JPS6312121B2 - - Google Patents

Info

Publication number
JPS6312121B2
JPS6312121B2 JP55138578A JP13857880A JPS6312121B2 JP S6312121 B2 JPS6312121 B2 JP S6312121B2 JP 55138578 A JP55138578 A JP 55138578A JP 13857880 A JP13857880 A JP 13857880A JP S6312121 B2 JPS6312121 B2 JP S6312121B2
Authority
JP
Japan
Prior art keywords
graphite
punch
inner plug
upper punch
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55138578A
Other languages
Japanese (ja)
Other versions
JPS5763603A (en
Inventor
Yoshinobu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13857880A priority Critical patent/JPS5763603A/en
Publication of JPS5763603A publication Critical patent/JPS5763603A/en
Publication of JPS6312121B2 publication Critical patent/JPS6312121B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性、摺動性に優れたアルミニウ
ム―シリコン―グラフアイト製シリンダーライナ
ーの製造方法に関するものである。 ここで言うシリンダーライナーとは、内燃機関
や圧縮機等において往復するピストンと内壁が摺
動する部品である。 Al―Siグラフアイト製シリンダーライナーは、
自動車用エンジンをはじめ、各種内燃機関や圧縮
機等に使用すると、著しく機関の寿命や効率を高
めることが知られている。しかしながら、グラフ
アイトを均一に分散させることは容易でなく、例
えば、Niめつきを施したグラフアイト粉末をAl
合金溶湯に投入し、圧力下で鋳造する等の高価な
製造工程を必要としていた。しかも、このように
して得られたAl―Siクラフアイト合金は、Siの
析出粒子が数+μmか数千μmと粗く、又グラフア
イトも同様に粗く、従つてシリンダーライナーと
しての性能も充分でないものであつた。 一方、粉末治金法でAl―Si―クラフアイト製
シリンダーライナーを作る方法として、通常の型
押と焼結による方法は、Alが難焼結材である上
に、添加されたグラフアイトが焼結を阻害するた
めに、シリンダーライナーとして必要な強度が得
られず、実用に至らなかつた。 又、粉末を熱間で押出す方法も試みられたが、
シリンダーライナーのような薄肉のパイプを粉末
熱間押出しするのが技術的に困難であり、更に熱
間押出設備が大型化せざるを得ず、やはり実用に
至らなかつた。 又、粉末熱間鍜造によつて製造する試みは、薄
肉円筒の圧縮による高密度化が困難であるため、
充分な高密度化が計れず、従つて満足な性能が得
られなかつた。 静水圧成形法によつて真密度の粉末体を得る方
法は、既に種々の合金やセラミツクスで実用化さ
れており、Al―Siグラフアイト合金への応用も
容易に類推することができたが、Al―Si合金粉
末の難焼結性故に、未だ成功していなかつた。 何故ならAlやAl合金粉末は、その粒子表面に
極めて薄いが、強固な、還元不可能なアルミナ等
の酸化膜を有している。この酸化膜は基地層から
の溶媒原子、即ちAlの原子の拡散を阻害するの
で、Alの焼結が殆んど生じない原因となる。 従つて熱間静水圧成形によつて、個々のAl又
はAl合金粉末粒子は塑性変形し、空孔を殆んど
消滅させることができるにも拘わらず、粉末粒子
間の化学的又は物理的な結合力が皆無で、機械的
な結合力のみであるため、充分な機械的性能を得
ることができなかつた。 本発明は、上述の問題点を解決するため成され
たもので、Al―Si―グラフアイトにFe,Cu,
Mg,Niの1種以上を混合し、従来の粉末熱間鍜
造方法におけるコイニング法の欠点を避け、これ
とは全く異なる発想によつて、熱間後方押出しを
行なうと同時に余分の底部を打ち抜く方法をとる
ことにより、大規模な押出機や熱間静水圧成形機
を用いずに、均質で、精度が良く、耐摩耗性、摺
動性に優れたシリンダーライナーを容易に、かつ
経済的に製造する方法を提供せんとするものであ
る。 本発明は、Si10〜20重量%、グラフアイト1〜
10重量%、およびFe,Cu,Mg,Niより成る群
から選ばれた1種又は2種以上の元素を合金元素
として各0.3〜7重量%含有し、残部Alより成る
粉末混合体を型押成形した予備成形体を加熱し、
それぞれの上端面を一致させた中空下杵とその内
側の中栓を底部に挿入した円筒形内面を有する臼
内に、上記予備成形体を挿入し、該成形体に上杵
を圧入して後方押出しを行なつた後、上記中栓の
みを下方へ後退させると同時に上記上杵を上記中
栓の後退した空隙に進入させて、上記押出成形体
の底面を円板状に打ち抜くことを特徴とするシリ
ンダーライナーの製造方法である。 本発明において、粉末混合体中のSiを10〜20重
量%(以下、単に%と記す)に規定したのは、シ
リンダーライナーとしてSi10%未満の亜共晶合金
は、共晶Si粒子析出量は少なく、耐摩耗性が充分
でなく、一方Si20%を越えると、成形体が塑性変
形中に割れを生じ易くなるため、避けなければな
らない。 又グラフアイトを1〜10%と規定したのは、固
体潤滑剤としての機能を果すグラフアイトを添加
する場合、10%を越えるとやはり成形体が塑性変
形中に割れを生じるため、良好なシリンダーライ
ナーを得ることができず、又1%未満ではグラフ
アイト添加の効果が顕著でなく、潤滑性が不足し
て耐摩耗性が不充分となるためである。 又合金元素としてのFe,Cu,Mg,Niより成
る群から選ばれた1種又は2種以上の元素を各
0.3〜7%と規定したのは、これらの元素はいず
れもAl素材を析出硬化等によつて強化するため
に選ばれた元素であり、各元素の添加量が0.3%
未満では、いずれも強化のための効果が顕著でな
く、又7%を越えると、いずれも析出物が過剰と
なつて脆化するため、塑性変形が困難となるため
に、ふさわしくないからである。 これらの元素および前述のSiは、Al中に添加
して溶製した合金を粉末にして用いることが好ま
しい。 以下、本発明を図面を用いて実施例により説明
する。 先ず所要量の、Siと、Fe,Cu,Mg,Niより
成る群から選ばれた1種以上の元素を添加した
Al合金粉末と所要量のグラフアイトを混合した
後、型押成形して、例えばタブレツト形状又はリ
ング形状の予備成形体を作成する。 第1図〜第3図は予備成形体としてタブレツト
形状のものを用いる本発明方法の実施例を工程順
に説明する縦断面図である。 第1図において、1は円筒形内面を有する臼
で、その底部には中空下杵3と中栓4が挿入され
ている。中栓4は中空下杵3の中心に挿入され、
中空下杵3の上端面5と中栓4の上端面6は一致
するよう保持されている。 このような臼1内に前述のタブレツト形状の予
備成形体7を挿入し、その上より中栓4と同じ径
を有する上杵2をプレスにより圧入する。 なお図では予備成形体7としてタブレツト形状
のものを用いているが、リング形状のものを用い
ることも可能であり、最終形状によつてはかえつ
て効果的な場合もある。 上述の圧入により、予備成形体7は、第2図に
示すように後方押出しされて底面9を有するキヤ
ツプ状の押出成形体8が形成される。第2図、第
3図において第1図と同一の符号はそれぞれ同一
の部分を示す。 第2図は、中空下杵3と中栓4をその上端面
5,6を一致させた状態に維持しながら、成形体
に上杵2を圧入する状態を示す。この際予備成形
体は著しい剪断変形応力を受け、フローが生じる
ため、空孔は消滅し、上杵2と臼1の間の空隙に
押出され、超高密度の押出成形体8が形成され
る。 次に、第3図に示すように、中栓4を、中空下
杵3中を下向(矢印方向)に後退させると共に、
上杵2を中栓4の後退によつて生じた空隙に進入
させると、図に示すように、押出成形体8より余
分な底面9を円板状に打ち抜くことができる。こ
の場合、上杵2を後退させながら中栓4を逆に上
昇させて、同様に打ち抜くことも可能であるが、
プレスの動作が複雑となるので、一般的には好ま
しくない。 上述の一連の工程において、臼1と上杵2およ
び下杵4との連動は必ずしも必要でないが、予備
成形体7の塑性変形時のフローが大きいため、金
型との摩耗を防止するために、臼1はいわゆるフ
ローテイングダイ法をとり、上杵2の加圧下降と
共に、下方へ連動する方が望ましい。 第4図〜第6図は予備成形体としてリング形状
のものを用いる本発明方法の実施例を工程順に説
明する断面図である。 第1図〜第3図と同一部分は同一符号で示す。
第4図で円筒形内面を有する臼1の底部に中空下
杵3、中栓4が挿入され、中栓4は中空下杵3の
中心に挿入され、中空下杵3の上端面5と中栓4
の上端面6が一致するように保持されること及
び、その後装置各部の動作については第1図〜第
3図で示したものと変るところがない。 このような臼1内にリング形状の予備成形前
7′を挿入する。いうまでもないが、予備成形体
