmであるので、密度比は86.5%(=6.80/7.86)となる。
[Density ratio of sintered members for casting]
In the sintered component 1 for castables of the present invention, the density ratio of the main body portion 10 is 86% or more and 91% or less. The density ratio of the main body portion 10 is preferably 87% or more and 91% or less, more preferably 88% or more and 91% or less, and more preferably 89% or more and 91% because mechanical properties increase as the value increases. It is more preferable that it is the following.
Here, the density ratio is a value obtained by dividing the density of the sintered member by the true density of the steel material. Specifically, when the volume of the sintered member and the steel material is the same 50 cm 3 , if the weight of the sintered member is 340 g, the density of the sintered member is 6.80 g / cm 3 and the weight of the steel material is Since the density of steel materials is 7.86 g / cm 3 if it is 393 g, the density ratio is 86.5% (= 6.80 / 7.86).

本発明の鋳包み用焼結部材1においては、結合部20の密度比は、80%以上84%以下である。結合部20の密度比は、軽金属合金溶湯が気孔に浸入され易く、軽金属合金との密着性を向上させる観点から、80%以上83%以下であることが好ましく、80%以上82%以下であることがより好ましく、80%以上81%以下であることがさらに好ましい。   In the cast-in-place sintered member 1 of the present invention, the density ratio of the bonding portion 20 is 80% or more and 84% or less. The density ratio of the bonding portion 20 is preferably 80% or more and 83% or less, and is 80% or more and 82% or less from the viewpoint of facilitating penetration of the light metal alloy molten metal into the pores and improving adhesion with the light metal alloy. Is more preferable, and 80% or more and 81% or less is more preferable.

[鋳包み用焼結部材の気孔]
本発明の鋳包み用焼結部材1においては、結合部20は、外部に連通している気孔を有し、結合部20における気孔の気孔率は、11%以上22%以下であることが好ましい。ここで、気孔率とは、焼結部材の外部に連通している気孔の率のことをいい、開放気孔率のことをいう。
気孔は、成形体中の粉末間の隙間が焼結後に残留したものであり、結合部20中に分布するとともに、一部は結合部20の表面に開口する。このような気孔は、合部20と軽金属合金部材の結合に寄与する。すなわち、アルミニウム合金等の軽金属合金溶湯が、結合部20の表面に開口する気孔から焼結部材中の気孔に浸入し、鋳包み後に強固な結合を果たす。気孔が乏しいと、軽金属合金溶湯が気孔に浸入し難くなるとともに、気孔に浸入する軽金属合金溶湯の量が乏しくなり、結合部20と軽金属合金部材の結合強度が乏しくなる。このため、気孔の気孔率は11%以上とすることが好ましい。一方、気孔が増加すると、軽金属合金溶湯が気孔に浸入し易くなるとともに、気孔に浸入する軽金属合金溶湯の量が増加して結合部20と軽金属合金部材の結合強度が増加するが、気孔が増加するに従い結合部20の強度が低下するため、気孔の気孔率の上限を22%とすることが好ましい。結合部20における気孔の気孔率は、12%以上21%以下であることが好ましく、13%以上20%以下であることがより好ましく、14%以上19%以下であることがさらに好ましい。
[Pore of sintered member for casting]
In the cast-in-place sintered member 1 of the present invention, the bonding portion 20 has pores communicating with the outside, and the porosity of the pores in the bonding portion 20 is preferably 11% to 22%. . Here, the porosity refers to the ratio of pores communicating with the outside of the sintered member, and refers to the open porosity.
The pores are those in which the gaps between the powders in the compact remain after sintering, and are distributed in the bonding portion 20 and partially open on the surface of the bonding portion 20. Such pores contribute to the bonding between the joint portion 20 and the light metal alloy member. That is, the light metal alloy molten metal such as aluminum alloy intrudes into the pores in the sintered member from the pores opened on the surface of the bonding portion 20, and performs strong bonding after casting. When the pores are scarce, the light metal alloy molten metal hardly penetrates into the pores, and the amount of the light metal alloy molten metal infiltrating into the pores becomes scarce, and the bonding strength between the joint portion 20 and the light metal alloy member becomes poor. Therefore, the porosity of the pores is preferably 11% or more. On the other hand, when the pores increase, the light metal alloy molten metal easily intrudes into the pores, and the amount of the light metal alloy molten metal invading into the pores increases to increase the bonding strength between the joint portion 20 and the light metal alloy member. As the strength of the bonding portion 20 decreases as the temperature is increased, the upper limit of the porosity of the pores is preferably set to 22%. The porosity of the pores in the bonding portion 20 is preferably 12% or more and 21% or less, more preferably 13% or more and 20% or less, and still more preferably 14% or more and 19% or less.

