JPS6256240B2 - - Google Patents

Info

Publication number
JPS6256240B2
JPS6256240B2 JP4286382A JP4286382A JPS6256240B2 JP S6256240 B2 JPS6256240 B2 JP S6256240B2 JP 4286382 A JP4286382 A JP 4286382A JP 4286382 A JP4286382 A JP 4286382A JP S6256240 B2 JPS6256240 B2 JP S6256240B2
Authority
JP
Japan
Prior art keywords
plating
electroplating
tank
time
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4286382A
Other languages
Japanese (ja)
Other versions
JPS58161793A (en
Inventor
Hitoshi Oka
Kenji Nakamura
Isao Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4286382A priority Critical patent/JPS58161793A/en
Publication of JPS58161793A publication Critical patent/JPS58161793A/en
Publication of JPS6256240B2 publication Critical patent/JPS6256240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Description

【発明の詳細な説明】 本発明は連続電気めつき方法に関するものにし
て、さらに詳細には、被めつき物が一定速度で移
動しつつ、複数の電気めつきを行う場合、各めつ
きの最適電流密度とめつき時間を任意に得ること
のできる定電流パルス連続電気めつき方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous electroplating method, and more specifically, when a plurality of electroplatings are performed while the object to be plated is moving at a constant speed, the optimum method for each plating is determined. The present invention relates to a constant current pulse continuous electroplating method that allows the current density and plating time to be arbitrarily determined.

従来、電気めつきは以下の方法でなされてき
た。一般に、電気めつきはバツチ式でなされてき
た。すなわち、被めつき物を治具に取り付け、前
処理の後、電気めつき槽に入れ、一定の電流でめ
つきし、一定の時間後、所定のめつき厚さを得
て、電気めつき槽から取り出すものであつた。こ
のような従来の方法には以下の欠点があつた。バ
ツチ式では、一度に多量の被めつき物のめつきを
行う必要性のため、大規模な電気めつき槽を必要
とした。大規模な電気めつき槽中では、めつき液
の流動状態、成分濃度、温度などが均一でなく、
その結果、各被めつき物のめつき状態は同一でな
く、被めつき物の製品としての安定性に欠けるも
のであつた。この欠点を補う一手法として、以下
の方法があつた。すなわち、めつき金属の析出と
溶解を繰り返すパルスめつきである(もしくは、
PRめつき)。パルスめつきにおいて、めつきの析
出と溶解を繰り返すことによつて、比較的均質の
めつきを施すことができたが、本質的には、上記
の欠点を解決できるものではなかつた。さらに、
多量のめつき液を使用するので、公害の点からも
問題のあるものであつた。
Conventionally, electroplating has been performed by the following method. Generally, electroplating has been done in batches. In other words, the object to be plated is mounted on a jig, and after pretreatment, placed in an electroplating bath, plated with a constant electric current, and after a certain period of time, a predetermined plating thickness is obtained, and then electroplated. It was something to be taken out of the tank. Such conventional methods have the following drawbacks. The batch type requires a large-scale electroplating tank because it is necessary to plate a large amount of material at once. In a large-scale electroplating tank, the flow state, component concentration, temperature, etc. of the plating solution are not uniform.
As a result, the plating condition of each plated item was not the same, and the plated item lacked stability as a product. The following method was proposed as a method to compensate for this shortcoming. In other words, it is pulse plating in which the plating metal is repeatedly deposited and melted (or
PR Metsuki). In pulse plating, relatively homogeneous plating could be achieved by repeating the deposition and dissolution of plating, but this did not essentially solve the above-mentioned drawbacks. moreover,
Since a large amount of plating solution is used, there is also a problem in terms of pollution.