7′のリング内径は対向し、同じ径を有する上杵
2と中栓4の径より大きく、外径は臼1の内径に
ほぼ一致する形状で適当な厚みを有するものであ
る。 第5図に示すように、下杵3と中栓5の上端面
5,6を一致させた状態に維持しながら、予備成
形体7′に上杵2を圧入すれば、予備成形体は著
しい剪断変成応力を受け、フローが生じ、空孔は
消滅し、上杵2と臼1の間の空隙に押出され、超
高密度の押出成形体8′が形成される。 次に、第6図に示すように、中栓4を、中空下
杵3中を下向(矢印方向)に後退させると共に、
上杵2を中栓4の後退によつて生じた空隙に進入
させると、図に示すように、押出成形体8′より
余分な底面9′を打ち抜くことができる。 実施例: Al―12%Si―1.1%Cu―1.2%Mg―0.9%Fe合金
粉末にグラフアイト粉末5%を添加混合した後、
プレスにて型押成形し、外径32mm、厚さ20mmのタ
ブレツト状及び外径32mm、内径16mm、厚さ25mmの
リング状の予備成形体を作成した。この成形体を
500℃に加熱した後、メカニカルブレスにセツト
した第1図に示すような金型の臼1内に挿入し、
第1図〜第3図、第4図〜第6図に示す方法で後
方押出しを行ない、外径32mm、内径28mm、高さ50
mmのシリンダーライナーを作成した。 又比較のため、同一のAl合金―グラフアイト
混合粉末体を、500℃で熱間静水圧成形や500℃で
減面率80%の熱間粉末押出しにより同じ寸法のパ
イプ状試料を作成した。 これらの試料を、第7図に示す様に上、中、下
部3ケ所を厚み10mmの輪切りにしたテスト片の密
度及び圧環強度を測定した結果は表1に示す通り
である。
The present invention relates to a method for producing an aluminum-silicon-graphite cylinder liner that has excellent wear resistance and sliding properties. The cylinder liner referred to here is a component in internal combustion engines, compressors, etc. whose inner wall slides against a reciprocating piston. Al-Si graphite cylinder liner is
It is known that when used in automobile engines, various internal combustion engines, compressors, etc., it significantly increases the engine life and efficiency. However, it is not easy to uniformly disperse graphite, and for example, Ni-plated graphite powder is mixed with Al-plated graphite.
This required expensive manufacturing processes such as pouring into molten alloy and casting under pressure. Moreover, the Al-Si craftite alloy obtained in this way has coarse precipitated Si particles of several micrometers or several thousand micrometers, and the graphite is similarly coarse, so its performance as a cylinder liner is not sufficient. It was hot. On the other hand, as a method for making Al-Si-craftite cylinder liners using powder metallurgy, the usual method of embossing and sintering is difficult to sinter, and the added graphite is difficult to sinter. As a result, the strength necessary for cylinder liners could not be obtained, and it was not put into practical use. A method of hot extruding the powder was also attempted, but
It is technically difficult to hot extrude powder into a thin-walled pipe such as a cylinder liner, and the hot extrusion equipment has to be enlarged, so it has not been put to practical use. In addition, attempts to manufacture by powder hot forging are difficult to achieve high density by compression of thin-walled cylinders.
Sufficient densification could not be achieved, and therefore, satisfactory performance could not be obtained. The method of obtaining true-density powder by isostatic pressing has already been put to practical use with various alloys and ceramics, and it was easy to imagine its application to Al-Si graphite alloys. It has not yet been successful due to the difficulty of sintering Al--Si alloy powder. This is because Al or Al alloy powder has an extremely thin but strong irreducible oxide film of alumina or the like on its particle surface. This oxide film inhibits the diffusion of solvent atoms, ie, Al atoms, from the base layer, which causes almost no sintering of Al. Therefore, although hot isostatic pressing can plastically deform individual Al or Al alloy powder particles and almost eliminate pores, chemical or physical Since there was no bonding force, only mechanical bonding force, sufficient mechanical performance could not be obtained. The present invention was made to solve the above-mentioned problems.
By mixing one or more of Mg and Ni, the disadvantages of the coining method in the conventional powder hot forging method are avoided, and by using a completely different idea, hot backward extrusion is performed and the excess bottom is punched out at the same time. By adopting this method, it is possible to easily and economically produce cylinder liners that are homogeneous, have good precision, and have excellent wear resistance and sliding properties without using large-scale extruders or hot isostatic pressing machines. The purpose is to provide a manufacturing method. In the present invention, 10 to 20% by weight of Si and 1 to 20% of graphite