気孔の気孔率は、成形時の粉末間の隙間、すなわち成形時の加圧圧力により制御される。焼結後の結合部20の気孔量を上記の範囲とするためには、成形時の加圧力を210MPa以上561MPa以下程度として圧粉成形すればよい。   The porosity of the pores is controlled by the gap between the powder at the time of molding, that is, the applied pressure at the time of molding. In order to make the amount of pores of the bonding portion 20 after sintering to be in the above-mentioned range, the compacting may be carried out with a pressing force of at least 210 MPa and at most 561 MPa.

気孔の形状及び大きさについては、特に制限はないが、あまりに微細な気孔では、反応して凝固点が低下しても軽金属合金溶湯が浸入し難いことから、円相当径が5μm以下の気孔は、全気孔の内、10体積%以下とすることが好ましい。
また、主原料粉末として用いる鉄粉末が微細であると、成形体中の粉末間の隙間が小さくなり、焼結後に形成される気孔が微細となるので、主原料粉末として用いる鉄粉末としては、平均粒径が40μm以上のものを用いることが好ましい。なお、鉄粉末としては篩分けして微粉を取り除いたり、粗粉のみ用いたりすると、コストが増加するため、このような操作は行わず、市販の鉄粉末のうちで、平均粒径が40μm以上100μm以下のものを用いればよい。
The shape and size of the pores are not particularly limited, but if the pores are too fine, it is difficult for the light metal alloy molten metal to penetrate even if reaction occurs and the solidification point is lowered. The total pore volume is preferably 10% by volume or less.
Further, if the iron powder used as the main raw material powder is fine, the gaps between the powders in the compact become small, and the pores formed after sintering become fine. Therefore, as the iron powder used as the main raw material powder, It is preferable to use one having an average particle size of 40 μm or more. It should be noted that if iron powder is sieved to remove fine powder or only coarse powder is used, the cost will increase, and such operation is not performed, and among commercially available iron powders, the average particle diameter is 40 μm or more What is necessary is just to use 100 micrometers or less.

本発明の鋳包み用焼結部材1においては、本体部10は、軽金属合金溶湯の浸入を要しないので、基地中に分布する気孔は存在していてもよいが、存在しなくても構わない。本体部10における気孔の気孔率は、特に限定されず、0%以上10%以下であることが好ましく、2%以上8%以下であることがより好ましく、4%以上6%以下であることがさらに好ましい。   In the cast-in-place sintered member 1 according to the present invention, since the main body 10 does not require the penetration of the light metal alloy molten metal, the pores distributed in the matrix may or may not exist. . The porosity of the pores in the main body portion 10 is not particularly limited, and is preferably 0% or more and 10% or less, more preferably 2% or more and 8% or less, and 4% or more and 6% or less More preferable.

焼結後の本体部10の気孔量を上記の範囲とするためには、成形時の加圧力を570MPa以上として圧粉成形すればよい。   In order to make the amount of pores of the main body portion 10 after sintering to be in the above-mentioned range, the compacting may be performed with a pressing force of 570 MPa or more at the time of molding.

[結合部の形状]
結合部20は、図2に示すように、表面に凸部21が設けられていることが好ましい。結合部20に凸部21が設けられていることで、結合部20の表面積を増大させることができ、鋳包みの際に軽金属合金と触れる表面積が増大し、軽金属合金との密着性及び接合強度を向上させることができる。
[Shape of joint]
It is preferable that the convex part 21 is provided in the surface, as the connection part 20 is shown in FIG. By providing the projections 21 in the joint portion 20, the surface area of the joint portion 20 can be increased, and the surface area in contact with the light metal alloy in casting is increased, and the adhesion to the light metal alloy and the joint strength Can be improved.