最近、上記の欠点を解決する方法として、連続
的に電気めつきする方法が提案され、行われるよ
うになつた。この方法は、プリント基板のごとく
被めつき物が平板状の場合、第1,2図に示す連
続式めつきを可能とするものである。第1図のめ
つき槽の断面図を参照して、被めつき物のプリン
ト基板1は、互に反対方向に同一速度で回転する
同一直径のローラに案内されるベルト2,2′に
より挾持されながら、一定速度でめつき槽6内を
縦断する。プリント基板1は、上部をステンレス
ブラシ3,3′のブラシ部と接触しており、電源
4に導通されて陰極となつている。一方、めつき
槽中、チタン―白金製などの陽極5,5′が、め
つき液中に浸漬しているプリント基板と、等距
離、平行にめつき槽の長さまで配置されている。
第2図は、第1図と同じめつき槽の複数個(この
場合2個)よりなる装置により、プリント基板1
がベルト2,2′に挾持されつつ、、つぎつぎに連
続的に第1めつき槽6、第1水洗槽7、第2めつ
き槽8、第2水洗槽9へ入り、第1めつき、第1
水洗、第2めつき、第2水洗される様子を示すた
めの、それらの配置を上部より見た概略図であ
る。この方法には以下のような欠点があつた。一
般的に、電気めつきでは、めつきの質は電流密度
に深く関係する。電流密度を一定とするには、被
めつき物の表面積によつて電流の大きさを調節す
る必要がある。めつきの厚さは、めつき時間と電
流密度の積によつて決まる。従つて、電気めつき
では、電流密度とめつき時間は、それぞれ、独立
に調節できるものでなければならない。それに対
して、上記の連続式電気めつき方法では、従来法
と同様に一定電流でめつきすると、めつき時間
は、(めつき槽の長さ)/(ベルトの送り速度)
で決まつてしまう。第1めつきのめつき厚さに合
わせてベルトの送り速度を変えれば、第2めつき
のめつき厚さが適切でなくなる。その逆も同様で
ある。残る手段は、第1めつき、もしくは第2め
つきの電流密度を変えることである。しかし、こ
の場合、第1めつき、もしくは第2めつきの質の
どちらかの低下を招く。上記の連続式電気めつき
の方法では、上記の問題が無い場合には、製品の
質の安定性、量産性が高いなどの長所のあるめつ
き方法となるが、被めつき物のめつき条件を変更
する場合、第1めつき液もしくは第2めつき液の
いずれか一方のみの劣化が激しい場合などには、
第1めつき、あるいは第2めつきの電流密度、め
つき時間を独立に調節できないために、めつきの
質を犠性にして生産しなければならなかつた。す
なわち、実質的に使用不能であつた。なお、第2
図において、第1めつき槽、第2めつき槽の各々
にベルトを独立に設置し、上記欠点を無くす考え
もあるが、装置が高価になるとともに、生産性が
低下し、連続式電気めつき方法とする価値が無く
なるので意味がない。
Recently, a continuous electroplating method has been proposed and put into practice as a method to solve the above-mentioned drawbacks. This method enables continuous plating as shown in FIGS. 1 and 2 when the object to be plated is flat, such as a printed circuit board. Referring to the cross-sectional view of the plating bath in FIG. 1, a printed circuit board 1 to be plated is held between belts 2 and 2' guided by rollers of the same diameter that rotate in opposite directions at the same speed. While moving, the plating tank 6 is traversed at a constant speed. The printed circuit board 1 has its upper portion in contact with the brush portions of the stainless steel brushes 3, 3', and is electrically connected to the power source 4 to serve as a cathode. On the other hand, in the plating tank, anodes 5, 5' made of titanium-platinum or the like are placed equidistantly and parallel to the printed circuit board immersed in the plating solution over the length of the plating tank.
Figure 2 shows how a printed circuit board is plated using the same plating tank as in Figure 1 (two in this case).
While being held by the belts 2 and 2', they successively enter the first plating tank 6, the first washing tank 7, the second plating tank 8, and the second washing tank 9, and the first plating, 1st
FIG. 2 is a schematic diagram of the arrangement seen from above to show how water washing, second plating, and second water washing are performed. This method had the following drawbacks. Generally, in electroplating, the quality of plating is closely related to current density. In order to keep the current density constant, it is necessary to adjust the magnitude of the current depending on the surface area of the object to be plated. The plating thickness is determined by the product of plating time and current density. Therefore, in electroplating, current density and plating time must be independently adjustable. On the other hand, in the continuous electroplating method described above, when plating is performed with a constant current as in the conventional method, the plating time is (length of plating tank) / (belt feeding speed)
It is decided by If the belt feeding speed is changed according to the plating thickness of the first plating, the plating thickness of the second plating will not be appropriate. The reverse is also true. The remaining method is to change the current density of the first plating or the second plating. However, in this case, the quality of either the first plating or the second plating deteriorates. If the above-mentioned continuous electroplating method does not have the above problems, it is a plating method with advantages such as stable product quality and high mass productivity, but the plating conditions for the object to be plated are When changing the plating liquid, if either the first plating liquid or the second plating liquid is severely deteriorated,
Since the current density and plating time of the first plating or the second plating cannot be adjusted independently, the quality of the plating has to be sacrificed in production. In other words, it was virtually unusable. In addition, the second
In the figure, there is an idea to install a belt independently in each of the first plating tank and the second plating tank to eliminate the above disadvantages, but this would increase the cost of the equipment, reduce productivity, and cause continuous electric There is no point in using it as a method because it loses its value.

