JPS58110451A - Mixed cementitious material for grc - Google Patents

Mixed cementitious material for grc

Info

Publication number
JPS58110451A
JPS58110451A JP56206512A JP20651281A JPS58110451A JP S58110451 A JPS58110451 A JP S58110451A JP 56206512 A JP56206512 A JP 56206512A JP 20651281 A JP20651281 A JP 20651281A JP S58110451 A JPS58110451 A JP S58110451A
Authority
JP
Japan
Prior art keywords
cement
weight
grc
ultra
cementitious material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56206512A
Other languages
Japanese (ja)
Other versions
JPS6224372B2 (en
Inventor
松崎 安宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP56206512A priority Critical patent/JPS58110451A/en
Publication of JPS58110451A publication Critical patent/JPS58110451A/en
Publication of JPS6224372B2 publication Critical patent/JPS6224372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はガラス繊維強化コンク1フートの製造に使用さ
れる混合セメント質材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to mixed cementitious materials used in the manufacture of glass fiber reinforced concrete feet.

ガラス繊維強化コンクリート (以”’F’ G RC
、!: 称す)はその優れた性能で建材その他への普及
が期待されているが、補強用ガラスm維がセメントの強
アルカリ性によって長期間にわたって侵食を受け、特に
衝撃強度の経年劣化が著しく、折角のガラス繊維補強の
効果が薄らぐという欠点を有している。
Glass fiber reinforced concrete (hereafter “F” G RC
,! ) is expected to be widely used in construction materials and other applications due to its excellent performance, but the reinforcing glass fibers are eroded over a long period of time by the strong alkalinity of cement, and the impact strength in particular deteriorates significantly over time. It has the disadvantage that the effect of glass fiber reinforcement is weakened.

この欠点を解消することを目的として特開昭SS−実験
によると、前記超低アルカリ性セメントを使用するだけ
では製造後長期間紅過すると衝撃強度において初期のl
/lt以下に低下することが確められた。
In order to solve this problem, according to the JP-A-Sho SS-experiments, it was found that if only the ultra-low alkaline cement was used, the impact strength would be lowered by the initial l
It was confirmed that the value decreased to less than /lt.

本願発明は前記先行技術を一層改良することを目的とす
るもので、その要旨はカルシウムサルホアルミネートを
1O−IIO重量%、硫酸カルシウムをg重量%以上、
遊離生石灰を7重量%以下含有し、かつ硫酸カルシウム
とカルシウムサルホアルミネートとのモル比が/、t 
−4,jであり、実質的に珪酸三石灰を含まない超低ア
ルカリ性セメント1重量部に対して活性シリカ物質を0
.23−1重量部を添加したことを特徴とするGROの
製造に適した混合セメ・ント質材料にある。
The purpose of the present invention is to further improve the prior art, and its gist is that calcium sulfoaluminate is 10-IIO weight %, calcium sulfate is 1 g weight % or more,
Contains free quicklime at most 7% by weight, and the molar ratio of calcium sulfate to calcium sulfoaluminate is /, t
-4,j, and 0 active silica substances are added to 1 part by weight of ultra-low alkaline cement that does not substantially contain tricalcium silicate.
.. A mixed cementitious material suitable for manufacturing GRO, characterized in that 23-1 parts by weight is added thereto.

本願発明に用いる超低アルカリ性セメントはカルシウム
サルホアルミネート(、?CaO・JA1203ψCa
5Oa)と硫酸カルシウム(CaSO3)と遊離生石灰
(Cab)を主成分とし、水と反応してエトリンガイド
を生成して硬化し、水酸化カルシウムをほとんど生成し
ない。また珪酸三石灰(joaO・5iO2)を実質的
に含まないので水和しても水酸化カルシウムを生成する
ことがない。したがって従来のポルトランドセメントと
異り余剰の水酸化カルシウムの生成址が遥かに僅かであ
り、したがってガラス繊維の侵食は少い。
The ultra-low alkaline cement used in the present invention is calcium sulfoaluminate (?CaO・JA1203ψCa
5Oa), calcium sulfate (CaSO3), and free quicklime (Cab), it reacts with water to produce ettrin guide and hardens, and hardly produces calcium hydroxide. Furthermore, since it does not substantially contain tricalcium silicate (joaO.5iO2), it does not produce calcium hydroxide even when hydrated. Therefore, unlike conventional Portland cement, there is far less excess calcium hydroxide formation, and therefore less erosion of glass fibers.