A powder mixture containing 10% by weight and 0.3 to 7% by weight each of one or more elements selected from the group consisting of Fe, Cu, Mg, and Ni as alloying elements, and the balance consisting of Al is pressed. Heating the formed preform,
The above preformed body is inserted into a mortar having a cylindrical inner surface in which a hollow lower punch whose upper end surfaces are aligned and a middle stopper inside thereof is inserted into the bottom, and the upper punch is press-fitted into the molded body and the upper punch is inserted backward After extrusion, only the inner stopper is retreated downward, and at the same time, the upper punch is entered into the space into which the inner stopper has retreated, thereby punching out the bottom surface of the extrusion molded body into a disk shape. This is a method for manufacturing cylinder liners. In the present invention, the Si content in the powder mixture is specified to be 10 to 20% by weight (hereinafter simply referred to as %).The reason why a hypoeutectic alloy containing less than 10% Si as a cylinder liner is that the amount of eutectic Si particles precipitated is If it is too low, the wear resistance will not be sufficient, while if it exceeds 20%, the molded product will be prone to cracking during plastic deformation, so it must be avoided. Furthermore, the reason why graphite is specified as 1 to 10% is because when adding graphite, which functions as a solid lubricant, if it exceeds 10%, the molded product will crack during plastic deformation, so it is difficult to maintain a good cylinder. This is because a liner cannot be obtained, and if it is less than 1%, the effect of graphite addition is not significant, resulting in insufficient lubricity and insufficient wear resistance. In addition, one or more elements selected from the group consisting of Fe, Cu, Mg, and Ni as alloying elements are used.
The reason for specifying 0.3 to 7% is that these elements are all selected to strengthen the Al material through precipitation hardening, etc., and the amount of each element added is 0.3%.
If the content is less than 7%, the strengthening effect will not be significant, and if it exceeds 7%, the precipitates will become excessive and become brittle, making plastic deformation difficult, making it unsuitable. . These elements and the above-mentioned Si are preferably used in the form of a powdered alloy obtained by adding it to Al and melting it. Hereinafter, the present invention will be explained by examples using the drawings. First, the required amount of Si and one or more elements selected from the group consisting of Fe, Cu, Mg, and Ni were added.
After mixing the Al alloy powder and a required amount of graphite, the mixture is pressed and molded to produce a preformed body in the shape of, for example, a tablet or a ring. 1 to 3 are longitudinal sectional views illustrating, in order of steps, an embodiment of the method of the present invention using a tablet-shaped preform. In FIG. 1, reference numeral 1 denotes a mortar having a cylindrical inner surface, into which a hollow lower punch 3 and an inner stopper 4 are inserted. The inner stopper 4 is inserted into the center of the hollow lower punch 3,
The upper end surface 5 of the hollow lower punch 3 and the upper end surface 6 of the inner stopper 4 are held so as to coincide with each other. The tablet-shaped preform 7 described above is inserted into the die 1, and the upper punch 2 having the same diameter as the inner stopper 4 is press-fitted from above. In the figure, a tablet-shaped preform 7 is used, but a ring-shaped one may also be used, which may be even more effective depending on the final shape. By the above-described press-fitting, the preformed body 7 is extruded backward as shown in FIG. 2, and a cap-shaped extrusion molded body 8 having a bottom surface 9 is formed. In FIGS. 2 and 3, the same reference numerals as in FIG. 1 indicate the same parts. FIG. 2 shows a state in which the upper punch 2 is press-fitted into the molded body while keeping the upper end surfaces 5 and 6 of the hollow lower punch 3 and the inner stopper 4 aligned. At this time, the preform is subjected to significant shear deformation stress and flow occurs, so the pores disappear and the preform is extruded into the gap between the upper punch 2 and the die 1, forming an ultra-high density extruded product 8. . Next, as shown in FIG. 3, the inner stopper 4 is retreated downward (in the direction of the arrow) inside the hollow lower punch 3, and