本発明の目的は、上記したような従来技術のめ
つき方法における欠点をなくし、問題点を解決
し、複数のめつき工程からなるものにおいて、そ
れぞれの工程において電流密度およびめつき時間
を独立的に調節できて、量産性よく高品質のもの
が常に得られる連続電気めつき方法を提供するこ
とにある。
The purpose of the present invention is to eliminate the drawbacks and problems of the prior art plating methods as described above, and to independently control current density and plating time in each step in a method consisting of a plurality of plating steps. The object of the present invention is to provide a continuous electroplating method that can be adjusted to suit the desired conditions, is mass-producible, and can always produce high-quality products.

本発明者等は、上記の目的を達成するために
種々の試験、検討を行つた結果、電流の大きさ、
電流の通電時間、電流の遮断時間を任意に調節で
きる定電流パルスによる本発明方法を見出すに至
つた。
The present inventors conducted various tests and studies to achieve the above object, and as a result, the magnitude of the current,
The present inventors have discovered a method of the present invention using constant current pulses in which the current application time and current cutoff time can be arbitrarily adjusted.

本発明の連続電気めつき方法の特徴とするとこ
ろは、複数の電気めつき工程からなり、被めつき
物が各めつき槽中を一定速度で移動しながらめつ
きされる連続電気めつき方法において、電流の大
きさ、電流の通電時間、電流の遮断時間を任意に
調節できる定電流パルスにより、電流の大きさ、
各時間を各電気めつきの工程ごとに調節すること
によつて、該移動速度を変動することなく各電気
めつきの最適の電流密度、所定のめつき厚さを各
電気めつき工程独立に得られるようにしてなるこ
とにある。
The continuous electroplating method of the present invention is characterized by comprising a plurality of electroplating steps, in which the object to be plated is plated while moving at a constant speed in each plating tank. In this method, the magnitude of the current,
By adjusting each time for each electroplating process, the optimum current density and predetermined plating thickness for each electroplating process can be obtained independently for each electroplating process without changing the moving speed. That's how it becomes.

以下、本発明を実施例および比較例につき、図
面を参照して、さらに具体的に説明する。
Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples with reference to the drawings.