また本願発明に用いる活性シリカ物質は、なお残留する
水酸化カルシウムを捕捉するためのシリカ源であり、フ
ライアッンユ、火山灰、白土、粘土、シリカ粉末、ガラ
ス粉末、高炉スランプ等から選ばれるがCaO分の少い
物がよいのでフライアッシュ、火山灰、白土、粘度、シ
リカ粉末、ガラス粉末が好ましく、特に7ライアノシユ
はCaOが特に少くかつ粒形が丸いので流動性・にすぐ
れ、添加水分量を減少させるこ・とができるので特に好
ましい。これら活性シリカ物質添加量範囲限定の理由は
、対セメント重量比0.2j未満ではGRGを製造して
から長期間経過後の耐衝撃強度(IS)維持の効果に乏
しく、lを越えると初期の曲げ比例限界強度(LOP)
が低下し、脱型運搬等のハンドリングに支障を来す。
The activated silica material used in the present invention is a silica source for capturing residual calcium hydroxide, and is selected from fly ash, volcanic ash, clay, clay, silica powder, glass powder, blast furnace slump, etc., but contains CaO. Since less is better, fly ash, volcanic ash, clay, viscosity, silica powder, and glass powder are preferable. In particular, 7 lion ash has very little CaO and has a round particle shape, so it has excellent fluidity and can reduce the amount of added water.・It is particularly preferable because it can form a . The reason for limiting the range of addition of these active silica substances is that if the weight ratio to cement is less than 0.2j, it will not be effective in maintaining the impact strength (IS) after a long period of time after GRG is manufactured, and if it exceeds 1, the initial Bending proportional limit strength (LOP)
This causes problems in handling such as demolding and transportation.

セメン)K 110%以下の活性シリカ物質を添加して
GRCの長期強度維持をもくろむ試みは数多く知られて
いるが、いずれもテストされた屋外曝露期間がl〜2年
程度であり、第1表に示すように本願発明者の実験によ
ると普通ポルトランドセメントにフライアッシュを添加
して作ったGROは屋外曝露20年に相当する70°C
水中2g日間の浸漬試験後の1.Sがせいぜいs’h/
cW?程度に低下し、特にGRCの如き肉薄に製造され
ることの多いセメント製品では容易に脆性破壊を起すこ
ととなる〇 これらGRC製品は建築物等に使われる場合が多く、安
全性の点からも建築物の寿命等から考えて少くとも20
年程度の長期間の屋外曝露後の強度維持が必要であり、
僅かl−2年の屋外曝露試験の結果でその性能を評価さ
れるべきでない。
There are many known attempts to maintain the long-term strength of GRC by adding active silica substances with a content of 110% or less, but in all of them, the outdoor exposure period tested was about 1 to 2 years, and Table 1 As shown in the figure, according to the inventor's experiments, GRO made by adding fly ash to ordinary Portland cement has a temperature of 70°C, which corresponds to 20 years of outdoor exposure.
1 after immersion test in water for 2g days. S is at most s'h/
cW? This can easily cause brittle fracture, especially in cement products such as GRC, which are often manufactured with thin walls.These GRC products are often used in buildings, etc., and from a safety point of view At least 20% considering the lifespan of the building etc.
It is necessary to maintain strength after long-term outdoor exposure of about 20 years.
Its performance should not be evaluated based on the results of only 1-2 years of outdoor exposure tests.