When the upper punch 2 enters the gap created by the retreat of the inner stopper 4, the excess bottom surface 9 of the extruded body 8 can be punched out into a disk shape, as shown in the figure. In this case, it is also possible to raise the inner stopper 4 while retracting the upper punch 2 and punch out in the same way.
This is generally not preferred because the press operation becomes complicated. In the series of steps described above, the interlocking of the die 1 with the upper and lower punches 2 and 4 is not necessarily required, but since the flow during plastic deformation of the preform 7 is large, it is necessary to prevent wear with the mold. It is preferable that the mortar 1 adopts the so-called floating die method and moves downward in conjunction with the lowering of the upper punch 2 under pressure. FIGS. 4 to 6 are cross-sectional views illustrating, in order of steps, an embodiment of the method of the present invention using a ring-shaped preform. The same parts as in FIGS. 1 to 3 are designated by the same reference numerals.
In FIG. 4, a hollow lower punch 3 and a middle plug 4 are inserted into the bottom of the mortar 1 having a cylindrical inner surface, the middle plug 4 is inserted into the center of the hollow lower punch 3, and the upper end surface 5 of the hollow lower punch 3 and the middle Stopper 4
The fact that the upper end surfaces 6 of the apparatus are held in alignment with each other and the operation of each part of the apparatus after that are the same as those shown in FIGS. 1 to 3. A ring-shaped preform 7' is inserted into such a die 1. Needless to say, the inner diameter of the ring of the preform 7' is larger than the diameter of the upper punch 2 and the middle stopper 4, which face each other and have the same diameter, and the outer diameter has a shape that almost matches the inner diameter of the die 1 and has an appropriate thickness. It has the following. As shown in FIG. 5, if the upper punch 2 is press-fitted into the preformed body 7' while keeping the upper end surfaces 5 and 6 of the lower punch 3 and the inner stopper 5 aligned, the preformed body will be significantly damaged. When subjected to shear metamorphic stress, a flow occurs, the pores disappear, and the material is extruded into the space between the upper punch 2 and the die 1, forming an ultra-high density extruded product 8'. Next, as shown in FIG. 6, the inner stopper 4 is retreated downward (in the direction of the arrow) inside the hollow lower punch 3, and
When the upper punch 2 enters the gap created by the retreat of the inner stopper 4, the excess bottom surface 9' can be punched out from the extruded body 8', as shown in the figure. Example: After adding and mixing 5% of graphite powder to Al-12%Si-1.1%Cu-1.2%Mg-0.9%Fe alloy powder,
A tablet-shaped preformed body with an outer diameter of 32 mm and a thickness of 20 mm and a ring-shaped preformed body with an outer diameter of 32 mm, an inner diameter of 16 mm and a thickness of 25 mm were formed by stamping with a press. This molded body
After heating it to 500℃, insert it into the die 1 of the mold as shown in Fig. 1, which is set in a mechanical brace.
Extrude backwards using the method shown in Figures 1 to 3 and 4 to 6, and the outer diameter is 32 mm, the inner diameter is 28 mm, and the height is 50 mm.
I made a mm cylinder liner. For comparison, pipe-shaped samples with the same dimensions were made from the same Al alloy-graphite mixed powder by hot isostatic pressing at 500°C and hot powder extrusion at 500°C with an area reduction of 80%. Table 1 shows the results of measuring the density and radial crushing strength of test pieces obtained by cutting these samples into 10 mm thick test pieces at three locations at the top, middle, and bottom as shown in FIG. 7.