凸部21は、図3に示すように、先端が太い逆テーパ形状(先端幅Dが根本幅Dより太い形状)であることが好ましい。凸部21が逆テーパ形状であることで、軽金属合金を鋳包みした後に、凸部21を構成する側面21aが楔として働き、軽金属合金境界面の引張強さを向上させる。このことより、結合部20と軽金属合金との接合強度を向上させることができる。 Protrusions 21, as shown in FIG. 3, it is preferred tip is thicker inversely tapered shape (thick shape tip width D 1 is from the root width D 2). Since the convex portion 21 has an inverse tapered shape, after casting a light metal alloy, the side surface 21a constituting the convex portion 21 acts as a weir, and improves the tensile strength of the light metal alloy interface. From this, the bonding strength between the bonding portion 20 and the light metal alloy can be improved.

凸部21は、図2及び図3に示すように、少なくとも2個以上存在することが好ましく、2個以上20個以下存在することがより好ましく、2個以上10個以下存在することがさらに好ましい。凸部21が2個以上の複数であることで、鋳包みの際に軽金属合金と触れる表面積が増加し、軽金属合金との密着性及び接合強度を向上させることができる。また、逆テーパ形状の凸部21が2個以上の複数である場合は、軽金属合金を鋳包みした後に、凸部21の間で形成される軽金属合金も逆テーパ形状となり、逆テーパ形状同士の凸部21と軽金属合金が噛み合って、軽金属合金境界面の引張強さを向上させる。このことより、結合部20と軽金属合金との接合強度を向上させることができる。   As shown in FIG. 2 and FIG. 3, it is preferable that at least two or more protrusions 21 be present, more preferably 2 or more and 20 or less, and still more preferably 2 or more and 10 or less. . The surface area in contact with the light metal alloy is increased at the time of cast-in when the convex portion 21 is a plurality of two or more, and adhesion with the light metal alloy and bonding strength can be improved. Further, in the case where there are a plurality of two or more protrusions 21 having the reverse taper shape, after casting the light metal alloy, the light metal alloy formed between the protrusions 21 also has the reverse taper shape, The convex portion 21 and the light metal alloy are engaged to improve the tensile strength of the light metal alloy interface. From this, the bonding strength between the bonding portion 20 and the light metal alloy can be improved.

[鋳包み用焼結部材の成形方法]
本発明の鋳包み用焼結部材1の形成方法について、図4を参照しながら説明する。
まず、図4(a)に示すように、圧縮成形金型100に第1下パンチ40と第2下パンチ41を配置する。第1下パンチ40と第2下パンチ41は、それぞれ独立して加圧動作を行うことが可能な分割パンチである。
そして、圧縮成形金型100、第1下パンチ40及び第2下パンチ41で形成された型孔に、鉄粉末又は鉄合金粉末を主成分とする原料粉末を充填する。原料粉末としては、特許第5525995号公報に記載のものを用いることができる。
[Forming method of sintered member for casting]
The formation method of the sintered member 1 for cast-in of this invention is demonstrated, referring FIG.
First, as shown in FIG. 4A, the first lower punch 40 and the second lower punch 41 are disposed in the compression molding die 100. The first lower punch 40 and the second lower punch 41 are split punches capable of independently performing pressing operations.
Then, raw material powder containing iron powder or iron alloy powder as a main component is filled in the mold holes formed by the compression molding die 100, the first lower punch 40 and the second lower punch 41. As raw material powder, the thing of patent 5525995 can be used.

次に、図4(b)に示すように、充填した原料粉末上に、第1上パンチ60と第2上パンチ61を配置する。第1上パンチ60と第2上パンチ61は、それぞれ独立して加圧動作を行うことが可能な分割パンチである。
このときの第1下パンチ40と第1上パンチ60との距離はL11であり、第2下パンチ41と第2上パンチ61との距離はL21である。
Next, as shown in FIG. 4B, the first upper punch 60 and the second upper punch 61 are disposed on the filled raw material powder. The first upper punch 60 and the second upper punch 61 are split punches capable of independently performing pressing operations.
The distance between the first lower punch 40 and the first upper punch 60 at this time is L 11, and the second lower punch 41 is the distance between the second upper punch 61 is L 21.

