JPS61166935A - Composite member superior in wear resistance and its manufacture - Google Patents

Composite member superior in wear resistance and its manufacture

Info

Publication number
JPS61166935A
JPS61166935A JP820985A JP820985A JPS61166935A JP S61166935 A JPS61166935 A JP S61166935A JP 820985 A JP820985 A JP 820985A JP 820985 A JP820985 A JP 820985A JP S61166935 A JPS61166935 A JP S61166935A
Authority
JP
Japan
Prior art keywords
cast iron
alloy
molded body
wear resistance
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP820985A
Other languages
Japanese (ja)
Other versions
JPH0564223B2 (en
Inventor
Takao Tanaka
田中 隆男
Keiichiro Noguchi
野口 啓一郎
Takao Sugishita
杉下 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP820985A priority Critical patent/JPS61166935A/en
Publication of JPS61166935A publication Critical patent/JPS61166935A/en
Publication of JPH0564223B2 publication Critical patent/JPH0564223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To decrease the cost of the titled member, by using compacted body of graphite bearing cast iron fiber as metallic porous body in a method in which said body is chilled internally with Al alloy by high pressure casting method, then intermetallic compd. formation heating treatment is applied. CONSTITUTION:Cast iron fiber compacted body obtd. by press compacting the cast iron fibers contg. dispersedly graphite having self lubrication property is held in metal mold. Molten Al alloy is poured into the mold, then said compacted body is chilled internally by high pressure solidification casting method at >=about 400kg/cm<2> pressing force. Said composite cast material is hated and held at about 450-550 deg.C for about 1-10hr, to form compound layer of Al and Fe components at boundary between Al alloy and said compacted body, to obtain composite member superior in wear resistance. Thereby, cost can be decreased,m compared with a case of using Ni foamed metal, etc. as metallic porous body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属と強化繊維とを複合化してその機械的特
性、物理的特性、特にその耐摩耗性を向上させた繊維強
化型複合部材及びこの複合部材を低コストでもって製造
するための方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a fiber-reinforced composite member in which metal and reinforcing fiber are combined to improve mechanical properties, physical properties, and particularly wear resistance. The present invention also relates to a method for manufacturing this composite member at low cost.

C従来技術〕 従来、例えば車両用エンジンのピストン等のように高温
でかつ高圧摺動状態で使用される部材には、熱膨張率が
小さく、かつ耐摩耗性に優れる、例えばアルミニウム合
金(JIS  AC8A等)が用いられている。そして
このピストンにおいては、例えばトップリング用リング
キャリア部分には、ガス圧によるピストンリングからの
繰り返し荷重が作用するので、該部分の高温強度をさら
に向上して耐摩耗性、耐ヘタリ性を改善することが要請
されている。
C. Prior Art] Conventionally, members used in high-temperature and high-pressure sliding conditions, such as the piston of a vehicle engine, have a low coefficient of thermal expansion and excellent wear resistance, such as aluminum alloy (JIS AC8A). etc.) are used. In this piston, for example, repeated loads from the piston ring due to gas pressure act on the ring carrier portion for the top ring, so the high temperature strength of this portion is further improved to improve wear resistance and set resistance. This is requested.

このような耐摩耗性等を向上する方法として、従来例え
ばNi焼結体等を高圧凝固鋳造法によりA1合金で鋳ぐ
るむ方法があったが、この従来方法では、硬度が高く耐
摩耗性向上の主要因をなす金属間化合物層はほとんど生
成されず、しかもNi焼結体とAI1合金との接合強度
が不十分であるという問題があった。
Conventionally, as a method to improve wear resistance, etc., there was a method of casting Ni sintered bodies etc. with A1 alloy by high pressure solidification casting method, but with this conventional method, the hardness was high and the wear resistance was improved. There was a problem in that an intermetallic compound layer, which is the main factor, was hardly formed, and the bonding strength between the Ni sintered body and the AI1 alloy was insufficient.

また他の従来方法として、An溶湯にNi等の金属多孔
体を浸漬し、熱処理によってこれの表面にN1−An!
化合物層を形成し、その後金属多孔体をA1合金で鋳ぐ
るむようにしたものがあったが、この従来方法では製造
工程が複雑でコスト高になるとともに、N1−Al化合
物はNi多孔体の表面にしか形成されず、しかもA1合
金と上記Ni−Al化合物との接合強度が十分でないと
いう問題があった。
In another conventional method, a porous metal such as Ni is immersed in molten An, and the surface is coated with N1-An! by heat treatment.
There is a method in which a compound layer is formed and then the metal porous body is cast with A1 alloy, but this conventional method requires a complicated manufacturing process and increases costs, and the N1-Al compound is not deposited on the surface of the Ni porous body. Moreover, there was a problem that the bonding strength between the A1 alloy and the Ni--Al compound was insufficient.