第3図は、電流の大きさ、電流の通電時間、電
流の遮断時間を独立に調節できる回路図である。
第4図は、第3図における抵抗R1,R2、クロツ
クパルスCP1,CP2を変化した場合のめつき槽
L内めつき物に対する、電圧、電流Iの波形を示
す図である。第3図中、クロツクパルスCP1を
調節することによつて、第4図中のt,t1を調節
できる。tはパルスの1サイクル当りの時間で、
時間t中の通電時間がt1、遮断時間がt―t1とな
る。時間t1中に流れる電流Iの大きさ(−i)
は、第3図中の可変抵抗R1を変えることによつ
て独立に調節できる。第2図に示した連続式めつ
き槽において、プリント基板がめつき槽を通過す
る時間をTとすると、T×t1/tがめつき時間と
なる。t1=tのとき、一定電流でめつきする従来
方法となり、t1=0のとき、めつきしないことを
示す。すなわち、第3図、第4図に示す定電流パ
ルスを用いれば、前記連続式電気めつき方法にお
いても、プリント基板がめつき槽を通過する時間
Tに関係なく、めつき時間と電流密度を独立に得
ることができる。なお、第4図中、パルスの1サ
イクルt中に、t2後、t3時間の逆の電流、その大
きさ(+i)のものを加えることもできる。この
ようなパルスによれば、めつき時間と電流密度を
独立に調節できるばかりでなく、めつきの析出と
少量の溶解の繰り返しめつき(PRめつき)も可
能となり、前記連続式電気めつき方法でさえも、
よりめつきの質の向上が図れる。この逆の電流の
大きさ(+i)、保持時間は第3図中の可変抵抗
R2とクロツクパルスCP2によつて独立に調節で
きる。
FIG. 3 is a circuit diagram in which the magnitude of the current, the current energization time, and the current cutoff time can be adjusted independently.
FIG. 4 is a diagram showing the waveforms of the voltage and current I for the plated object in the plating tank L when the resistances R 1 and R 2 and the clock pulses CP1 and CP2 in FIG. 3 are changed. By adjusting the clock pulse CP1 in FIG. 3, t and t1 in FIG. 4 can be adjusted. t is the time per cycle of the pulse,
During time t, the energization time is t 1 and the cut-off time is t−t 1 . The magnitude of the current I flowing during time t 1 (-i)
can be adjusted independently by changing variable resistor R 1 in FIG. In the continuous plating tank shown in FIG. 2, if the time taken for the printed circuit board to pass through the plating tank is T, the plating time is T×t 1 /t. When t 1 =t, the conventional method of plating with a constant current is used, and when t 1 =0, no plating is performed. That is, by using the constant current pulses shown in FIGS. 3 and 4, even in the continuous electroplating method, the plating time and current density can be made independent regardless of the time T during which the printed circuit board passes through the plating tank. can be obtained. In addition, in FIG. 4, during one pulse cycle t, a reverse current of magnitude (+i) at time t 3 after t 2 can be added. According to such a pulse, not only can the plating time and current density be adjusted independently, but also plating (PR plating) in which plating is repeatedly deposited and dissolved in a small amount is also possible, and the above-mentioned continuous electroplating method Even,
The quality of plating can be further improved. The magnitude of this reverse current (+i) and the holding time are determined by the variable resistor in Figure 3.
It can be adjusted independently by R 2 and clock pulse CP2.

実施例 使用した連続式電気めつき装置は、第2図に示
したものと同じものである。各めつき工程におけ
る装置、条件は下記の通りである。ベルトの送り
速度は60cm/min一定とした。
EXAMPLE The continuous electroplating apparatus used was the same as that shown in FIG. The equipment and conditions for each plating step are as follows. The belt feeding speed was kept constant at 60 cm/min.

(a) 第1めつき めつき槽の長さ: 100cm めつき液組成 Ni……100g(金属として) H3BO3……PHを3.5とする量 光沢剤……少量 水……1とする量 めつき条件 温度: 60℃ 最適電流密度: 25A/dm2 (b) 第1水洗:シヤワー水洗 (c) 第2めつき めつき槽の長さ: 100cm めつき液組成 Au……10g(金属として) KCN……50g 光沢剤……少量 クエン酸……PHを4とする量 Co……50mg 水……1とする量 めつき条件 温度: 50℃ 最適電流密度: 15A/dm2 (d) 第2水洗:シヤワー水洗 使用した電気めつき装置では、めつき液を強制
的に、高速度で撹拌しているので、通常のめつき
条件より、大きな電流密度の採用が可能である。
なお、使用した電源は第3図に示したものを、第
1めつき、第2めつきの個々に用いた。実施した
めつき厚さの目標条件は以下の通りである。
(a) First plating Length of plating tank: 100cm Plating liquid composition Ni...100g (as metal) H 3 BO 3 ...Amount to adjust pH to 3.5 Brightener...a small amount of water...1 Quantity Plating condition temperature: 60℃ Optimum current density: 25A/dm 2 (b) 1st washing: Shower washing (c) 2nd plating Length of plating bath: 100cm Plating liquid composition Au...10g (metal ) KCN...50g Brightener...a small amount of citric acid...amount to set pH to 4 Co...50mg Water...amount to set to 1 Plating condition temperature: 50℃ Optimum current density: 15A/dm 2 (d) Second washing: Shower washing Since the electroplating equipment used forcibly stirs the plating solution at high speed, it is possible to use a higher current density than under normal plating conditions.
The power supply shown in FIG. 3 was used for each of the first plating and the second plating. The target conditions for the thickness of the test were as follows.