また本願発明は本願発明者の先行出願(特願昭34−、
? ff J 4ダ号)に較べ長期衝撃強度に優れ、し
かも活性シリカ物質添加量を下げ得る点で優れている。
In addition, the present invention is based on the prior application filed by the inventor (Japanese Patent Application No. 1973-
? It is superior in long-term impact strength compared to FFJ No. 4 da), and is also superior in that the amount of active silica material added can be reduced.

すなわち、先行出願では超速硬セメントを使うので本願
発明に較べて活性シリカ物質を極めて多量に添加しない
と高い長期衝撃強度維持ができないのでセメント量を減
少させねばならず、本願発明と同じ長期衝撃強度を得る
ためには初期におけるLOP値や曲げ破壊強度(MOR
)を若干犠牲にせざるを得ず、そのため離型峙間の延長
等を強いられた。しかし本願発明では活性シリカ物質添
加社を20%までFげ得るので上記した不都合が軽減さ
れる。
That is, since the prior application uses ultra-fast hardening cement, it is not possible to maintain high long-term impact strength unless an extremely large amount of activated silica is added compared to the present invention, so the amount of cement must be reduced, and the long-term impact strength is the same as the present invention. In order to obtain the initial LOP value and bending fracture strength (MOR
), and as a result, we were forced to extend the mold release time. However, in the present invention, the above-mentioned disadvantages can be alleviated since up to 20% F can be removed by adding activated silica material.

したがって本願発明は特に超低ア/Lカリ性セメントと
活性シリカ物質の添加とを組合せることにより1.従来
技術では考えられない程、高い長期衝撃強度を有するG
RC製品が得られることを見出したものである。
Accordingly, the present invention specifically combines ultra-low A/L alkalinity cement with the addition of activated silica material to:1. G with high long-term impact strength unimaginable with conventional technology
It has been discovered that an RC product can be obtained.

実施例 第1表は本発明の実施例および本発明外の比較例のCR
O製品の初期強度および屋外曝露20年以上に相当する
劣化促進試験後の強度を比較したものである。
Examples Table 1 shows the CR of the examples of the present invention and comparative examples other than the present invention.
This is a comparison of the initial strength of the O product and the strength after an accelerated deterioration test equivalent to over 20 years of outdoor exposure.

試料の作製に当っては、混合セメント/重置部に対し骨
材として砂O0乙重量部、水0.33重量部。
In preparing the sample, O0 parts by weight of sand and 0.33 parts by weight of water were used as aggregates for the mixed cement/overlapping part.

減水剤O0OコS重量部、凝結調節剤(クエン酸)第1
表 第 l 表(つづき) 第3表 超低アルカリ性セメントの鉱物組成(重量%) 3CaO・3A1203・Ca5o43/%CaSO4
22 cao                g、r、zc
ao −Sio2           +2g1IC
aO−A1203・Fe2033qその他      
      lに 0.003重量部および第1表の配合比に応じて活性シ
リカ物質を混合して得たセメントモルタルとセメントモ
ルタルに対し5重量%の耐アルカリガラス繊維のチョツ
プドストランドとをダイレクトスプレー法にて型枠上に
同時に吹付けてガラス繊維入セメントモルタル層を形成
し、ガラス繊維入セメントモルタル層上からロールがけ
して脱泡させるとともにガラス繊維をセメントモルタル
になじませ、厚さがiommKなるようにならしたのち
硬化させ脱型してGRO板を得た。このGRO板を2週
間養生後適当な寸法に切断して試料とした。
Parts by weight of water reducing agent O0OCoS, setting regulator (citric acid) 1st
Table l Table (continued) Table 3 Mineral composition of ultra-low alkaline cement (wt%) 3CaO・3A1203・Ca5o43/%CaSO4
22 cao g, r, zc
ao −Sio2 +2g1IC
aO-A1203・Fe2033q Others
Direct spraying of cement mortar obtained by mixing 0.003 parts by weight of activated silica material in accordance with the mixing ratio in Table 1 and chopped strands of alkali-resistant glass fiber at 5% by weight relative to the cement mortar. A glass fiber-containing cement mortar layer is formed by simultaneously spraying onto the formwork using a method, and the glass fibers are rolled over the glass fiber-containing cement mortar layer to defoam and blend the glass fibers into the cement mortar, resulting in a thickness of iommK. After smoothing it out, it was cured and demolded to obtain a GRO board. After curing this GRO board for two weeks, it was cut into a suitable size and used as a sample.