そこで本願出願人は、耐摩耗性、耐ヘタリ性を向上でき
る方法として、Ni、Cu、Fe系の金属多孔体を加圧
力400 k g / c m 2以上の高圧鋳造法に
よりA1合金で鋳ぐるみ、その後450〜550℃に1
〜10時間加熱保持する金属間化合物生成処理を上記鋳
ぐるみ体に施すようにしたアルミニウム合金鋳物の製造
方法について出願している(特願昭58−87197号
参照)。この出願に係る上記製造方法では、金属多孔体
とAJ金合金の接合強度を高めつつ、金属間化合物層を
生成して高温強度を高め、耐摩耗性を向上できる利点が
あるが、上記金属多孔体であるNi発泡金属等はコスト
高であるという問題がある。
Therefore, as a method for improving wear resistance and settling resistance, the applicant of the present application casts Ni, Cu, and Fe-based metal porous bodies with A1 alloy using a high-pressure casting method with a pressing force of 400 kg/cm2 or more. , then 1 at 450-550℃
An application has been filed for a method of manufacturing an aluminum alloy casting in which the cast body is subjected to an intermetallic compound generation treatment by heating and holding for up to 10 hours (see Japanese Patent Application No. 87197/1983). The above manufacturing method according to this application has the advantage that it can increase the bonding strength between the metal porous body and the AJ gold alloy, generate an intermetallic compound layer to increase high temperature strength, and improve wear resistance. There is a problem in that the materials such as Ni foam metal are expensive.

〔発明の目的〕[Purpose of the invention]

本願発明の目的は、上記従来の問題点に鑑みてなされた
もので、耐摩耗性、耐ヘタリ性を大幅に向上でき、かつ
コストを低減できる複合部材及びその製造方法を提供す
る点にある。
An object of the present invention has been made in view of the above-mentioned conventional problems, and is to provide a composite member that can significantly improve wear resistance and set resistance, and reduce costs, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

そこで本願発明者は、上記目的を達成するために、低コ
ストで、しかも自己潤滑性を有する黒鉛を含有している
鋳鉄繊維でもってA1合金を強化すれば、コスト高にな
ることなく高温強度を向上でき、しかも耐摩耗性を向上
できる点に着目したものである。
Therefore, in order to achieve the above object, the inventor of the present application proposed that if the A1 alloy is reinforced with cast iron fibers containing graphite, which is low cost and has self-lubricating properties, high temperature strength can be achieved without increasing the cost. This method focuses on the fact that the wear resistance can be improved.

即ち、本願の第1の発明は、繊維強化型複合部材におい
て、自己潤滑性を有する黒鉛を分散含有する鋳鉄繊維か
らなる成形体をA1合金で鋳ぐるみ、このマトリックス
であるA1合金と強化部材である鋳鉄繊維成形体との境
界にAJと鉄成分との金属間化合物層を形成したもので
あり、これによりこの第1の発明では、硬度が大きい金
属間化合物層が生成されているとともに、自己潤滑性を
有する黒鉛が存在することから耐ヘタリ性及び耐摩耗性
が向上する。
That is, the first invention of the present application is a fiber-reinforced composite member in which a molded body made of cast iron fibers containing dispersed graphite having self-lubricating properties is cast in A1 alloy, and the matrix A1 alloy and the reinforcing member are cast together. An intermetallic compound layer of AJ and an iron component is formed at the boundary with a certain cast iron fiber molded body, and as a result, in this first invention, an intermetallic compound layer with high hardness is generated and self- The presence of graphite, which has lubricating properties, improves the settling resistance and wear resistance.

また、本願の第2の発明は、上記複合部材を製造する方
法において、黒鉛を分散含有する鋳鉄繊維を圧縮成形し
てなる鋳鉄繊維成形体を金型内に保持し、この成形体を
加圧力400kg/cm2以上の高圧凝固鋳造法により
、1合金で鋳ぐるみ、この鋳ぐるまれた複合鋳物素材を
450〜550℃の温度に1〜10時間加熱保持するこ
とにより、Aj!合金と鋳鉄繊維成形体との境界にAn
と鉄成分との化合物層を生成させる金属間化合物生成処
理を行なうようにしたものであり、これによりこの第2
の発明では、強度部材である鋳鉄繊維成形体とマトリッ
クスであるA1合金とが強固に密着するとともに、金属
間化合物層及び黒鉛が分散含有された複合部材が確実に
得られる。
Further, the second invention of the present application is a method for manufacturing the above-mentioned composite member, in which a cast iron fiber molded body formed by compression molding cast iron fibers containing dispersed graphite is held in a mold, and the molded body is compressed under pressure. By using a high-pressure solidification casting method of 400 kg/cm2 or more, one alloy is cast, and the cast composite casting material is heated and held at a temperature of 450 to 550°C for 1 to 10 hours to form Aj! An at the boundary between the alloy and the cast iron fiber compact
This is an intermetallic compound generation treatment that generates a compound layer of iron and iron components, and as a result, this second
In the invention, the cast iron fiber molded body serving as the strength member and the A1 alloy serving as the matrix are firmly adhered to each other, and a composite member in which the intermetallic compound layer and graphite are dispersed and contained can be reliably obtained.

