JPS6256342A - Manufacture of glass fiber reinforced concrete - Google Patents

Manufacture of glass fiber reinforced concrete

Info

Publication number
JPS6256342A
JPS6256342A JP60194802A JP19480285A JPS6256342A JP S6256342 A JPS6256342 A JP S6256342A JP 60194802 A JP60194802 A JP 60194802A JP 19480285 A JP19480285 A JP 19480285A JP S6256342 A JPS6256342 A JP S6256342A
Authority
JP
Japan
Prior art keywords
glass fiber
water
molded product
reinforced concrete
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60194802A
Other languages
Japanese (ja)
Other versions
JPH0580422B2 (en
Inventor
浩 内川
萩原 宏
優 白坂
春名 淳介
章平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Onoda Cement Co Ltd
Original Assignee
Nippon Steel Corp
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Onoda Cement Co Ltd filed Critical Nippon Steel Corp
Priority to JP60194802A priority Critical patent/JPS6256342A/en
Publication of JPS6256342A publication Critical patent/JPS6256342A/en
Publication of JPH0580422B2 publication Critical patent/JPH0580422B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、建築用資材、土木用資材として有用なガラ
ス繊維補強コンクリートの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing glass fiber reinforced concrete useful as a building material and a civil engineering material.

(従来の技術) ガラス繊維を補強材としたコンクリートは、ガラス繊維
補強コンクリート(以下、GRCという)として知られ
ているが、これは従来からポルトランドセメント、混合
セメント、アルミナセメント等と、耐アルカリガラス繊
維、砂、水の混合物で成形物をつくり、その後これ全養
生して製造されている。
(Prior art) Concrete using glass fiber as a reinforcing material is known as glass fiber reinforced concrete (hereinafter referred to as GRC), which has traditionally been made of portland cement, mixed cement, alumina cement, etc., and alkali-resistant glass. It is manufactured by making a molded product from a mixture of fibers, sand, and water, which is then completely cured.

しかし、こうした硬化体は、ポルトランドセメントある
いは混合セメントが水利反ろの過程でCa (Of()
2を生成する丸めそのアルカリ濃度は高く、−値は約1
3となっていfcmこの几めに、補強材として使用した
ガラス繊維は、耐用中にアルカリ成分によシ化学的に侵
蝕され、その結果繊維の強度は経時的に著しく低下して
い九。
However, these hardened bodies are formed when Portland cement or mixed cement undergoes water reversal.
Rounding to produce 2 Its alkaline concentration is high and the - value is about 1
3 fcm In this case, the glass fiber used as a reinforcing material is chemically attacked by alkaline components during service life, and as a result, the strength of the fiber decreases significantly over time9.

こうしtことから、安価なEガラス繊維では、強度の劣
化が太き(GRCの補強原料用としては使用することが
出来ず、またGRCの原料として特に開発された耐アル
カリガラス繊維でもアルカリ成分によシかなり激しく侵
蝕されて、いささか数年の耐用中にその強度は半減し、
GRCの構造材料としての用途はごく制限されたものと
なってい友。
For this reason, cheap E-glass fibers suffer from significant deterioration in strength (they cannot be used as reinforcing raw materials for GRC, and even alkali-resistant glass fibers developed specifically as raw materials for GRC are susceptible to alkali components). It was severely eroded by the earth, and its strength was halved during its several years of use.
The use of GRC as a structural material is extremely limited.

アルミナセメントを使用するときは、水利反応の過程で
Ca (0■)2を生成しないため、硬化体のμ値はポ
ルトランドセメントのそれよりも低く、約12であるが
、しかしアルミナセメントの水利生成鉱物は耐用中罠他
の鉱物に転化するため、硬化体の強度が耐用中に半減す
るという欠点を有している。
When alumina cement is used, the μ value of the hardened product is lower than that of Portland cement, about 12, because Ca (0■)2 is not generated in the process of water use reaction. Since minerals are converted into other minerals during service life, the strength of the hardened product is reduced by half during service life.