(i) 5μmのニツケルめつきの上に、5μmの金
めつき (ii) 3μmのニツケルめつきの上に、1μmの金
めつき 上記(i)のために用いためつきのパルス条件は、
下記(イ)、(ロ)の通りである。
(i) 5 μm gold plating on 5 μm nickel plating (ii) 1 μm gold plating on 3 μm nickel plating The pulse conditions for the plating used for (i) above are as follows:
The following are (a) and (b).

(イ) 第1めつき(ニツケルめつき) t:1m sec t1:0.65m sec −i:25A/dm2 t2:0m sec t3:0m sec +i:0A/dm2 (ロ) 第2めつき(金めつき) t:1m sec t1:0.79m sec −i:15A/dm2 t2:0m sec t3:0m sec +i:0A/dm2 上記(ii)のために用いためつきのパルス条件は、
下記(ハ)、(ニ)の通りである。
(a) First plating (nickel plating) t: 1m sec t 1 : 0.65m sec -i: 25A/dm 2 t 2 : 0m sec t 3 : 0m sec +i: 0A/dm 2 (b) 2nd Plating (gold plating) t: 1m sec t 1 : 0.79m sec -i: 15A/dm 2 t 2 : 0m sec t 3 : 0m sec +i: 0A/dm 2 The plating used for (ii) above The pulse conditions are
The following are (c) and (d).

(ハ) 第1めつき(ニツケルめつき) t:1m sec t1:0.39m sec −i:25A/dm2 t2:0m sec t3:0m sec +i:0A/dm2 (ニ) 第2めつき(金めつき) t:1m sec t1:0.16m sec −i:15A/dm2 t2:0m sec t3:0m sec +i:0A/dm2 上記の結果、いずれの場合も、ニツケルめつき
90%、金めつき40%の電流効率で、目標のめつき
厚さにめつきすることができた。めつき後、セロ
テープでめつき皮膜の剥離テストを行つたが、な
んら異常なく良好な密着性を持つていた。金めつ
きの表面は、いずれも光沢があつた。
(c) First plating (nickel plating) t: 1m sec t 1 : 0.39m sec -i: 25A/dm 2 t 2 : 0m sec t 3 : 0m sec +i: 0A/dm 2 (d) Second Plating (gold plating) t: 1m sec t 1 : 0.16m sec -i: 15A/dm 2 t 2 : 0m sec t 3 : 0m sec +i: 0A/dm 2 As a result of the above, in both cases, nickel Metsuki
With a current efficiency of 90% and 40% for gold plating, we were able to plate to the target plating thickness. After plating, a peel test of the plating film was performed using cellophane tape, and it showed good adhesion with no abnormalities. The gold-plated surfaces were all shiny.

なお、上記(i)の場合において、PRめつきを行
い、そのパルス条件を次のようにした。
In the case of (i) above, PR plating was performed under the following pulse conditions.

(ホ) 第1めつき(ニツケルめつき) t:2m sec t1:1.5m sec −i:25A/dm2 t2:1.7m sec t3:0.2m sec +i:25A/dm2 (ヘ) 第2めつき(金めつき) 上記(ロ)の場合と同一にした。(e) First plating (nickel plating) t: 2m sec t 1 : 1.5m sec -i: 25A/dm 2 t 2 : 1.7m sec t 3 : 0.2m sec +i: 25A/dm 2 (f) Second plating (gold plating) Same as in case (b) above.

この場合も、上記と同様の目標のめつき厚さを
得た。めつき表面もなんら異常がなかつた。
In this case, the same target plating thickness as above was obtained. There was no abnormality on the plated surface.

比較例 実施例の場合と同様、第2図に示す連続電気め
つき装置を用いた。なお、電源にはニツケルめつ
き、金めつき個々に従来の定電流電源を用いた。
Comparative Example As in the Example, a continuous electroplating apparatus shown in FIG. 2 was used. Note that conventional constant current power supplies were used for each of the nickel plating and gold plating.

(iii) 実施例における(i)と同一目標、すなわち、5
μmのニツケルめつきの上に、5μmの金めつ
き目標に対して、適用した電流密度は下記の通
りとした。
(iii) Same goal as (i) in the example, i.e. 5
For a 5 μm gold plating target on μm nickel plating, the applied current densities were as follows.

(ト) 第1めつき(ニツケルめつき) 電流密度:16A/dm2 第2めつき(金めつき) 電流密度:12A/dm2 その結果は、やや粒子の粗大なめつき表面とな
つたが、テープテストの結果、めつき皮膜が剥離
することは無かつた。
(g) 1st plating (nickel plating) Current density: 16A/dm 2 2nd plating (gold plating) Current density: 12A/dm 2The result was a plated surface with slightly coarse particles. As a result of the tape test, there was no peeling of the plating film.

(iv) 実施例における(ii)と同一目標、すなわち、3
μmのニツケルめつきの上に、1μmの金めつ
き目標に対して、適用した電流密度は下記の通
りとした。
(iv) Same goal as (ii) in the example, i.e. 3
For a 1 μm gold plating target on μm nickel plating, the applied current density was as follows.

(チ) 第1めつき(ニツケルめつき) 電流密度:10A/dm2 第2めつき(金めつき) 電流密度:2.5A/dm2 その結果は、金めつきが所定の厚さ1μmに達
しなかつたばかりか、めつき皮膜が剥離した。
(H) 1st plating (nickel plating) Current density: 10A/dm 2 2nd plating (gold plating) Current density: 2.5A/dm 2 As a result, the gold plating reaches the specified thickness of 1 μm. Not only did it not reach this level, but the plating film peeled off.

上記に述べたように、本発明によれば、被めつ
き物が一定速度で移動しつつ、複数の電気めつき
工程を連続的に行う場合、各めつきの最適電流密
度とめつき時間を独立に得ることのできる定電流
パルスめつきを行うことによつて、被めつき物の
めつき条件の変更があつても、容易、迅速にめつ
きの質とめつきの厚さを安定に得ることができる
ものである。
As described above, according to the present invention, when a plurality of electroplating processes are performed continuously while the object to be plated moves at a constant speed, the optimum current density and plating time for each plating are independently determined. By performing constant current pulse plating, it is possible to easily and quickly obtain stable plating quality and plating thickness even if the plating conditions of the object to be plated are changed. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続式電気めつき装置のめつき槽の断
面図にして、第2図はめつき工程が2工程である
ものの装置の配置を示す上部より見た概略図であ
る。第3図は本発明における定電流パルスを得る
ための回路図にして、第4図はこの定電流パルス
の波形を示す図である。 1……プリント基板、2,2′……ベルト、
3,3′……ステンレスブラシ、4……電源、
5,5′……陽極、6……めつき槽(または第1
めつき槽)、7……第1水洗槽、8……第2めつ
き槽、9……第2水洗槽。
FIG. 1 is a cross-sectional view of a plating tank of a continuous electroplating apparatus, and FIG. 2 is a schematic view from above showing the arrangement of the apparatus, although the plating process is a two-step process. FIG. 3 is a circuit diagram for obtaining a constant current pulse in the present invention, and FIG. 4 is a diagram showing the waveform of this constant current pulse. 1...Printed circuit board, 2, 2'...belt,
3, 3'...Stainless steel brush, 4...Power supply,
5, 5'...Anode, 6...Plating tank (or first
plating tank), 7...first washing tank, 8...second plating tank, 9...second washing tank.

Claims (1)