次に、図4(c)に示すように、第1下パンチ40及び第1上パンチ60と第2下パンチ41及び第2上パンチ61とにより押圧して圧粉成形する。
圧粉成形したときの第1下パンチ40と第1上パンチ60との距離はL12であり、第2下パンチ41と第2上パンチ61との距離はL22である。本体部10を形成するための第1下パンチ40及び第1上パンチ60による押圧が、結合部20を形成するための第2下パンチ41及び第2上パンチ61による押圧より大きくなるように調整する。したがって、L22/L21>L12/L11を満たすことを要する。
第2下パンチ41及び第2上パンチ61による押圧と、第1下パンチ40及び第1上パンチ60による押圧とを調整することにより、それぞれの押圧する位置が本体部10及び結合部20の密度比である成形体を得ることができる。
Next, as shown in FIG. 4C, the first lower punch 40, the first upper punch 60, the second lower punch 41, and the second upper punch 61 press and compact.
The distance between the first lower punch 40 and the first upper punch 60 when the compacting is L 12, and the second lower punch 41 is the distance between the second upper punch 61 is L 22. Adjustment is made such that the pressure by the first lower punch 40 and the first upper punch 60 for forming the main body portion 10 is larger than the pressure by the second lower punch 41 and the second upper punch 61 for forming the joint portion 20 Do. Therefore, it is necessary to satisfy L 22 / L 21 > L 12 / L 11 .
By adjusting the pressing by the second lower punch 41 and the second upper punch 61 and the pressing by the first lower punch 40 and the first upper punch 60, the density of each pressing position is the density of the main body 10 and the connecting portion 20. A shaped body can be obtained which is a ratio.

次に、得られた成形体は、950℃以上銅の融点(1085℃)以下の温度、好ましくは1000℃以上1080℃以下で焼結することによって、図1に示したような、本発明の鋳包み用焼結部材1が得られる。   Next, the obtained molded product is sintered at a temperature of not less than 950 ° C. and a melting point (1085 ° C.) of copper, preferably not less than 1000 ° C. and not more than 1080 ° C., as shown in FIG. The cast-in-place sintered member 1 is obtained.

[軽金属複合部材]
本発明の実施の形態に係る軽金属複合部材は、鋳包み用焼結部材1が軽金属合金で鋳包みされたものである。本発明の実施の形態に係る軽金属複合部材の鋳造方法を以下に示す。
[Light Metal Composite Member]
The light metal composite member according to the embodiment of the present invention is a cast-in-place sintered member 1 cast in a light metal alloy. The casting method of the light metal composite member which concerns on embodiment of this invention is shown below.

鋳包み用焼結部材1は予熱をせず、または予熱をして鋳型内に配置する。
鋳包み用焼結部材1を予熱することで、軽金属合金溶湯が鋳包み用焼結部材1に接触すると同時に冷却されて凝固することを防止することができる。予熱を行う場合の雰囲気は特に限定されず、空気、真空、不活性ガス雰囲気、還元性ガス等の雰囲気中で行うことができる。
The cast-in-place sintered member 1 is placed in the mold without preheating or preheating.
By preheating the cast-in-place sintered member 1, it is possible to prevent the molten light metal alloy from being cooled and solidified at the same time as coming into contact with the cast-in-place sintered member 1. The atmosphere in the case of preheating is not particularly limited, and can be performed in an atmosphere of air, vacuum, inert gas atmosphere, reducing gas, and the like.