試料作製に用いたセメントとしては第2表に示した化学
成分の超低アルカリ性セメント、超速硬セメントと普通
ポルトランドセメントを、活性シリ刃物質としては第2
表の化学成分の7ライアンシーを用いた。また超低アル
カリ性セメントの鉱物組成は第3表K ilZ L、た
通りである。
The cements used for sample preparation were ultra-low alkaline cement, ultra-fast hardening cement, and ordinary Portland cement with the chemical components shown in Table 2.
7 of the chemical components in the table was used. The mineral composition of the ultra-low alkaline cement is as shown in Table 3.

強度の測定に当って、LOP  (曲げ比例限界強度)
およびMOR(曲げ破壊強度)の測定にはオートグラフ
を用い、変位速度3 mm7分で行ないIS  (アイ
ゾツト衝撃強度)測定にはアイゾツト衝撃試験機を用い
て行なった。また第7表で促進試験前の強度とは前記方
法で作製した試料の強度であり、促進試験後の強度は前
記切断後70”Cの水中に、21日間浸漬し、乾燥させ
た後の強度であるO 第1表の試料&/〜5はセメントとして普通ポルトラン
ドセメントを用い、活性シリカ物質とじてフライアッシ
ュを順次配合比を増していった混合セメント、試料A6
−10は超速硬セメントに順次フライアッシュを増して
いった混合セメント、&//〜/2は本発明外の配合比
、AI3〜/ざは本発明に係る配合比の超低アルカリ性
セメントとフライアッシュとの混合セメントを用いて製
造したGRCである。
When measuring strength, LOP (proportional bending strength)
An autograph was used to measure MOR (bending rupture strength) at a displacement rate of 3 mm for 7 minutes, and IS (Izod impact strength) was measured using an Izod impact tester. Furthermore, in Table 7, the strength before the accelerated test is the strength of the sample prepared by the above method, and the strength after the accelerated test is the strength after being immersed in water at 70"C for 21 days after being cut and dried. O Sample &/~5 in Table 1 is a mixed cement in which ordinary Portland cement is used as cement, and the blending ratio of activated silica material and fly ash is gradually increased, Sample A6
-10 is a mixed cement in which fly ash is gradually increased in ultra-fast hardening cement, &//~/2 is a blending ratio outside of the present invention, and AI3~/za is an ultra-low alkaline cement with a blending ratio according to the present invention and fly ash. This is GRC manufactured using cement mixed with ash.

普通セメントと超低アルカリ性セメントとの優劣を論す
るため試料A/7.ltと13〜/ざとにおいて、フラ
イアッシュ配合比が同じもの同志で較べるとLOP値は
促進試験前後のいずれも普通セメントを用いたものが高
いが促進試験後のNOR値及びIS値は特に超低アルカ
リ性セメントを用いたものの方が遥かに優れている。ま
た超速硬セメントと超低アルカリ性セメントとの優劣を
論するため試料A6〜10と73〜7gとにおいて、フ
ライアッシュ配合比が同じもの同志で較べると、LOP
値は超速硬セメントを用いたものが高いが促進試験後の
NOR値及びIS値、特にIS値では超低アルカリ性セ
メントを用いたものが大幅に優れ、また促進試験後のI
S値がほぼ同じとなるようなフライアッシュ配合比の試
料で較べると、LOP値においても超低アルカリ性セメ
ントを用いたものの方が優れる。
In order to discuss the superiority of ordinary cement and ultra-low alkaline cement, sample A/7. lt and 13~/zato, when comparing those with the same fly ash blending ratio, the LOP value is higher in the one using ordinary cement both before and after the accelerated test, but the NOR value and IS value after the accelerated test are especially extremely low. Those using alkaline cement are far superior. In addition, in order to discuss the superiority of ultra-fast hardening cement and ultra-low alkaline cement, when comparing samples A6-10 and 73-7g with the same fly ash blending ratio, the LOP
The values are higher for those using ultra-fast hardening cement, but the NOR and IS values after accelerated tests, especially the IS values, are significantly better for those using ultra-low alkaline cement, and the I after accelerated tests are significantly superior.
When comparing samples with fly ash blending ratios such that the S value is almost the same, the one using ultra-low alkaline cement is superior in terms of LOP value as well.

以−Lから明かなように本発明の混合セメントを用いた
CRCは特に製造後長期間経過後における衝撃強度に優
れていることが判る。
As is clear from the following, the CRC using the mixed cement of the present invention is excellent in impact strength, especially after a long period of time has elapsed after production.

Claims (1)

【特許請求の範囲】 +1)  カルシウムサルホアルミネートを10−11
0 重量%、硫酸カルシウム゛をg重量%以上、遊離生
石灰を7重量%以下含有し、かつ硫酸カルシウムとカル
シウムサルホアルミネートとのモル比が/、3〜t、S
であり、実質的に珪酸三石灰を含まない超低ア“へカリ
性セメント/重量部に対して活性シリ刃物質を0.2 
!i〜ダ重量部を添加したことを特徴とするGRCの製
造に適した混合セメント質材料。 (2)  前記セメントと前記活性シリカ物質の重量和
1部に対して骨材として砂を多くとも7重量部添加した
特許請求の範囲第7項記載のGRCの製造に適した混合
セメント質材料。 (3)前記セメント、前記活性シリカ物質、前記骨材に
水を加えたセメントモルタルに対し重量比で、0.3〜
IO%の対アルカリ性ガラス繊維を添加した特許請求の
範囲第1項ないし第一項に記載の、GRCの製造に適し
た混合セメント質材料。 (4)  前記活性シリカ物質が7ライアノシーである
特許請求の範囲第1項ないし第3項記載のGRCの製造
に適した混合セメント質材料。
[Claims] +1) Calcium sulfoaluminate 10-11
0% by weight, calcium sulfate (g% by weight or more), free quicklime (7% by weight or less), and the molar ratio of calcium sulfate and calcium sulfoaluminate is /, 3 to t, S
0.2 of the active silica material per part by weight of ultra-low acalytic cement that does not substantially contain tricalcium silicate.
! A mixed cementitious material suitable for the production of GRC, characterized in that it contains i to da parts by weight. (2) A mixed cementitious material suitable for the production of GRC according to claim 7, in which at most 7 parts by weight of sand is added as aggregate to 1 part by weight of the cement and the activated silica material. (3) The weight ratio of the cement, the activated silica material, and the cement mortar prepared by adding water to the aggregate is 0.3 to
Mixed cementitious material suitable for the production of GRC according to claims 1 to 1, with the addition of IO% of alkali-resistant glass fibers. (4) A mixed cementitious material suitable for the production of GRC according to claims 1 to 3, wherein the activated silica material is 7-hianocy.
JP56206512A 1981-12-21 1981-12-21 Mixed cementitious material for grc Granted JPS58110451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206512A JPS58110451A (en) 1981-12-21 1981-12-21 Mixed cementitious material for grc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206512A JPS58110451A (en) 1981-12-21 1981-12-21 Mixed cementitious material for grc

Publications (2)

Publication Number Publication Date
JPS58110451A true JPS58110451A (en) 1983-07-01
JPS6224372B2 JPS6224372B2 (en) 1987-05-28

Family

ID=16524585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206512A Granted JPS58110451A (en) 1981-12-21 1981-12-21 Mixed cementitious material for grc

Country Status (1)

Country Link
JP (1) JPS58110451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202852A (en) * 1986-02-28 1987-09-07 秩父セメント株式会社 Glass fiber reinforced concrete composition
US4798628A (en) * 1984-10-30 1989-01-17 Blue Circle Industries Plc Settable mineral clinker compositions
US9321681B2 (en) 2012-04-27 2016-04-26 United States Gypsum Company Dimensionally stable geopolymer compositions and method
US9624131B1 (en) 2015-10-22 2017-04-18 United States Gypsum Company Freeze-thaw durable geopolymer compositions and methods for making same
US9656916B2 (en) 2012-04-27 2017-05-23 United States Gypsum Company Dimensionally stable geopolymer composition and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798628A (en) * 1984-10-30 1989-01-17 Blue Circle Industries Plc Settable mineral clinker compositions
JPS62202852A (en) * 1986-02-28 1987-09-07 秩父セメント株式会社 Glass fiber reinforced concrete composition
US9321681B2 (en) 2012-04-27 2016-04-26 United States Gypsum Company Dimensionally stable geopolymer compositions and method
US9643888B2 (en) 2012-04-27 2017-05-09 United States Gypsum Company Dimensionally stable geopolymer composition and method
US9656916B2 (en) 2012-04-27 2017-05-23 United States Gypsum Company Dimensionally stable geopolymer composition and method
US9890082B2 (en) 2012-04-27 2018-02-13 United States Gypsum Company Dimensionally stable geopolymer composition and method
US10221096B2 (en) 2012-04-27 2019-03-05 United States Gypsum Company Dimensionally stable geopolymer composition and method
US10392307B2 (en) 2012-04-27 2019-08-27 United States Gypsum Company Dimensionally stable geopolymer composition and method
US10597327B2 (en) 2012-04-27 2020-03-24 United States Gypsum Company Dimensionally stable geopolymer composition and method
US9624131B1 (en) 2015-10-22 2017-04-18 United States Gypsum Company Freeze-thaw durable geopolymer compositions and methods for making same
US10308552B2 (en) 2015-10-22 2019-06-04 United States Gypsum Company Freeze-thaw durable geopolymer compositions and methods for making same

Also Published As

Publication number Publication date
JPS6224372B2 (en) 1987-05-28

Similar Documents

Publication Publication Date Title
Majumdar et al. Glass fibre reinforced cement
CA2609853C (en) Fast binder compositions for concrete parts and works containing a calcium salt
JP2708697B2 (en) Fast hydraulic binder
WO2020199907A1 (en) Low-shrinkage alkali-activated dry mix repair mortar
JPS58110451A (en) Mixed cementitious material for grc
US4072534A (en) Super sulphate cement reinforced with glass fibers
US4762561A (en) Volume-stable hardened hydraulic cement
JP2001240456A (en) Acid proof mortar, grout and concrete, and method for working therewith
JP7372159B2 (en) hydraulic composition
JPH10236860A (en) Cement composition having resistance to sulfuric acid
JPH10167792A (en) Fiber-reinforced cement composition and production of cement cured product
JPS63248751A (en) Hydraulic cement and manufacture
Abubaker et al. Effect of fly ash addition on mechanical properties of concrete
JPH04357184A (en) Method for preventing drterioraton of cured concrete
JPS58181752A (en) Mixed cementitious material for grc manufacture
JPS61286256A (en) Glass fiber reinforced concrete formed product composition
JPS6316355B2 (en)
JPS61146742A (en) Self leveling floor material
JPH0580422B2 (en)
JP7359686B2 (en) Admixtures for mortar and concrete, cement compositions, mortar compositions and concrete compositions containing the same, and methods for producing cured mortar and cured concrete
JPH0158142B2 (en)
JPS6311305B2 (en)
KR950010809B1 (en) Composition of waterproof
KR0118678B1 (en) Process for the preparation of mortars
JPH01103942A (en) Rapidly hardening self-leveling composition for floor material