こうし九ことから現在、耐アルカリ性ガラス繊維を使用
し友長期耐久性GRCの出現が望まれておシ、この几め
にガラス繊維の耐アルカリ性改曳や、ポルトランドセメ
ントの水利によって生成するCa(OH)2 t’除去
するため、易反応性シリカを添加することが行われてい
るが、必ずしも満足すべき状態ではない。
For these reasons, it is currently hoped that a long-term durable GRC using alkali-resistant glass fibers will emerge. In order to remove OH)2t', easily reactive silica has been added, but the situation is not always satisfactory.

(発明が解決しようとする問題点) この発明は、長期耐久性が改善されたGRCを製造する
ことを目的とする。さらにいえば、耐アルカリ性ガラス
繊維を使用し九場合は勿論のこと、安価な通常のEガラ
ス繊維を補強材として使用した場合でも、長期耐久性が
改善され九GRCffi製造する方法を得ようとするも
のである。
(Problems to be Solved by the Invention) The present invention aims to produce a GRC with improved long-term durability. Furthermore, we are trying to obtain a method of manufacturing nine GRCffi that improves long-term durability not only when using alkali-resistant glass fiber, but also when using inexpensive ordinary E-glass fiber as a reinforcing material. It is something.

(問題点を解決するための手段) この発明は、バインダーとしてγ聖徒隈二石灰粉末と、
補強材としてのガラス繊維、および水を含む混合物を成
形し、その後これを炭酸化養生することを特徴とするガ
ラス繊維補強コンクリートの製造方法である。ま九、こ
の発明の実施の態様を例示すれば、成形物中の水分含有
iit以下に定義する水分飽和度で0.25〜0.95
とすることである。
(Means for Solving the Problems) This invention uses γ Saint Kumaji lime powder as a binder,
This is a method for producing glass fiber reinforced concrete, which is characterized by forming a mixture containing glass fiber as a reinforcing material and water, and then carbonating and curing the mixture. To illustrate an embodiment of the present invention, the water content in the molded article is 0.25 to 0.95 in terms of water saturation defined as less than or equal to iit.
That is to say.

以下にこの発明をさらに説明する。This invention will be further explained below.

本発明は、r型珪酸二石灰粉末(以下、γ−C2Sとい
う)をバインダーとして使用して成形体を得てその後こ
れを炭酸ガス養生し、r−C2S粉末の炭酸化反応によ
シ強度を発現させてGRCf、製造するものである。
The present invention uses r-type dicalcium silicate powder (hereinafter referred to as γ-C2S) as a binder to obtain a molded body, which is then cured with carbon dioxide gas, and the strength is increased by the carbonation reaction of the r-C2S powder. GRCf is produced by expressing it.

本発明者等は、バインダーとして水硬性物質ではなく、
炭酸化硬化するr −C2S f使用すると、硬化体中
のアルカリ濃度を低減することが出来、そうすることに
よって補強材として用いたガラス繊維が長期耐用中に劣
化せず、その結果GRCの強度が低下しないという知見
にもとづきこの発明を完成し九ものである。本発明にお
いて使用するγ−C2Sは、水との混線時にも水和せず
、ま−7t ea(OR)2 ft生成しない几メ、硬
化体中のアルカリ濃度を著しく低減出来る九め。
The present inventors used not a hydraulic substance as a binder, but
By using r -C2S f, which hardens by carbonation, it is possible to reduce the alkali concentration in the hardened material, thereby preventing the glass fiber used as a reinforcing material from degrading during long-term use, and as a result, the strength of GRC increases. This invention was completed based on the knowledge that there is no deterioration. The γ-C2S used in the present invention is so thin that it does not hydrate even when mixed with water, does not produce 2 ft of water, and can significantly reduce the alkali concentration in the cured product.

こうした用途には最適である。r −C2Sは、水と混
練し炭酸ガス雰囲気下で養生すると、次の反応が進行し
強度が速かに発現する。
It is ideal for these uses. When r-C2S is kneaded with water and cured in a carbon dioxide atmosphere, the following reaction proceeds and strength is rapidly developed.

r −2CaO・8 i 02 + 2CO2+ 2H
20→2CaO−8102+2H2Co。
r −2CaO・8 i 02 + 2CO2+ 2H
20→2CaO-8102+2H2Co.

→2CaCO+ 5iOz + H20 こうした硬化体中のアルカリ濃度は、−値で10.5以
下である。
→2CaCO+ 5iOz + H20 The alkali concentration in such a cured product is -10.5 or less.

本発明にあっては、まづγ−02S粉末、ガラス繊維お
よび水、あるいはr −C28粉末、砂。
In the present invention, Maz γ-02S powder, glass fiber and water, or r-C28 powder and sand.

ガラス繊維および水の混合物で成形物をつくる。A molding is made from a mixture of glass fibers and water.

これらの原料の混合、成形には、公知のプレミックス法
、スプレーサクシ、ン法、ダイレクトスプレー法あるい
はドライミックス法がいづれも採用できる。成形物中の
水分含有量は、次、に示す式で表される水分飽和度で0
.25〜0.95に調製し九後、炭酸ガス養生するのが
好ましい。
For mixing and molding these raw materials, any of the known premix methods, spray mixing methods, direct spray methods, or dry mix methods can be employed. The water content in the molded product is 0 at the water saturation level expressed by the formula shown below.
.. It is preferable to adjust the temperature to 25 to 0.95 and then cure with carbon dioxide gas.

水分飽和度が0.25未満のときは、炭酸ガス養生によ
る強度発現の効果が小さい、ま九、水分飽和度が0.9
5 ’i超えるようになると、養生時に炭酸ガスが成形
体の内部まで浸透せず、炭酸化反応が表層部のみしか起
こらないため好ましくない。後記実験例が示すように、
水分飽和度は、0.25〜0.95の範囲が最も好まし
い。
When the water saturation is less than 0.25, the effect of carbon dioxide curing on strength development is small.
If it exceeds 5'i, carbon dioxide gas will not penetrate into the inside of the molded body during curing, and the carbonation reaction will occur only in the surface layer, which is not preferable. As shown in the experimental example below,
The moisture saturation is most preferably in the range of 0.25 to 0.95.

成形物の水分調製は、成形物をつくる場合の添加水Rを
調製してもよく、また予め過剰含水量の成形物を得、そ
の後これを乾燥してその水分1を調製してもよい、乾燥
は、加熱乾燥、減圧乾燥のいづれでもよい。以下に、実
験例klげてこの発明をさらに説明する。
The water content of the molded product may be adjusted by preparing the added water R when making the molded product, or by obtaining a molded product with an excess water content in advance and then drying it to prepare its water content 1. The drying may be either heat drying or reduced pressure drying. The present invention will be further explained below with reference to experimental examples.

実験例−1 第1表に示すγ−028粉末1!l量部および豊浦標準
砂2重量部、Eガラス繊維(20vm ? wツブトス
トランド)0.15重量部の混合物に水123wt%添
加混練し、その後厚さ13−2巾45箇、長さ90mの
直方板を、成形圧100に9/1ype”で圧縮成形し
て得九、成形時に一部の混合水は系外に滲み出たので、
その水は除去した。
Experimental example-1 γ-028 powder 1 shown in Table 1! 1 part by weight, 2 parts by weight of Toyoura standard sand, and 0.15 parts by weight of E glass fiber (20vm?w Tsubuto strand) was mixed with 123 wt% of water, and then 45 pieces of 13-2 thickness and 90 m length were added and kneaded. A rectangular plate was compression-molded at a molding pressure of 100 and 9/1ype'', and some of the mixed water oozed out of the system during molding.
The water was removed.

成形物はその後減圧乾燥し水分含有量が異なる成形物を
調製した。成形物をその後20℃でCo2W囲気下で2
時間養生した。その後、これを3点曲げ試験(スパンニ
アα)に供し九。また、調製した各々の減圧乾燥した成
形物について、水分含有量、見掛気孔率及び見掛比重を
測定し、これより水分飽和度を算出し添付した図の結果
を得た。
The molded products were then dried under reduced pressure to prepare molded products with different moisture contents. The molded product was then heated at 20°C under a Co2W atmosphere for 2
I spent time curing it. Thereafter, this was subjected to a three-point bending test (Spannier α). In addition, the moisture content, apparent porosity, and apparent specific gravity of each of the prepared molded articles dried under reduced pressure were measured, and the moisture saturation degree was calculated from these, and the results shown in the attached figure were obtained.

図から明かなように、γ−C2S粉末、ガラス繊維、砂
及び水金混合して成形しその後炭酸ガス養生すると高強
度なガラス繊維補強コンクリートが製造出来る。また、
炭酸fス養生する成形物は、含水量を水分飽和度で0.
25〜0.95の範囲に調製した後炭酸ガス養生すると
高強度が得られることが明かである。
As is clear from the figure, high-strength glass fiber-reinforced concrete can be produced by mixing γ-C2S powder, glass fiber, sand, and water metal, molding, and then curing with carbon dioxide gas. Also,
The molded product cured with carbonic acid has a water content of 0.0 in terms of water saturation.
It is clear that high strength can be obtained by curing with carbon dioxide gas after adjusting the strength to a range of 25 to 0.95.

図に示した水分飽和度1.0の成形体は、長期間(7日
以上)炭酸ガスを流入させながら養生すると強度が発現
する。これは成形体が徐々に乾燥され成形体の水分飽和
度が小さくなる几めと考えられる。
The molded body shown in the figure with a moisture saturation of 1.0 develops strength when cured for a long period of time (7 days or more) while flowing carbon dioxide gas. This is considered to be due to the fact that the molded product is gradually dried and the water saturation level of the molded product is reduced.

実験例−2 実験例−1で使用したγ−C2S粉末及び市販の早強ポ
ルトランドセメントに、第2表ニ示ス割合で実験例−1
で使用した豊浦標準砂、Eがラス繊維を混合し、その後
実験例−1と同様にして水金添加し混練して成形し九〇
成形体は実験例−1と同様にして水分飽和度を調製して
炭酸ガス養生を行なっ几。その後、これについて3点曲
げ試験を行なっ几。早強セメントに関しては従来例用と
して乾燥しない成形体1fc20℃。
Experimental Example-2 Experimental Example-1 was added to the γ-C2S powder used in Experimental Example-1 and the commercially available early-strength Portland cement at the ratio shown in Table 2.
The Toyoura standard sand used in E was mixed with lath fibers, and then water and gold were added and kneaded and molded in the same manner as in Experimental Example-1. Prepared and cured with carbon dioxide gas. Afterwards, we conducted a three-point bending test on this. Regarding early strength cement, a conventional molded body that does not dry is 1 fc at 20°C.

相対湿度80チ以上の湿空中で7日養生し、その後3点
曲げ試験を行なった。曲げ試験を行なった各々の試料f
 O,5vm全通に粉砕し、この中50.9を蒸留水7
〇−中に入れかき混ぜ、24時間後の上ずみ液のμ値を
測定し第2表の結果を得た。
After curing for 7 days in a humid atmosphere with a relative humidity of 80 degrees or higher, a three-point bending test was conducted. Each sample f subjected to bending test
0.0, 5vm, and 50.9% of this was mixed with distilled water.
〇-The mixture was stirred and the μ value of the resulting liquid was measured after 24 hours, and the results shown in Table 2 were obtained.

第2表から、本発明によれば短時間の養生で高強度が得
られること、及び硬化体中のアルカリ濃度は比較例及び
従来技術より著しく低いことがわかる。
Table 2 shows that according to the present invention, high strength can be obtained with short curing, and that the alkali concentration in the cured product is significantly lower than that of the comparative example and the prior art.

μ値から換算すると、本発明の硬化体中のアルカリ分は
、比較例の約1/300以下、従来技術の約1/600
以下である。本発明者等は、比較例の硬化体のアルカリ
濃度が高い原因について検討する几め、硬化体の微構造
を観察した。その結果、比較例の硬化体中には炭酸化し
ない未反応のニーライト及びビーライトが多量に存在し
、その未反応のニーライト及びビーライトは水と接触す
ると水利反厄ヲ起こし、その結果Ca (plZを生成
しμ値が高くなることが確認された。なお未反応のニー
ライトあるいはビーライトは炭酸ガス養生時間を7日と
長く延はしても未反応の粒子として残存する。
Calculated from μ value, the alkali content in the cured product of the present invention is about 1/300 or less of the comparative example and about 1/600 of the conventional technology.
It is as follows. The present inventors carefully investigated the cause of the high alkali concentration in the cured product of the comparative example and observed the microstructure of the cured product. As a result, a large amount of unreacted neelite and belite that were not carbonated were present in the cured product of the comparative example, and when the unreacted neelite and belite came into contact with water, they caused problems with water use, resulting in Ca ( It was confirmed that plZ was produced and the μ value increased.Unreacted neelite or belite remained as unreacted particles even if the carbon dioxide gas curing time was extended to 7 days.