次に、軽金属合金溶湯を鋳型内に導入し、鋳包み用焼結部材1を軽金属合金で鋳包みしつつ鋳造することで、図5に示すように、鋳包み用焼結部材1の結合部20の表面に少なくとも軽金属合金部30が設けられた軽金属複合部材が得られる。
軽金属合金溶湯としては、アルミニウム(Al)を主成分とするものが好ましいが、ケイ素(Si)を5.0質量%以上12.0質量%以下含有するものとすると、鋳包み用焼結部材から拡散するCuと溶湯のAl及びSiとの間で、Al−Cu−Siの三元共晶により溶湯の凝固点がさらに低下して、鋳包み用焼結部材の気孔に溶湯が浸入し易くなるため特に好ましい。また、軽金属合金溶湯としては、予めCuを1.5質量%以上5.0質量%以下含有すると、鋳包み用焼結部材から拡散するCu量による凝固点効果の作用がより早く得られることとなるため、これも好ましい形態である。このようなAl−Si−Cu系のアルミニウム合金としては、JIS H5302:2006に規定されたADC8種、ADC10種及びADC12種が該当する。また、このようなアルミニウム合金としては、マグネシウム(Mg):0.3質量%以下、亜鉛(Zn):2.0質量%以下、鉄(Fe):1.3質量%以下、マンガン(Mn):0.6質量%以下、ニッケル(Ni):0.5質量%以下、及び錫(Sn):0.3質量%以下の少なくとも1種以上を含んでいても差し支えない。
Next, the light metal alloy molten metal is introduced into the mold, and the cast-in-place sintered member 1 is cast while being cast in the form of the light-metal alloy, as shown in FIG. A light metal composite member in which at least the light metal alloy portion 30 is provided on the surface of 20 is obtained.
As the light metal alloy melt, one containing aluminum (Al) as a main component is preferable, but if silicon (Si) is contained at 5.0% by mass or more and 12.0% by mass or less, from a sintered member for casting Since the solidification point of the molten metal is further lowered due to the ternary eutectic of Al-Cu-Si between the diffused Cu and the molten Al and Si, the molten metal easily intrudes into the pores of the cast-in sintered member. Particularly preferred. In addition, when the light metal alloy molten metal contains in advance 1.5% by mass or more and 5.0% by mass or less of Cu, the action of the solidification point effect by the amount of Cu diffused from the sintered member for cast-in can be obtained faster. Therefore, this is also a preferred form. As such an Al-Si-Cu based aluminum alloy, eight kinds of ADCs, ten kinds of ADCs, and 12 kinds of ADCs specified in JIS H5302: 2006 correspond. Moreover, as such an aluminum alloy, magnesium (Mg): 0.3 mass% or less, zinc (Zn): 2.0 mass% or less, iron (Fe): 1.3 mass% or less, manganese (Mn) It may be at least one of 0.6 mass% or less, nickel (Ni): 0.5 mass% or less, and tin (Sn): 0.3 mass% or less.

軽金属複合部材は、鋳包み用焼結部材の結合部の表面から内部の気孔中へ、軽金属合金が浸入している。軽金属複合部材の結合部の表面からの浸入深さは、結合部と軽金属合金との密着性及び接合強度を向上させる観点から、0.5mm以上4.0mm以下であることが好ましく、1.0mm以上3.5mm以下であることがより好ましく、1.5mm以上3.0mm以下であることがさらに好ましい。   In the light metal composite member, the light metal alloy penetrates from the surface of the bonding portion of the cast-in-place sintered member into the pores inside. The penetration depth from the surface of the bonding portion of the light metal composite member is preferably 0.5 mm or more and 4.0 mm or less, from the viewpoint of improving the adhesion between the bonding portion and the light metal alloy and the bonding strength, 1.0 mm The diameter is more preferably 3.5 mm or less, and still more preferably 1.5 mm or more and 3.0 mm or less.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。   EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

実施例及び比較例で得られた鋳包み用焼結部材について下記の評価を行った。結果を表1に示す。   The following evaluation was performed about the sintered member for cast-in obtained by the Example and the comparative example. The results are shown in Table 1.

<密度比の測定>
実施例においては、鋳包み用焼結部材の本体部及び結合部の密度比をそれぞれ測定した。比較例においては、鋳包み用焼結部材の本体部の密度比を測定した。
<Measurement of density ratio>
In the examples, the density ratio of the main body portion and the bonding portion of the cast-in-place sintered member was measured. In the comparative example, the density ratio of the main body of the cast-in sintered member was measured.

<軽合金溶湯の浸入性の測定>
実施例においては、鋳包み用焼結部材の本体部及び結合部への軽合金溶湯の浸入性をそれぞれ測定した。比較例においては、鋳包み用焼結部材の本体部の軽合金溶湯の浸入性を測定した。
軽合金溶湯の浸入性の測定方法としては、軽金属複合部材の試料について、断面を鏡面研磨し、鋳包み用焼結部材の結合部の表面から内部の気孔中への軽金属合金の浸入深さを測定した。10箇所測定した後に平均値を算出した。
<Measurement of infiltration of light alloy melt>
In the examples, the penetration of the light alloy melt into the main body and the joint of the cast-in-place sintered member was measured. In the comparative example, the infiltration of the light alloy melt in the main body of the cast-in-place sintered member was measured.
As a method of measuring the infiltration of the light metal melt, the cross section of the sample of the light metal composite member is mirror-polished, and the penetration depth of the light metal alloy from the surface of the joint of the sintered member for casting to the inside of the pores It was measured. The average value was calculated after measuring ten places.