【特許請求の範囲】 1 電流効率が理論値を示さない2槽以上複数の
電気めつき槽を有する電気めつきラインにおい
て、被めつき物を上記複数の電気めつき槽中に一
定の速度で連続的に移動させながら、上記各電気
めつき槽ごとに定電流パルスを用いて、複数の金
属の積層めつきを連続して行う電気めつき方法で
あつて、上記各電気めつき槽において所望する品
質のめつき金属およびめつき厚さが得られるよう
に、各電気めつき槽における電流密度およびめつ
き時間をあらかじめ各電気めつき槽ごとに実測す
ることによつて設定しておき、上記電流密度およ
びめつき時間に合わせて各めつき槽に用いる定電
流パルスの電流の大きさ、通電時間および遮断時
間を各めつき槽ごとに設定し、被めつき物の移動
速度を変更することなく、上記設定した定電流パ
ルスをそれぞれのめつき槽に適用することによ
り、所望する性状の金属の積層めつきを得ること
を特徴とする連続電気めつき方法。 2 金属の積層めつきが、ニツケルおよび金めつ
きであることを特徴とする特許請求の範囲第1項
に記載の連続電気めつき方法。
[Claims] 1. In an electroplating line having two or more electroplating tanks in which the current efficiency does not show the theoretical value, the object to be plated is placed at a constant speed into the plurality of electroplating tanks. An electroplating method in which laminated plating of a plurality of metals is continuously carried out using a constant current pulse in each of the electroplating baths while moving the metal continuously, the electroplating method comprising: In order to obtain plating metal and plating thickness of the desired quality, the current density and plating time in each electroplating tank are set in advance by actual measurements for each electroplating tank, and the above-mentioned values are set. The magnitude of the constant current pulse used in each plating tank, the energization time, and the cut-off time are set for each plating tank according to the current density and plating time, and the moving speed of the object to be plated is changed. A continuous electroplating method characterized in that a constant current pulse set as described above is applied to each plating tank to obtain laminated metal plating with desired properties. 2. The continuous electroplating method according to claim 1, wherein the metal lamination plating is nickel and gold plating.
JP4286382A 1982-03-19 1982-03-19 Continuous electroplating method Granted JPS58161793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286382A JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286382A JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Publications (2)

Publication Number Publication Date
JPS58161793A JPS58161793A (en) 1983-09-26
JPS6256240B2 true JPS6256240B2 (en) 1987-11-25

Family

ID=12647864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286382A Granted JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Country Status (1)

Country Link
JP (1) JPS58161793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299195A (en) * 1995-11-21 2009-12-24 Atotech Deutsche Gmbh Method for electrolytic deposition of metal coating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218494A (en) * 1984-04-13 1985-11-01 Mitsui Eng & Shipbuild Co Ltd Pulse plating method
JPS6468489A (en) * 1987-09-09 1989-03-14 Shinko Electric Ind Co Electrolytic gold plating method
JPH0819546B2 (en) * 1992-04-06 1996-02-28 栄電子工業株式会社 Electroplating method
JP2002235189A (en) * 2001-02-05 2002-08-23 Sansha Electric Mfg Co Ltd Power unit for feeding plating current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299195A (en) * 1995-11-21 2009-12-24 Atotech Deutsche Gmbh Method for electrolytic deposition of metal coating

Also Published As

Publication number Publication date
JPS58161793A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
US2451341A (en) Electroplating
US8062496B2 (en) Electroplating method and apparatus
US6203684B1 (en) Pulse reverse electrodeposition for metallization and planarization of a semiconductor substrates
KR100572433B1 (en) Programmed Pulse Electroplating Method
US4898647A (en) Process and apparatus for electroplating copper foil
EP0258452B1 (en) Process for producing copper-clad laminate
US6878259B2 (en) Pulse reverse electrodeposition for metallization and planarization of semiconductor substrates
US3904489A (en) Apparatus and method for continuous selective electroplating
US5958207A (en) Process for applying a surface coating
CA2172613C (en) Process for the galvanic application of a surface coating
JPS6256240B2 (en)
US4046643A (en) Production of multi-metal particles for powder metallurgy alloys
GB2192642B (en) Process for the deposition of bearing alloys
CN114207190A (en) Method and device for electrolytically coating electrically conductive strips and/or fabrics by means of impulse technology
GB1406081A (en) Method for electrolytic deposition
US2424173A (en) Electrolytic production of alloy coatings
JPH1018076A (en) Production of metallic foil and apparatus therefor
JPH0233797B2 (en) OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO
JP2578441B2 (en) Method for producing Zn-Ni alloy plated steel with excellent adhesion
JPS62127493A (en) Electrolytic tinning method
KR900004056B1 (en) A copper thin film apparatus method for metal tape using
JPS6152388A (en) Plating device
JPS621241Y2 (en)
JP3239828B2 (en) Method for electrolytic coloring of aluminum or aluminum alloy
JP2000096282A (en) Electroforming method and device therefor