ここで、上記高圧凝固鋳造法における加圧力を400k
g/cm2以上としたのは、以下の理由による。
Here, the pressurizing force in the above high pressure solidification casting method was set to 400 k.
The reason why it is set to be more than g/cm2 is as follows.

(11400k g / c m 2未満ではA1合金
鋳物自体の凝固組織及び機械的性質に及ぼす加圧の効果
が小さくてその品質を保証するのは困難である。
(If the pressure is less than 11,400 kg/cm2, the effect of pressurization on the solidified structure and mechanical properties of the A1 alloy casting itself is small, and it is difficult to guarantee its quality.

(2)  400 k g / c m 2未満では、
鋳鉄繊維成形体とA1合金との密着性が十分でなく、金
属間化合物生成処理において、両者の境界に良好なAl
と鉄成分との金属間化合物層を生成するのが困難である
(2) Below 400 kg/cm2,
The adhesion between the cast iron fiber molded body and the A1 alloy was insufficient, and during the intermetallic compound generation treatment, a good Al alloy was formed at the boundary between the two.
It is difficult to generate an intermetallic compound layer with iron and iron components.

また、上記金属間化合物生成処理において、処理温度を
450〜550℃とし、加熱保持時間を1〜10時間と
したのは以下の理由による。
Moreover, in the above-mentioned intermetallic compound generation treatment, the treatment temperature was set at 450 to 550° C., and the heating holding time was set at 1 to 10 hours for the following reason.

(1)  上記加熱温度が450℃未満では金属間化合
物生成に長時間を要するとともに、この化合物生成処理
をA1合金の溶体化処理と兼用する場合は十分な溶体化
処理ができず、また550℃を越えると、1合金鋳物臼
体の強度が低下してしまう。
(1) If the heating temperature is lower than 450°C, it will take a long time to generate intermetallic compounds, and if this compound generation treatment is also used as solution treatment for A1 alloy, sufficient solution treatment will not be possible; If it exceeds 1, the strength of the 1-alloy casting die will decrease.

(2)  加熱時間が1時間未満では十分な金属間化合
物層を形成できず、また10時間で金属間化合物層の生
成量がほぼ飽和し、10時間を越えて加熱するのは経済
的でない。
(2) If the heating time is less than 1 hour, a sufficient intermetallic compound layer cannot be formed, and the amount of intermetallic compound layer produced is almost saturated after 10 hours, so it is not economical to heat for more than 10 hours.

〔実施例〕〔Example〕

以下、本願発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図ないし第5図は本願の第1.第2の発明の第1の
実施例による複合部材であるディーゼルエンジン用ピス
トン及びその製造方法を説明するためのもので、該ピス
トン11はA1合金(AC8A)を用いて形成されてお
り、ピストン本体12の上部外周部には、上から順に各
々環状のトップリングill 3.セカンダリリング溝
14.オイルリング溝15が凹設されており、このトッ
プリング溝13は本実施例の複合部材であるリングキャ
リア16により構成されている。
Figures 1 to 5 are part 1 of the present application. This is for explaining a piston for a diesel engine which is a composite member according to the first embodiment of the second invention and a method for manufacturing the same, the piston 11 is formed using A1 alloy (AC8A), and the piston body is At the upper outer periphery of 12, there are annular top rings 3. Secondary ring groove 14. An oil ring groove 15 is recessed, and this top ring groove 13 is constituted by a ring carrier 16 which is a composite member of this embodiment.

上記リングキャリア16部分の金属組織を示す第1図、
その顕微鏡写真を示す第2図において、lはフェライト
2地にパーライト3及び黒鉛4が分散含有された強化部
材としての鋳鉄繊維、5はこの鋳鉄繊維5間に充填され
たマトリックスとしてのA1合金(JIS  AC8A
)であり、上記鋳鉄繊維lは直径10100l1長さl
Qmm程度の繊維状のダクタイル鋳鉄(FCD50)で
あり、これらの化学成分は第1表に示す通りである。そ
して上記Af金合金と鋳鉄繊維1との境界には該繊維1
の鉄成分とA/との金属間化合物層6が生成されている
FIG. 1 showing the metal structure of the ring carrier 16 portion,
In FIG. 2 showing the micrograph, 1 is a cast iron fiber as a reinforcing member in which pearlite 3 and graphite 4 are dispersed in a ferrite 2 base, and 5 is an A1 alloy (5) as a matrix filled between the cast iron fibers 5. JIS AC8A
), and the above cast iron fiber l has a diameter of 10100 l and a length l.
It is a fibrous ductile cast iron (FCD50) of about Qmm, and its chemical components are as shown in Table 1. The fiber 1 is located at the boundary between the Af gold alloy and the cast iron fiber 1.
An intermetallic compound layer 6 of the iron component and A/ is generated.

次に上記A1合金ピストン11の製造方法を第4図につ
いて説明する。
Next, a method of manufacturing the A1 alloy piston 11 will be explained with reference to FIG.

(I)まず、例えばびびり振動切削により鋳鉄繊維を形
成し、この鋳鉄繊維を第4図(21)に示す環状の繊維
成形体であるリングキャリア16にプレス成形する。こ
こで、上記鋳鉄繊維は上述のとおり直径10100II
長さ10mm程度の大きさで、1.5%以上の黒鉛を含
有するものが望ましく、ま第1表 たリングキャリア16の繊維体積含有率Vfは本実施例
では20%であるが、10〜70%が望ましい。この繊
維体積含有率Vfが10%以下の場合は成形体を製作す
ることが困難となり、また黒鉛及び金属間化合物層の分
散量(面積率0.5%以上が好ましい)からもVflO
%以上が望ましく、またVf70%以上の場合は成形体
の空孔にA1合金を充填するのが困難となる。
(I) First, cast iron fibers are formed by, for example, chatter vibration cutting, and the cast iron fibers are press-molded into a ring carrier 16 which is an annular fiber molded body shown in FIG. 4 (21). Here, the cast iron fiber has a diameter of 10100 II as described above.
It is desirable that the ring carrier 16 has a length of about 10 mm and contains 1.5% or more of graphite, and the fiber volume content Vf of the ring carrier 16 shown in Table 1 is 20% in this embodiment, but it is 10 to 10%. 70% is desirable. If this fiber volume content Vf is less than 10%, it will be difficult to produce a molded body, and also from the amount of dispersion of the graphite and intermetallic compound layer (preferably an area ratio of 0.5% or more), VflO
% or more, and if Vf is 70% or more, it becomes difficult to fill the pores of the compact with the A1 alloy.

(I[)上記リングキャリア16を不活性ガス雰囲気中
、あるいは真空中で、例えば1150℃で焼結する。こ
の焼結処理は成形体の形状保持力を増大して鋳ぐるみ時
の形状崩れを防止するために行なう。
(I[) The ring carrier 16 is sintered at, for example, 1150° C. in an inert gas atmosphere or in a vacuum. This sintering treatment is performed in order to increase the shape retention of the molded body and prevent the shape from collapsing during casting.

なお、この焼結処理は繊維成形体の形状保持力の要求大
きさによっては必ずしも必要ではない。
Note that this sintering treatment is not necessarily necessary depending on the required shape retention strength of the fiber molded body.

(III)次に、上記リングキャリア(&ili維成形
体成形体へのA4合金溶湯の充填性をより向上させるた
めに約300℃に加熱して該リングキャリア16を第4
図(b)に示す金型22の所定位置に装着する。この金
型22は上型22a、中型22b、及び下型22cから
構成されており、これらの型で囲まれた空間がピストン
と同じ形状のキャビティ23となっており、上記リング
キャリア16はこのキャビティ23のトップリング部に
相当する部分に位置している。なお、上述のようなリン
グキャリア16の加熱は必ずしも必要ではない。
(III) Next, in order to further improve the filling properties of the A4 alloy molten metal into the ring carrier (&ili fiber molded body), the ring carrier 16 is heated to about 300° C.
It is attached to a predetermined position of the mold 22 shown in FIG. 2(b). This mold 22 is composed of an upper mold 22a, a middle mold 22b, and a lower mold 22c, and the space surrounded by these molds is a cavity 23 having the same shape as a piston, and the ring carrier 16 is inserted into this cavity. It is located at a portion corresponding to the top ring portion of No. 23. Note that heating the ring carrier 16 as described above is not necessarily necessary.

(IV)上記キャビティ23内に/1合金(AC8A’
)溶湯を下型22cに形成された溶湯供給口22dから
供給し、しかる後この溶湯に400kg/cm2以上、
本実施例では1000k g / c m2の圧力を加
える。すると、この加圧により上記A1合金溶湯がリン
グキャリア16の全ての繊維間に充填され、これにより
リングキャリア16が高圧凝固鋳造法によりA1合金で
鋳ぐるまれた複合鋳物素材が形成される。
(IV) Inside the cavity 23, /1 alloy (AC8A'
) The molten metal is supplied from the molten metal supply port 22d formed in the lower die 22c, and then the molten metal is heated to a rate of 400 kg/cm2 or more,
In this example, a pressure of 1000 kg/cm2 is applied. Then, due to this pressurization, the molten metal of the A1 alloy is filled between all the fibers of the ring carrier 16, thereby forming a composite casting material in which the ring carrier 16 is cast with the A1 alloy by the high-pressure solidification casting method.