<強度の測定>
実施例においては、鋳包み用焼結部材の本体部及び結合部の強度(引張り強さ)をそれぞれ測定した。比較例においては、鋳包み用焼結部材の本体部の強度(引張り強さ)を測定した。
<Measurement of strength>
In the examples, the strength (tensile strength) of the main body portion and the joint portion of the cast-in-place sintered member was measured. In the comparative example, the strength (tensile strength) of the main body of the cast-in sintered member was measured.

[実施例1]
鉄粉末としてアトマイズ鉄粉末(平均粒径:72μm)、銅粉末として電解銅粉末(アスペクト比:1.6、平均粒径:46μm)及びスタンプ粉末(アスペクト比:16.0、平均粒径:45μm)、黒鉛粉末として天然黒鉛粉末(平均粒径:10μm)を用意した。これらの粉末を表1に示す配合割合で添加、混合し、得られた原料粉末を用い、結合部20の密度が6.4Mg/m、本体部10の密度が7.0Mg/mとなるよう成形し、幅:12.5mm、長さ:32mm、厚さ:5mmの板状成形体に圧粉成形した。得られた成形体を、アンモニア分解ガス中、1050℃で焼結した(図6)。
得られた焼結体を、大気雰囲気中で75℃に予熱した後、簡易金型の所定位置に装着し、次いで、鋳造圧力40MPaの下でダイキャスト法によりアルミ二ウム合金溶湯(JIS ADC12相当)を注湯して、焼結部材1を鋳包みしつつ鋳造し、アルミニウム合金複合部材70の複合部材試料71を作製した。
この複合部材試料71について、断面を鏡面研磨し鋳包み用焼結部材1の表面から内部の気孔中へのアルミニウム合金部材70の溶浸深さを測定した。
この後、複合部材試料71から、図6に示すように、機械加工により試験片72を作製した。すなわち、上記のようにして得た複合部材試料71を、片側の中央部に鋳包み用焼結部材1が残るように幅方向に切断するとともに、さらに直交する方向に切断して鋳包み用焼結部材1とアルミニウム合金部材70の部分が略正方形状をなして隣接する長方形状とし、焼結部材に穴開け加工を施して試験片72とした。
この試験片72について、図7(a)及び(b)に示すように、アルミニウム合金部材70の部分をチャック80で把持するとともに鋳包み用焼結部材1の孔にピン81を挿入して引張り試験を行い、引張り強さを求めた。これらの結果を表1に併せて示す。
Example 1
Atomized iron powder as iron powder (average particle size: 72 μm), electrolytic copper powder as copper powder (aspect ratio: 1.6, average particle size: 46 μm) and stamp powder (aspect ratio: 16.0, average particle size: 45 μm) ), Natural graphite powder (average particle size: 10 μm) was prepared as graphite powder. Adding these powders in the proportions shown in Table 1, mixed, using a raw material powder obtained, the density of the coupling portion 20 is 6.4 mg / m 3, the density of the main body portion 10 and 7.0 mg / m 3 The resultant was compacted into a plate-like compact having a width of 12.5 mm, a length of 32 mm and a thickness of 5 mm. The resulting compact was sintered at 1050 ° C. in ammonia decomposition gas (FIG. 6).
The obtained sintered body is preheated to 75 ° C. in the air atmosphere, mounted on a predetermined position of a simple mold, and then, a molten aluminum alloy (equivalent to JIS ADC12) by die casting under a casting pressure of 40 MPa. ) Was poured, and the sintered member 1 was cast while being cast, and a composite member sample 71 of the aluminum alloy composite member 70 was produced.
With respect to this composite member sample 71, its cross section was mirror-polished, and the infiltration depth of the aluminum alloy member 70 from the surface of the cast sintered member 1 into pores inside was measured.
Thereafter, as shown in FIG. 6, a test piece 72 was produced from the composite member sample 71 by machining. That is, the composite member sample 71 obtained as described above is cut in the width direction so that the cast-in-place sintered member 1 remains in the central portion on one side, and further cut in the orthogonal direction to bake the cast-in part. The portions of the connecting member 1 and the aluminum alloy member 70 are substantially square to form an adjacent rectangular shape, and the sintered member is subjected to a hole forming process to obtain a test piece 72.
About this test piece 72, as shown to FIG. 7 (a) and (b), while holding the part of the aluminum alloy member 70 with the chuck | zipper 80, inserting the pin 81 in the hole of the sintered member 1 for casting and pulling A test was conducted to determine the tensile strength. These results are shown together in Table 1.