【表】 表1より本発明によるものは充分な圧環強度を
有している(規格20Kg/mm2)ことが分り、又寸法
精度は充分であつた。 以上述べたように、本発明方法は、前述のよう
に、Si、グラフアイト、およびFe,Cu,Mg,
Niより成る群から選ばれた1種又は2種以上の
元素を含有し、残部Alより成る粉末混合体を用
いるから、Al―Si―グラフアイトにFe,Cu,
Mg,Ni等の合金元素を添加することにより、Al
マトリツクスを析出強化等によつて強化すると共
に、又上記粉末混合体の予備成形体を加熱、前述
のような臼、上杵、中空下杵および中栓により後
方押出しを行なつた後、前述のように、中栓の後
退と同時に上杵を空隙に進入させて押出成形体の
底面を円板状に打ち抜くから、後方押出し時の充
分な材料のフローにより、密度が大で、粒子の結
合力が大きく、かつ寸法精度が良い製品が大規模
な設備によらず、容易に得られるので、強度、耐
摩耗性、摺動性が優れた寸法精度の良いアルミニ
ウム―シリコン―グラフアイト系シリンダーライ
ナーが容易に、かつ経済的に製造し得る利点があ
る。
[Table] From Table 1, it was found that the product according to the present invention had sufficient radial crushing strength (standard: 20 Kg/mm 2 ), and the dimensional accuracy was sufficient. As described above, the method of the present invention can be applied to Si, graphite, Fe, Cu, Mg,
Since a powder mixture containing one or more elements selected from the group consisting of Ni and the balance consisting of Al is used, Al-Si-graphite contains Fe, Cu,
By adding alloying elements such as Mg and Ni, Al
The matrix is strengthened by precipitation strengthening, etc., and the preformed powder mixture is heated and extruded backwards using the die, upper punch, hollow lower punch, and middle plug as described above. As the inner stopper retreats, the upper punch enters the gap and punches out the bottom of the extruded body in the form of a disc. Therefore, due to the sufficient material flow during backward extrusion, the density is high and the bonding force of the particles is high. Products with large dimensions and good dimensional accuracy can be easily obtained without using large-scale equipment, so aluminum-silicon-graphite cylinder liners with excellent strength, wear resistance, sliding properties, and dimensional accuracy are available. It has the advantage of being easy and economical to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図および第4図〜第6図は、それ
ぞれタブレツト状およびリング状予備成形体によ
る本発明の実施を工程順に縦断面図で示す。第7
図は試料よりのテスト片切出し位置説明図であ
る。 1…臼、2…上杵、3…中空下杵、4…中栓、
5,6…上端面、7,7′…予備成形体、8,
8′…押出成形体、9,9′…底面。
1 to 3 and 4 to 6 show, in longitudinal section, the implementation of the invention in tablet-shaped and ring-shaped preforms, respectively, in the order of steps. 7th
The figure is an explanatory diagram of the position of cutting out a test piece from a sample. 1... Mortar, 2... Upper punch, 3... Hollow lower pestle, 4... Middle stopper,
5, 6... Upper end surface, 7, 7'... Preformed body, 8,
8'...Extruded body, 9,9'...Bottom surface.

Claims (1)

【特許請求の範囲】[Claims] 1 Si10〜20重量%、グラフアイト1〜10%、お
よびFe,Cu,Mg,Niより成る群から選ばれた
1種又は2種以上の元素を合金元素として各0.3
〜7重量%含有し、残部Alより成る粉末混合体
を型押成形した予備成形体を加熱し、それぞれの
上端面を一致させた中空下杆とその内側の中栓を
底部に挿入した円筒形内面を有する臼内に、上記
予備成形体を挿入し、該成形体に中栓と同じ径を
有する上杵を圧入して後方押出しを行なつた後、
上記中栓のみを下方へ後退させると同時に上記上
杵を上記中栓の後退した空隙に進入させて、上記
押出成形体の底面を円板状に打ち抜くことを特徴
とするシリンダーライナーの製造方法。
1 10 to 20% by weight of Si, 1 to 10% of graphite, and 0.3% each of one or more elements selected from the group consisting of Fe, Cu, Mg, and Ni as alloying elements.
A cylindrical shape is obtained by heating a preformed product made by pressing a powder mixture containing ~7% by weight and the remainder being Al, and inserting a hollow lower rod whose upper end surfaces match each other and an inner plug inside the rod into the bottom. After inserting the preformed body into a mortar having an inner surface and press-fitting an upper punch having the same diameter as the inner plug into the molded body to perform backward extrusion,
A method for manufacturing a cylinder liner, which comprises: retracting only the inner plug downward, and at the same time inserting the upper punch into the recessed gap of the inner plug to punch out the bottom surface of the extrusion molded body into a disk shape.
JP13857880A 1980-10-02 1980-10-02 Manufacture of cylinder liner Granted JPS5763603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13857880A JPS5763603A (en) 1980-10-02 1980-10-02 Manufacture of cylinder liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13857880A JPS5763603A (en) 1980-10-02 1980-10-02 Manufacture of cylinder liner

Publications (2)

Publication Number Publication Date
JPS5763603A JPS5763603A (en) 1982-04-17
JPS6312121B2 true JPS6312121B2 (en) 1988-03-17

Family

ID=15225395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13857880A Granted JPS5763603A (en) 1980-10-02 1980-10-02 Manufacture of cylinder liner

Country Status (1)

Country Link
JP (1) JPS5763603A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637682B2 (en) * 1988-04-28 1994-05-18 昭和電工株式会社 Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212144A (en) * 1975-07-19 1977-01-29 Boehringer Mannheim Gmbh Production of phenylacetic acid derivatives and pharmaceutical agent having blood sugagar and lipid lowerling activities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212144A (en) * 1975-07-19 1977-01-29 Boehringer Mannheim Gmbh Production of phenylacetic acid derivatives and pharmaceutical agent having blood sugagar and lipid lowerling activities

Also Published As

Publication number Publication date
JPS5763603A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US5878323A (en) Process for producing split type mechanical part
EP2376248B1 (en) Method for the manufacture of a metal part
KR20030071540A (en) Production method of high density iron based forged part
US4921664A (en) Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy
EP0278682A2 (en) Powder metal composite and method of its manufacture
JP3389590B2 (en) Manufacturing method of connecting rod
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
JPS6312121B2 (en)
JPH01294833A (en) Production of aluminum alloy powder sintered compact body
JP2932538B2 (en) Manufacturing method of alloy material for molding bullets
JP3110637B2 (en) Closed powder forging method
WO2016021362A1 (en) Method for manufacturing composite sintered body
JPH0976042A (en) Production of structural member
JPH02122007A (en) Manufacture of aluminum alloy parts
RU2101137C1 (en) Method of manufacture of two-layer bushings
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body
JPS6312136B2 (en)
JP3763796B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxiality accuracy
JPH0565568B2 (en)
JPH10266816A (en) Sintered valve seat member and its manufacture
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JP2002173703A (en) Method for manufacturing sintered compact of metal powder
JP3123114B2 (en) Manufacturing method of high precision aluminum alloy parts
JPH07268406A (en) Production of piston and device therefor
JP2000002344A (en) Sintered valve seat member and its manufacture