、(■)そして上記複合鋳物素材を熱処理炉内に装入し
、これに金属間化合物生成処理を施す。この処理は上記
鋳鉄繊維とAJ金合金の境界にFe−Al1金属間化合
物を生成するための処理で、上記複合鋳物素材を450
〜550°Cの温度で1〜10時間加熱保持することに
よりなすものであり、本実施例ではA1合金の溶体化処
理を兼ねるために、510℃に6時間保持した後に水焼
入れを行ない、さらに170℃に7時間保持して焼戻し
を行なう処理(T−6処理)を施す。するとこれにより
リングキャリア16部分に第1図及び第2図に示す金属
組織を有するピストン素材21が得られ、この熱処理後
の黒鉛含有量は約2.3%であった。
, (■) Then, the above composite casting material is charged into a heat treatment furnace and subjected to an intermetallic compound generation treatment. This treatment is to generate Fe-Al1 intermetallic compound at the boundary between the cast iron fiber and the AJ gold alloy, and the composite casting material is
This is done by heating and holding at a temperature of ~550°C for 1 to 10 hours, and in this example, in order to also serve as solution treatment for the A1 alloy, water quenching is performed after holding at 510°C for 6 hours, and further Tempering treatment (T-6 treatment) is performed by holding at 170° C. for 7 hours. As a result, a piston material 21 having the metal structure shown in FIGS. 1 and 2 was obtained in the ring carrier 16 portion, and the graphite content after this heat treatment was about 2.3%.

(Vl)最後に上記ピストン素材21に所定の切削加工
により第4図(b)に二点鎖線で示すトップリング溝1
3.セカンダリリング溝14.オイルリング溝15を形
成する。すると、これにより第3図に示すA1合金ピス
トン11が得られる。
(Vl) Finally, the piston material 21 is cut into the top ring groove 1 shown by the two-dot chain line in FIG. 4(b).
3. Secondary ring groove 14. An oil ring groove 15 is formed. Then, the A1 alloy piston 11 shown in FIG. 3 is obtained.

第5図は上記実施例による複合部材であるリングキャリ
ア16部分の耐摩耗性向上効果を説明するためのピン−
ディスク方式による摩耗試験の結果を示し、これは鋳鉄
製ディスクをその周速が0.5m / 3となるよう回
転駆動し、これに試験片であるピンを荷重300gでも
って押圧して、摩擦距離(km)に対する試験片の摩耗
量(cm3)を測定したものである。
FIG. 5 shows pins for explaining the effect of improving the wear resistance of the ring carrier 16 portion which is a composite member according to the above embodiment.
The results of a wear test using the disk method are shown.A cast iron disk is rotated at a circumferential speed of 0.5 m/3, and a test specimen pin is pressed against it with a load of 300 g to determine the friction distance. The wear amount (cm3) of the test piece was measured against (km).

図において、曲線Aは本実施例による鋳鉄繊維複合部材
の摩耗量を示し、曲線B、C,及びDは各々ニレジスト
鋳鉄、炭素鋼(S 45 c)繊維複合部材、及びA/
金合金AC8A)をT−6処理したものの摩耗量を示す
In the figure, curve A shows the wear amount of the cast iron fiber composite member according to this example, and curves B, C, and D show the wear amount of the Niresist cast iron, carbon steel (S 45 c) fiber composite member, and A/
The wear amount of gold alloy AC8A) subjected to T-6 treatment is shown.

図から明らかなように、例えば摩擦距離2.0kmにて
比較すれば、本実施例の複合部材(曲線A)の摩耗量は
、A1合金にT−6処理を施した場合(曲線D)の約1
15であり、炭素鋼繊維複合部材(曲線C)の約1/2
であり、このように本実施例ではこれらに比べて耐摩耗
性が大幅に向上していることがわかる。このように摩耗
量に大きな差異が生じたのは、A1合金の場合はT−6
処理を施しても耐摩耗性を向上させるための主要因であ
る全屈間化合物は生成されないからであり、また炭素鋼
繊維で強化した場合は、本実施例のような自己潤滑性を
有する黒鉛は存在しないからである。
As is clear from the figure, for example, when compared at a friction distance of 2.0 km, the amount of wear of the composite member of this example (curve A) is lower than that of the case where T-6 treatment is applied to A1 alloy (curve D). Approximately 1
15, about 1/2 of the carbon steel fiber composite member (curve C)
Thus, it can be seen that the wear resistance of this example is significantly improved compared to these. The reason why there was such a large difference in the amount of wear was that in the case of A1 alloy, T-6
This is because even if the treatment is applied, total interflexural compounds, which are the main factor for improving wear resistance, are not generated, and when reinforced with carbon steel fibers, graphite, which has self-lubricating properties as in this example, is not produced. This is because it does not exist.

また、ニレジスト鋳鉄(曲線B)は本実施例の複合部材
より若干摩耗量が少ないが、このニレジスト鋳鉄はA1
合金母材をT−6処理した場合、母材との接合性が悪く
、この点から本実施例の複合部材の方が有利である。
In addition, Niresist cast iron (curve B) has slightly less wear than the composite member of this example, but this Niresist cast iron has A1
When the alloy base material is subjected to T-6 treatment, the bondability with the base material is poor, and from this point of view, the composite member of this example is more advantageous.

第6図は本願の第1.第2の発明の第2の実施例による
ガソリンエンジンのピストンピン31を示し、図におい
て31bはピン本体で、これは5%A/!203を分散
含有するAC8Bからなり、このピン本体31bの両端
部外表面には摺動部31aが形成されており、この摺動
部31aは鋳鉄(FCD40)繊維によりA1合金を強
化した複合部材であり、このAC8B、FCD40の化
学成分は第1表に示す通りである。
FIG. 6 is part 1 of the present application. A piston pin 31 for a gasoline engine according to a second embodiment of the second invention is shown, and in the figure, 31b is the pin body, which is 5% A/! A sliding part 31a is formed on the outer surface of both ends of the pin body 31b, and this sliding part 31a is a composite member made of A1 alloy reinforced with cast iron (FCD40) fibers. The chemical components of AC8B and FCD40 are shown in Table 1.

この実施例の繊維体積含有率Vfは50%で、高圧凝固
鋳造圧力は1000 k g / c m 2であり、
熱処理は515°Cに5時間加熱保持し、水焼入れ後、
170℃に7時間保持する焼戻しを行なった。本実施例
では熱処理後の黒鉛含有量は約2.3%であり、耐摩耗
性、耐ヘタリ性ともに大幅に向上できた。
The fiber volume content Vf of this example is 50%, the high pressure solidification casting pressure is 1000 kg/cm2,
Heat treatment was performed by heating and holding at 515°C for 5 hours, and after water quenching,
Tempering was performed by holding at 170°C for 7 hours. In this example, the graphite content after heat treatment was approximately 2.3%, and both wear resistance and set resistance were significantly improved.

第7図は本願の第1.第2の発明の第3の実施例による
アジヤスティングディスク41を示し、これはエンジン
のカムとバルブとの間に装着されるもので、このアジヤ
スティングディスク41の下部41bはA1合金(ΔC
8A)をSiCウィスカーで、上部41aは鋳鉄(FC
D70)繊維で強化したものであり、このFCD70の
化学成分は第1表に示す通りである。
FIG. 7 is part 1 of the present application. An adjusting disc 41 according to a third embodiment of the second invention is shown, which is installed between an engine cam and a valve.
8A) is made of SiC whiskers, and the upper part 41a is made of cast iron (FC
D70) is reinforced with fibers, and the chemical components of this FCD70 are as shown in Table 1.

この実施例の繊維体積含有率vrは上部41aが70%
で、下部41bが10%であり、熱処理は上記第1の実
施例と同じである。本実施例では熱処理後の上部4aの
黒鉛含有量は約2.3%であり、摺動特性を向上して耐
摩耗性を向上でき、かつ高温強度の向上、軽量化を達成
できた。
The fiber volume content vr of this example is 70% in the upper part 41a.
The lower portion 41b is 10%, and the heat treatment is the same as in the first embodiment. In this example, the graphite content of the upper part 4a after heat treatment was about 2.3%, and it was possible to improve the sliding characteristics and wear resistance, and also to achieve improvement in high-temperature strength and weight reduction.

なお、上記第1〜第3の実施例では、本発明をピストン
、ピストンピン、アジヤスティングディスクに適用した
場合について説明したが、本発明は勿論これ以外のもの
、例えば第8図に示すコンロッド51にも適用できる。
In the first to third embodiments described above, the present invention was applied to a piston, a piston pin, and an adjusting disk, but the present invention is of course applicable to other devices, such as the connecting rod 51 shown in FIG. It can also be applied to

このコノロッド51ではその小端部51aの摺動部51
b及び大端部51cの摺動部51dを鋳鉄繊維複合部材
で形成すれば該部分の耐摩耗性、耐ヘタリ性を向上でき
る。
In this conorod 51, the sliding portion 51 of the small end 51a
If the sliding portion 51d of the large end portion 51c and the sliding portion 51d of the large end portion 51c are formed of a cast iron fiber composite member, the wear resistance and set-off resistance of these portions can be improved.

〔発明の効果〕〔Effect of the invention〕

このように、本願の第1の発明では、補強部材として低
コストで、しかも自己潤滑性を有する黒鉛を分散含有す
る鋳鉄繊維を利用し、この鋳鉄繊維とA1合金との境界
にA1と鉄成分との金属間化合物層を形成したので、硬
度の高いF e −A 1化合物及び自己潤滑性を有し
摩擦係数を低下する黒鉛が存在し、耐摩耗性、耐ヘタリ
性を向上できる効果があり、またコストを低減できる効
果がある。
As described above, in the first invention of the present application, cast iron fibers containing graphite dispersed therein, which are low in cost and have self-lubricating properties, are used as reinforcing members, and A1 and iron components are added at the boundary between the cast iron fibers and the A1 alloy. Since an intermetallic compound layer is formed with the F e -A 1 compound having high hardness and graphite which has self-lubricating properties and reduces the friction coefficient, it has the effect of improving wear resistance and set resistance. , and also has the effect of reducing costs.

また、本願の第2の発明では、黒鉛を分散含有する鋳鉄
繊維成形体を高圧凝固鋳造法によりA2合金で鋳ぐ乞み
、このiぐるまれ入複合鋳物素材にA7!と鉄成分との
金属間化合物層を生成するための処理を施したので、A
6合金が鋳鉄繊維成形体の全体にわたって十分に充填さ
れ、鋳鉄繊維と確実に密着されるとともに、全体にわた
ってFe−Aβ金属間化合物が生成され、A/金合金鋳
鉄繊維との接合力が強く、低コストで耐摩耗性、耐ヘタ
リ性の優れた複合部材が得られる効果がある。
In addition, in the second invention of the present application, a cast iron fiber molded body containing dispersed graphite is cast with A2 alloy by high pressure solidification casting method, and this I-Grounded composite casting material is made of A7! Since the treatment was carried out to generate an intermetallic compound layer between
6 alloy is sufficiently filled throughout the cast iron fiber molded body and firmly adheres to the cast iron fiber, and Fe-Aβ intermetallic compound is generated throughout the cast iron fiber molded body, and the bonding force with the A/gold alloy cast iron fiber is strong. This has the effect of providing a composite member with excellent wear resistance and set resistance at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の第1.第2の発明の第1の実施例による
複合部材の金属組織を示す図、第2図はその金属組織を
示す図面に代わる顕微鏡写真、第3図及び第4図は上記
第1の実施例を説明するためのもので、第3図はそのピ
ストンの断面正面図、第4図(alはそのリングキャリ
アの斜視図、第4図山)はその高圧凝固鋳造法における
金型の断面図、第4図(C1はそのピストン素材のリン
グキャリア部分の断面図、第5図はその効果を説明する
ための摩擦距離−摩耗量特性図、第6図ないし第8図は
各々本願の第1.第2の発明の他の実施例を説明するた
めの断面図、斜視図、側面図である。 1・・・鋳鉄繊維、4・・・黒鉛、5・・・A1合金、
6・・・Fe−AJ化合物層、11,31,41.51
・・・ピストン、ピストンピン、アジヤスティングディ
スク、コンロ7ド(複合部材)、1G・・・リングキャ
リア(鋳鉄繊維成形体)、22・・・金型。 特 許 出 願 人 マツダ株式会社 代理人   弁理士 早 瀬 憲 − 第1 図 第2図 第3図 第4図 第5図 摩擦距紐/km− 第6図 fs7図 I!+1 1b 第8図
FIG. 1 is part 1 of the present application. A diagram showing the metallographic structure of a composite member according to the first embodiment of the second invention, FIG. 2 is a photomicrograph in place of a drawing showing the metallographic structure, and FIGS. For explanation purposes, Fig. 3 is a cross-sectional front view of the piston, Fig. 4 (al is a perspective view of the ring carrier, and the crest in Fig. 4) is a sectional view of the mold in the high-pressure solidification casting method. Figure 4 (C1 is a sectional view of the ring carrier portion of the piston material, Figure 5 is a friction distance vs. wear amount characteristic diagram for explaining the effect, and Figures 6 to 8 are each a cross-sectional view of the ring carrier portion of the piston material. They are a sectional view, a perspective view, and a side view for explaining other embodiments of the invention of No. 2. 1... Cast iron fiber, 4... Graphite, 5... A1 alloy,
6...Fe-AJ compound layer, 11,31,41.51
... Piston, piston pin, adjusting disc, stove 7 (composite member), 1G... ring carrier (cast iron fiber molded body), 22... mold. Patent applicant Ken Hayase, agent of Mazda Motor Corporation - Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Friction tread/km - Fig. 6 fs7 Fig. I! +1 1b Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)空孔にアルミニウム合金が充填されて鋳ぐるまれ
た鋳鉄繊維成形体と、該鋳鉄繊維成形体に分散含有され
ている黒鉛と、該鋳鉄繊維成形体とアルミニウム合金と
の境界に形成されたアルミニウムと鋳鉄繊維成形体の鉄
成分との化合物層とから構成されていることを特徴とす
る耐摩耗性に優れた複合部材。
(1) A cast iron fiber molded body whose pores are filled with aluminum alloy and cast, graphite dispersed in the cast iron fiber molded body, and graphite formed at the boundary between the cast iron fiber molded body and the aluminum alloy. A composite member with excellent wear resistance, characterized in that it is composed of a compound layer of aluminum and the iron component of a cast iron fiber molded body.
(2)圧縮成形され黒鉛を分散含有する鋳鉄繊維成形体
を金型内に保持して該金型内にアルミニウム合金の溶湯
を注入し、その後、加圧力400kg/cm^2以上の
高圧凝固鋳造法で上記鋳鉄繊維成形体を鋳ぐるんだ複合
鋳物素材を成形し、次に、該複合鋳物素材を450〜5
50℃の温度で1〜10時間加熱保持して上記鋳鉄繊維
成形体と上記アルミニウム合金との境界にアルミニウム
と該成形体の鉄成分との化合物層を生成する金属間化合
物生成処理を施すことを特徴とする耐摩耗性に優れた複
合部材の製造方法。
(2) A compression-molded cast iron fiber molded body containing dispersed graphite is held in a mold, and molten aluminum alloy is injected into the mold, followed by high-pressure solidification casting with a pressing force of 400 kg/cm^2 or more. A composite casting material is formed by casting the above-mentioned cast iron fiber molded body by the method, and then the composite casting material is
An intermetallic compound generation treatment is performed by heating and holding at a temperature of 50 ° C. for 1 to 10 hours to generate a compound layer of aluminum and the iron component of the molded product at the boundary between the cast iron fiber molded product and the aluminum alloy. A manufacturing method for composite parts with excellent wear resistance.
JP820985A 1985-01-18 1985-01-18 Composite member superior in wear resistance and its manufacture Granted JPS61166935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP820985A JPS61166935A (en) 1985-01-18 1985-01-18 Composite member superior in wear resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP820985A JPS61166935A (en) 1985-01-18 1985-01-18 Composite member superior in wear resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPS61166935A true JPS61166935A (en) 1986-07-28
JPH0564223B2 JPH0564223B2 (en) 1993-09-14

Family

ID=11686850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP820985A Granted JPS61166935A (en) 1985-01-18 1985-01-18 Composite member superior in wear resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS61166935A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867517A1 (en) * 1997-03-26 1998-09-30 VAW motor GmbH Composite with an aluminium matrix and a method for its production
WO2008145001A1 (en) * 2007-05-31 2008-12-04 Jiahui Hu A composite metallic product
CN102051558A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Wear resistant damping tinplate material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867517A1 (en) * 1997-03-26 1998-09-30 VAW motor GmbH Composite with an aluminium matrix and a method for its production
WO2008145001A1 (en) * 2007-05-31 2008-12-04 Jiahui Hu A composite metallic product
CN102051558A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Wear resistant damping tinplate material and preparation method thereof

Also Published As

Publication number Publication date
JPH0564223B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
KR950014939B1 (en) Reinforced pistons
US4671491A (en) Valve-seat insert for internal combustion engines and its production
US5119777A (en) Light alloy piston
CA2081048C (en) Nickel coated carbon preforms
JPS5830361B2 (en) Method for manufacturing wear-resistant parts for internal combustion engines
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
JP3007868B2 (en) Porous metal body, light alloy composite member, and production method thereof
JPH10265870A (en) Aluminum-base composite material and its production
US2753858A (en) Valve seat insert ring
US5341866A (en) Method for the incorporation of a component into a piston
US20100116240A1 (en) Multi-piece thin walled powder metal cylinder liners
JPS61166935A (en) Composite member superior in wear resistance and its manufacture
JP3850357B2 (en) Porous metal structure
JPH0230790B2 (en)
KR101636762B1 (en) Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it
JPS6293058A (en) Production of composite member
JP2560096B2 (en) Method of manufacturing compound piston for internal combustion engine
JPS613809A (en) Manufacture of composite member
JPH0330709B2 (en)
JPS6184304A (en) Method for joining metallic member to ceramic member
JPS5922272Y2 (en) piston
JPH0330708B2 (en)
JPH0696187B2 (en) Abrasion resistant composite member and its manufacturing method
JP3577748B2 (en) Metal-based composite and method for producing the same
JPS5922273Y2 (en) piston