[比較例1]
実施例1で用いた原料粉末を用いて、全体の密度が7.0Mg/mとなるよう成形し、幅:12.5mm、長さ:32mm、厚さ:5mmの板状成形体に圧粉成形した。得られた成形体を、アンモニア分解ガス中、1050℃で焼結した(図8)。
得られた焼結体を実施例1と同様にしてダイキャスト法によりアルミ二ウム合金溶湯(JIS ADC12相当)を注湯して、焼結部材1aを鋳包みしつつ鋳造し、アルミニウム合金複合部材70a複合部材試料71aを作製し、同様にしての溶浸深さを測定した。
この後、複合部材試料71aから、図8に示すように、機械加工により試験片72aを作製した。すなわち、上記のようにして得た複合部材試料71aを、片側の中央部に焼結部材1aが残るように幅方向に切断するとともに、さらに直交する方向に切断して焼結部材1aとアルミニウム合金部材70aの部分が略正方形状をなして隣接する長方形状とし、焼結部材に穴開け加工を施して試験片72aとした。
この試験片72aについて、図9(a)及び図9(b)に示すように、アルミニウム合金部材70aの部分をチャック80で把持するとともに焼結部材1aの孔にピン81を挿入して引張り試験を行い、引張り強さを求めた。これらの結果を表1に併せて示す。
Comparative Example 1
The raw material powder used in Example 1 was molded to have an overall density of 7.0 Mg / m 3, and was pressed to a plate-like compact having a width of 12.5 mm, a length of 32 mm and a thickness of 5 mm. Powder molded. The resulting compact was sintered at 1050 ° C. in ammonia decomposition gas (FIG. 8).
The resulting sintered body is poured into a molten aluminum alloy (equivalent to JIS ADC12) by die casting in the same manner as in Example 1 to cast the sintered member 1a while casting, thereby forming an aluminum alloy composite member The 70a composite member sample 71a was prepared, and the infiltration depth was similarly measured.
Thereafter, as shown in FIG. 8, a test piece 72a was produced from the composite member sample 71a by machining. That is, the composite member sample 71a obtained as described above is cut in the width direction so that the sintered member 1a remains in the central portion on one side, and further cut in the orthogonal direction to cut the sintered member 1a and the aluminum alloy The portion of the member 70a has a substantially square shape to form an adjacent rectangular shape, and the sintered member is subjected to a drilling process to obtain a test piece 72a.
About this test piece 72a, as shown in FIG. 9 (a) and FIG.9 (b), the pin 81 is inserted in the hole of the sintered member 1a while holding the part of the aluminum alloy member 70a by the chuck 80, and a tensile test And the tensile strength was determined. These results are shown together in Table 1.

本発明の鋳包み用焼結部材は、安価かつ機械的特性に優れるとともに、鋳包み性に優れたものであり、自動車用部品等の焼結部材を軽合金溶湯で鋳包みした各種軽合金複合部材に好適である。   The sintered member for castables according to the present invention is inexpensive and has excellent mechanical properties and is excellent in castability, and various light alloy composites obtained by cast-sintered sintered members such as parts for automobiles with light metal melt It is suitable for a member.

1 鋳包み用焼結部材
1a 焼結部材
10 本体部
20 結合部
21 凸部
30 軽金属合金部
40 第1下パンチ
41 第2下パンチ
60 第1上パンチ
61 第2上パンチ
70,70a アルミニウム合金複合部材
71,71a 複合部材試料
72,72a 試験片
80 チャック
81 ピン
100 圧縮成形金型
DESCRIPTION OF SYMBOLS 1 Sintered member 1 a Sintered member 1 a Sintered member 10 Body part 20 Bonding part 21 Convex part 30 Light metal alloy part 40 1st lower punch 41 2nd lower punch 60 1st upper punch 61 2nd upper punch 70, 70a aluminum alloy composite Member 71, 71a composite member sample 72, 72a test piece 80 chuck 81 pin 100 compression molding die

Claims (6)