一方本発明の硬化体中にも炭酸化しない未反応のγ−C
2Sは観察されるがこれは少鼠で′jp)υ、且つこれ
は水と接触してもC&(0■)2を生成しな、いため−
値は比較例よりも著しく低くなる。
On the other hand, unreacted γ-C that is not carbonated in the cured product of the present invention
2S is observed, but this is only in small mice, and it does not produce C&(0■)2 even when it comes into contact with water.
The value is significantly lower than that of the comparative example.

実験例−3 実験例−2で使用した、γ−C2S粉末、早強セメント
、豊浦標準砂、Eガラス繊維及び耐アルカリ性ガラス繊
維(Cam−FIL 20頷チヨツプドストランド)を
第3表に示す混合割合で混合し、その後実験例−1と同
様にして水を添加して実験例−1と同様に成形体金得几
。この成形体を、その後乾燥機中に入れた鉄製の容器中
に入れ炭酸ガスを容器中に流入させながら80℃で5時
間養生した。養生し友成形体について、1)水中に10
分間浸漬しその後水中から取り出し表面水全除去し几後
曲げ強さt測定し比。
Experimental Example-3 The γ-C2S powder, early strength cement, Toyoura standard sand, E glass fiber, and alkali-resistant glass fiber (Cam-FIL 20 chopped chopped strand) used in Experimental Example-2 are shown in Table 3. After mixing at the mixing ratio shown, water was added in the same manner as in Experimental Example 1, and a molded article was obtained in the same manner as in Experimental Example 1. This molded body was then placed in an iron container placed in a dryer and cured at 80° C. for 5 hours while carbon dioxide gas was allowed to flow into the container. Regarding the curing molded body, 1) 10% in water
Immerse it for a minute, then take it out of the water, remove all surface water, and then measure the bending strength (t) and compare.

2)60℃の温水中に30日間浸漬しその後温水中から
取り出し表面水全除去し曲げ強さを測定し几。
2) Soaked in hot water at 60°C for 30 days, then taken out from the hot water, removed all surface water, and measured bending strength.

第3表に測定結果を示す。比較例として早強セメントの
成形体について2(Ic相対湿度8゜チ以上の湿空中で
7日養生した成形体についても同様な曲げ強さ全迎1定
し几。
Table 3 shows the measurement results. As a comparative example, a molded product of early strength cement was cured for 7 days in a humid atmosphere with an Ic relative humidity of 8° or more, and the same bending strength was determined.

第3表の結果から明らかなように、本発明によるガラス
繊維補強コンクリートは耐用中に生ずる強度の劣化が非
常に小さいことがわかる。
As is clear from the results in Table 3, it can be seen that the glass fiber reinforced concrete according to the present invention shows very little deterioration in strength during service life.

そのため、本発明によれば従来技術では使用出来なかっ
たEガラス繊維も使用出来る。
Therefore, according to the present invention, E-glass fibers which could not be used in the prior art can also be used.

実験例−4 第4表に示すγ−C2S粉末に、実験例−3で使用し7
′cEガラス繊維及び耐アルカリ性ガラス繊維’18v
t%混合し、その後水’124vt%添加混合し、その
後50 kll/cm”の成形圧で成形し実験例−1と
同様な直方板を成形した。成形体音その後実験例−3と
同様にして60℃で12時間炭酸ガス養生を行ない、曲
げ強さ試鋏及びμ値の測定を行ない次の結果を得几。
Experimental Example-4 The γ-C2S powder shown in Table 4 was used in Experimental Example-3.
'cE glass fiber and alkali-resistant glass fiber'18v
t% was mixed, and then 124vt% of water was added and mixed, and then molded at a molding pressure of 50 kll/cm to form a rectangular plate similar to Experimental Example-1. After curing with carbon dioxide gas at 60°C for 12 hours, the bending strength was tested and the μ value was measured, and the following results were obtained.

Eガラス繊維硬化体;曲げ強さ・・・207に9/cm
” 。
E Glass fiber cured body; bending strength...207 to 9/cm
”.

−・・・10.3、耐アルカリ性ガラス繊維硬化体;曲
げ強さ・・・211に9/m” 、 pH・・・10.
3これによっても判るとおシ、γ−C2Sとガラス繊維
だけの混合物からも良好なガラス繊維補強コンクリート
が製造出来る。
-...10.3, alkali-resistant glass fiber cured body; bending strength...211 to 9/m'', pH...10.
3 From this it can be seen that good glass fiber reinforced concrete can be produced even from a mixture of only γ-C2S and glass fiber.

実験例−5 実験例−4で使用したγ−C2S粉末2重量部及び2■
以下の川砂1重量部を混合し、その後ポリアルキルアリ
ルスルフォン酸系減水剤(花王石鹸社、商品名マイティ
ー150)0.02重里部及び水1重量部添加混合して
モルタルを調製した。耐アルカリ性ガラス繊維(Cam
−FIL )のロービングを25清のチョッグドストラ
ンドに切断しながら、モルタルとガラス繊mをダイレク
トスプレー法により型枠上に吹きつけ15■厚さに成形
した。その後成形体中の水分飽和度が0.75に達する
まで減圧乾燥し、その後炭酸ガス中で4時間養生しt後
面げ強さを測定し次の結果を得た。なお、ガラス繊維の
混入量は5wt%であっ九。
Experimental Example-5 2 parts by weight of γ-C2S powder used in Experimental Example-4 and 2
A mortar was prepared by mixing 1 part by weight of the following river sand, and then adding and mixing 0.02 parts by weight of a polyalkylaryl sulfonic acid water reducing agent (Kao Soap Co., trade name: Mighty 150) and 1 part by weight of water. Alkali-resistant glass fiber (Cam
-FIL) was cut into chopped strands of 25mm thick, and mortar and glass fibers were sprayed onto the mold by a direct spray method to form a 15mm thick strand. Thereafter, the molded product was dried under reduced pressure until the water saturation level in the molded product reached 0.75, and then cured in carbon dioxide gas for 4 hours. After that, the surface sagging strength was measured, and the following results were obtained. Note that the amount of glass fiber mixed was 5 wt%.

曲げ強さ、325kg/譚震 (発明の効果) 以上の本発明の効果は次の通りである。Bending strength, 325kg/Tan Zhen (Effect of the invention) The effects of the present invention described above are as follows.

1) 耐用中の強度の劣化が著しく小さいガラス繊維補
強コンクリートが安価に製造出来る。
1) Glass fiber-reinforced concrete with significantly less deterioration in strength during service life can be manufactured at low cost.

■ ガラス繊維補強コンクリートの補強材原料として、
安価なE、ガラスが使用出来る。
■ As a reinforcing material for glass fiber reinforced concrete,
Cheap E glass can be used.

3)養生時間を短縮出来る。3) Curing time can be shortened.

といつ九ことである。That's nine times.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明に適用さる成形物中の水分飽和度(%)と
成形体の曲げ強さの関係を示す線図である。 出願人代理人  弁理士 鈴 江 武 彦1頁の続き 発明者 春 名   淳 介 東海市東海町5丁目3内 発 明 者  鈴 木   章 平  川崎市中原区井
田1618所内
The figure is a diagram showing the relationship between the degree of water saturation (%) in a molded product and the bending strength of the molded product, which is applied to the present invention. Applicant's agent Takehiko Suzue Continued on page 1 Inventor Junsuke Haruna 5-3 Tokai-cho, Tokai City Inventor Akira Suzuki 1618 Ida, Nakahara-ku, Kawasaki City

Claims (2)

【特許請求の範囲】[Claims] (1)バインダーとしてのγ型珪酸二石灰粉末と、補強
材としてのガラス繊維、および水を含む混合物を成形し
、その後これを炭酸化養生することを特徴とするガラス
繊維補強コンクリートの製造方法。
(1) A method for producing glass fiber-reinforced concrete, which comprises forming a mixture containing γ-type dicalcium silicate powder as a binder, glass fiber as a reinforcing material, and water, and then carbonating and curing the mixture.
(2)成形物中の水分含有1を以下に定義する水分飽和
度で0.25〜0.95とした特許請求の範囲第1項記
載のガラス繊維補強コンクリートの製造方法。 水分飽和度=[成形物水分(%)/(100−成形物水
分(%))]×[100−成形物の見掛気孔率(%)/
成形物の見掛気孔率(%)]×成形物の見掛比重
(2) The method for producing glass fiber reinforced concrete according to claim 1, wherein the water content 1 in the molded product is 0.25 to 0.95 in terms of water saturation as defined below. Moisture saturation = [Moisture content of molded product (%) / (100 - Moisture content of molded product (%))] x [100 - Apparent porosity of molded product (%) /
Apparent porosity (%) of molded product x apparent specific gravity of molded product
JP60194802A 1985-09-05 1985-09-05 Manufacture of glass fiber reinforced concrete Granted JPS6256342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194802A JPS6256342A (en) 1985-09-05 1985-09-05 Manufacture of glass fiber reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194802A JPS6256342A (en) 1985-09-05 1985-09-05 Manufacture of glass fiber reinforced concrete

Publications (2)

Publication Number Publication Date
JPS6256342A true JPS6256342A (en) 1987-03-12
JPH0580422B2 JPH0580422B2 (en) 1993-11-09

Family

ID=16330500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194802A Granted JPS6256342A (en) 1985-09-05 1985-09-05 Manufacture of glass fiber reinforced concrete

Country Status (1)

Country Link
JP (1) JPS6256342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194799A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Cement for clay concrete, clay concrete and its production
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JP2019026539A (en) * 2017-08-03 2019-02-21 鹿島建設株式会社 Precast cement panel for residual formwork and production method therefor
WO2023153259A1 (en) * 2022-02-10 2023-08-17 デンカ株式会社 Cement, cement composition, cured cement product, and method for producing cured cement product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194799A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Cement for clay concrete, clay concrete and its production
JPH10194798A (en) * 1996-12-27 1998-07-28 Daiichi Cement Kk Carbonated cement, hardened cement and its production
JP2019026539A (en) * 2017-08-03 2019-02-21 鹿島建設株式会社 Precast cement panel for residual formwork and production method therefor
WO2023153259A1 (en) * 2022-02-10 2023-08-17 デンカ株式会社 Cement, cement composition, cured cement product, and method for producing cured cement product

Also Published As

Publication number Publication date
JPH0580422B2 (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US5112405A (en) Lightweight concrete building product
SU1373781A1 (en) Method of producing prestrained ferroconcrete articles
US4404031A (en) Process for producing hydraulic cements
US3649317A (en) Shrinkage compensating cement
JPH10194798A (en) Carbonated cement, hardened cement and its production
JPS60127252A (en) Manufacture of concrete formed product
JPS6256342A (en) Manufacture of glass fiber reinforced concrete
JPS61127656A (en) Gypsum hardened body
JP2524583B2 (en) Carbonation curing method of γ-type dicalcium silicate
CN113321469B (en) High-strength concrete with high water permeability and preparation method thereof
JPH11246260A (en) Cement composition and production of hardened body using the same
IT9019661A1 (en) METHOD FOR PRODUCING CONCRETE OR CONCRETE
JPS5951504B2 (en) Heat-curing cement composition
US3373048A (en) Hardening accelerated portland cement
CN112358265A (en) Foam concrete with waste aerated concrete as raw material and preparation method thereof
JPS6050738B2 (en) High sulfate slag cement and its manufacturing method
JPS58110451A (en) Mixed cementitious material for grc
JPS61286256A (en) Glass fiber reinforced concrete formed product composition
JPS5919079B2 (en) Manufacturing method of lightweight cellular concrete
JPH0481538B2 (en)
JPS5841759A (en) Manufacture of lime construction material mixed with pulp sludge
US133887A (en) Improvement in the manufacture of artificial stone
JPS5858305B2 (en) Fluorite gypsum composition
JPS63210054A (en) Carbonation curing process for gamma dilime silicate
JPS6125781B2 (en)