軽金属合金に鋳包まれて使用される鋳包み用焼結部材であって、
前記鋳包み用焼結部材は、本体部と、結合部とを備え、
前記本体部の密度比は、86%以上91%以下であり、
前記結合部の密度比は、80%以上84%以下である鋳包み用焼結部材。
A cast-in-place sintered member that is cast and used in a light metal alloy,
The cast-in-placement sintered member includes a main body portion and a joint portion,
The density ratio of the main body portion is 86% or more and 91% or less,
The sintered member for cast-in, wherein the density ratio of the joint portion is 80% or more and 84% or less.
前記結合部は、外部に連通している気孔を有し、
前記結合部における前記気孔の気孔率は、11%以上22%以下である請求項1に記載の鋳包み用焼結部材。
The connecting portion has pores communicating with the outside,
The sintered member for cast-in according to claim 1, wherein the porosity of the pores in the joint portion is 11% or more and 22% or less.
前記結合部は、表面に凸部が設けられている請求項1又は2に記載の鋳包み用焼結部材。   The sintered part for cast-in of Claim 1 or 2 in which the said connection part is provided with the convex part on the surface. 前記凸部は、先端が太い逆テーパ形状である請求項3に記載の鋳包み用焼結部材。   The sintered member for castable according to claim 3, wherein the convex portion has a reverse tapered shape with a thick tip. 前記凸部は、少なくとも2個以上存在する請求項3又は4に記載の鋳包み用焼結部材。   5. The cast-in-place sintered member according to claim 3, wherein at least two or more convex portions are present. 請求項1〜5のいずれか1項に記載の鋳包み用焼結部材が軽金属合金で鋳包みされた軽金属複合部材。   The light metal composite member by which the sintering member for cast-in of any one of Claims 1-5 was casted by the light metal alloy.
JP2017188460A 2017-09-28 2017-09-28 Sintered component for internal chill and light-metal composite material Pending JP2019065315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188460A JP2019065315A (en) 2017-09-28 2017-09-28 Sintered component for internal chill and light-metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188460A JP2019065315A (en) 2017-09-28 2017-09-28 Sintered component for internal chill and light-metal composite material

Publications (1)

Publication Number Publication Date
JP2019065315A true JP2019065315A (en) 2019-04-25

Family

ID=66339051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188460A Pending JP2019065315A (en) 2017-09-28 2017-09-28 Sintered component for internal chill and light-metal composite material

Country Status (1)

Country Link
JP (1) JP2019065315A (en)

Similar Documents

Publication Publication Date Title
JP6297545B2 (en) High heat conduction valve seat ring
JP4789837B2 (en) Iron-based sintered body and manufacturing method thereof
JP5588879B2 (en) Pre-alloyed copper alloy powder forged connecting rod
JP2004204298A (en) Iron-base sintered compact superior in cast-in property by light metal alloy, and manufacturing method therefor
US10718379B2 (en) Slide member and method for manufacturing same
JP2004513232A (en) Mixture for powder metallurgy products and method for producing the same
US3983615A (en) Sliding seal member for an internal combustion engine
JP2010274315A (en) Valve seat for cast-in insert of light metal alloy
JP5750076B2 (en) Powder for molding and method for producing the same
JP5525995B2 (en) Sintered member for casting, method for producing the same, and method for casting light alloy composite member using the sintered member for casting
JP2019065315A (en) Sintered component for internal chill and light-metal composite material
JP4270973B2 (en) Iron-based sintered body for valve seats with excellent light metal alloy castability
US5937268A (en) Sintered sliding member and production method thereof
JP6563494B2 (en) Wear-resistant ring composite with excellent thermal conductivity
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JP2005163145A (en) Composite casting, iron based porous body for casting, and their production method
US6551373B2 (en) Copper infiltrated ferro-phosphorous powder metal
KR101636762B1 (en) Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it
JP6550224B2 (en) Sliding member and method of manufacturing the same
JP4223817B2 (en) Valve seat for light metal alloy casting
JP2001073869A (en) Aluminum alloy piston for internal combustion engine with ring groove reinforced with sintered body having grooves in oversurface and undersurface and its manufacture
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body
JPH0525591A (en) Wire for piston ring and its manufacture
JP2003073755A (en) Porous metal-sintered compact for strengthening light alloy member, and manufacturing method therefor
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor