JPH0233797B2 - OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO - Google Patents

OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO

Info

Publication number
JPH0233797B2
JPH0233797B2 JP50105782A JP50105782A JPH0233797B2 JP H0233797 B2 JPH0233797 B2 JP H0233797B2 JP 50105782 A JP50105782 A JP 50105782A JP 50105782 A JP50105782 A JP 50105782A JP H0233797 B2 JPH0233797 B2 JP H0233797B2
Authority
JP
Japan
Prior art keywords
electrolyte
zinc
nickel
anode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50105782A
Other languages
Japanese (ja)
Other versions
JPS58500486A (en
Inventor
Rihyaruto Erutsuaa
Kaaruuhaintsu Kirian
Yohanesu Jiiueruto
Hansuururitsuhi Uaigeru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RATSUSERUSHUTAIN AG
Original Assignee
RATSUSERUSHUTAIN AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RATSUSERUSHUTAIN AG filed Critical RATSUSERUSHUTAIN AG
Publication of JPS58500486A publication Critical patent/JPS58500486A/en
Publication of JPH0233797B2 publication Critical patent/JPH0233797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/227Drying of printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

請求の範囲 1 帯鋼に亜鉛−ニツケル合金被覆を、合金元素
を含む可溶性陽極を使用して電気メツキする方法
において、合金被覆を電気メツキする前に、帯鋼
を電解液により少なくとも2m/secの相対流速
および少なくとも5秒の処理時間で強力に無電解
前処理することを特徴とする、帯鋼に亜鉛−ニツ
ケル合金被覆を電気メツキする方法。 2 帯鋼を電解液浴を通過させることによつて前
処理することを特徴とする請求の範囲第1項記載
の方法。 3 帯鋼に電解液をスプレーすることによつて前
処理することを特徴とする請求の範囲第1項記載
の方法。 4 別個の電流回路に接続したそれぞれ1つの合
金元素のみを含む可溶性陽極を使用し、異なる合
金元素を含む陽極の電流を別個に制御することを
特徴とする請求の範囲第1項から第3項までのい
ずれか1項記載の方法。 明細書 本発明は金属物体に合金被覆、とくに帯鋼に亜
鉛−ニツケル合金被覆を、それぞれ1つの合金元
素のみを含む可溶性陽極を使用して電気メツキす
る方法に関する。 亜鉛−ニツケル合金被覆を有する帯鋼は耐食性
が要求される場合に使用される。この場合帯鋼が
成形した状態でも良好な耐食性を保持することが
重要である。この点で公知電気メツキ法は十分満
足な結果が得られない。 金属物体に合金被覆とくに帯鋼に亜鉛−ニツケ
ル合金被覆を電気メツキする場合、合金被覆が合
金元素の所定の一定の組成%を含むことも必要で
ある。しかし一定組成の合金被覆のメツキは種々
のフアクタ、主として電解液中の種々の合金被覆
の濃度に影響される。電解液中の種々の合金被覆
の濃度の簡単な制御は現在までほとんど不可能で
あつた。 鋼線に亜鉛−ニツケル合金被覆を電気メツキす
る公知法(米国特許第2419231号明細書参照)の
場合、別個のニツケルおよび亜鉛陽極を使用し、
そのそれぞれの表面積は合金被覆の所望の組成%
の比に選択された。この場合多数の亜鉛陽極およ
びニツケル陽極を共通の陽極支持体に所望の電流
分布が生ずるように分配した。しかしこの場合方
法条件たとえば電流密度または析出電圧の各変化
により電解液の濃度が変動し、したがつて合金組
成が無制御に変化し、かつ層厚が変動した。また
公知法の場合合金組成は、陽極支持体に配置した
ニツケルおよび亜鉛陽極のそのつどの比を変化す
ることによつてしか、変化することができず、こ
れは作業費が著しく高くなることを意味する。 Dettner、Elzeによる“Handbuch der
Galvanotechnik”Band、Carl Hanser
Verlag 1966年の468〜469ページにはニツケル−
コバルト合金メツキのため、ニツケルおよびコバ
ルトを一定の比で含む電解液を使用することが記
載され、その際電解液の組成を一定に保持するた
め、2つの合金からなる陽極を別個の電流回路に
接続することが望ましいとしている。電解液組成
を一定に維持するため、コバルト含量の高い合金
(コバルト70%)からなる陽極、またはコバル
ト:ニツケル=3:1の表面積比を有する個々の
金属からなる陽極を使用しなければならない。方
法条件の変化または合金組成の変化に適合させる
ための制御法はこの場合も開示されていない。 本発明の目的は加工した状態でも良好な耐食性
を有する合金被覆が得られる、金属物体に合金被
覆とくに帯鋼に亜鉛−ニツケル合金被覆を電気メ
ツキする首記方式の方法を得ることである。さら
に電解液中の種々の合金元素の濃度の制御、した
がつて所望の一定組成%を有する合金被覆のメツ
キが簡単に可能でなければならない。 上記目的は請求の範囲第1項記載の特徴を有す
る方法によつて解決される。本発明の他の形成は
請求の範囲第2項〜第5項に記載される。 意外にも亜鉛−ニツケル合金被覆を製造する方
法の場合、加工状態におけるこの材料の良好な耐
食性は、電気メツキ処理の前に金属物体たとえば
帯鋼を電解液により、有利に帯における少なくと
も2m/secの流速、少なくとも5秒の処理時間
をもつて、強力に無電解前処理することによつて
のみ得られることが明らかになつた。無電解前処
理はこの場合帯鋼をまず無電流電解液浴を通過さ
せ、または電解液を走行する帯鋼上にスプレーす
るように実施することができる。電解液浴と帯の
間の高い相対速度のもとのこの無電解前処理によ
つて、亜鉛−ニツケルを含む薄い1次層が析出す
るので、本来の亜鉛−ニツケル合金被覆の電気メ
ツキはこの1次層の上に行われる。 電解液中の種々の合金元素の濃度の制御、した
がつて所望の一定組成%の合金被覆のメツキは、
それぞれ異なる合金元素を含む陽極を別個の電流
供給回路に接続し、各陽極の電流を別個に制御す
ることによつて達成される。 これはたとえば多数の亜鉛陽極を共通の陽極支
持体に配置し、この支持体を固有の電流供給回路
に接続することを意味する。第2合金形素たとえ
ばニツケルを含む陽極は他の陽極支持体に配置さ
れ、この支持体は第2の別個の電流供給回路に接
続される。この配置により両方の亜鉛またはニツ
ケル陽極支持体の電流の異なる制御によつて電解
液中の成分濃度を容易に制御しうる利点が得られ
る。それぞれ1つの合金元素のみを含む陽極支持
体はこの場合2つの異なる電解液タンク内に配置
され、このタンクが互いに貯蔵タンクを介して結
合されているので、電解液の組成は陽極支持体が
別個であるにもかかわらず、均一な合金組成の析
出を保証する。電流供給の適当な制御によつて簡
単に、良好な耐食性を達成する合金被覆の他の組
成%も得られ、かつその組成を一定に保持するこ
ともできる。 有利にこの方法はそれぞれ1つの合金元素たと
えば亜鉛の多数陽極を共通の陽極ケージ内に配置
し、このケージを他の1つの合金元素たとえばニ
ツケルの陽極を含む陽極ケージへの電流供給回路
と異なる別個の電流供給回路へ接続するように実
施される。 本発明の方法は亜鉛−ニツケル合金被覆の電気
メツキに限定されない。場合により鉛−亜鉛また
は銅−亜鉛合金のメツキに適用することもでき
る。 次に図面により本発明の方法を簡単に説明す
る。 図面は亜鉛−ニツケル合金被覆を帯鋼1へ電気
メツキする装置を略示する。この帯鋼1の片面に
この種の合金被覆を設けるものとする。帯鋼1は
電流供給ローラ2を介して陰極として接続され
る。 帯鋼1は電解液タンクを通過する前に、メツキ
すべき面を20で前処理し、その際帯鋼に無電流
で電解液をスプレーし、それによつて帯鋼に亜鉛
−ニツケルを含む薄い1次層が析出する。 適当な電解液を充てんした第1タンク3内に亜
鉛陽極5を充てんした陽極ケージ4が配置され
る。この陽極ケージは電流供給回路6に接続され
る。公知構造の電気回路7により電流は帯の長
さ、帯速度、帯幅および合金被覆の所望組成に応
じて制御することができる。 さらに同様電解液を充てんした第2タンク8が
備えられ、この中に陽極ケージ9が配置される。
この陽極ケージ9はニツケル陽極10が充てんさ
れる。 第2陽極ケージ9への電流供給回路11は第1
電流供給回路6とは独立している。回路7に相当
する回路12を介して陽極ケージ9の電流は陽極
ケージ4と無関係に制御される。 装置を右から左へ通過する帯鋼1上にタンク3
内でまず亜鉛が溶解される。次にタンク8内でニ
ツケルの溶解が行われる。両方のタンク3,8内
で金属が析出して合金が形成される。陽極ケージ
4および9の別個の電流制御によつて電解液中の
亜鉛およびニツケルの濃度が調節され、それによ
つて析出した合金の組成は所望の比で一定に保持
される。2つのタンク3,8内の電解液は同じで
あり、共通の貯蔵容器13からタンク3,8に供
給される。 場合により各陽極ケージ4または9の電気的絶
縁構造を帯1の導入側および導出側の後方に備え
ることも考えられる。 実施例 例 1 (無電解前処理しない場合) 電解液により脱脂されかつ20%の塩酸中で浸漬
処理された薄帯鋼(非合金鋼)を、表面積1m2
り40gのZn/Ni合金を有しかつ12%のNi含量を
有するZn/Ni硫酸塩浴中でそれぞれ1つのみの
合金元素を含有する可溶性陽極を使用しながら被
覆した。浴組成は、Zn30g/、硫酸塩として
のNi60g/およびNH4ClとしてのCl12g/
であつた。浴は70℃の温度および3.2のPH価を有
していた。 被覆の付着力を、β=2.0の絞り比を用いてカ
ツプを絞り成形することによつて測定した。被覆
された薄帯鋼からの板状品およびカツプにDIN
50021による塩水噴霧試験を行なつた:
Claim 1: A method of electroplating a zinc-nickel alloy coating on a steel strip using a soluble anode containing an alloying element, in which the steel strip is electroplated with an electrolytic solution at a rate of at least 2 m/sec before electroplating the alloy coating. 1. A method for electroplating zinc-nickel alloy coatings on steel strip, characterized by an intensive electroless pretreatment with a relative flow rate and a treatment time of at least 5 seconds. 2. A method according to claim 1, characterized in that the steel strip is pretreated by passing it through an electrolyte bath. 3. A method according to claim 1, characterized in that the steel strip is pretreated by spraying an electrolyte. 4. Claims 1 to 3 characterized in that soluble anodes each containing only one alloying element are used, each connected to a separate current circuit, and the current of the anodes containing different alloying elements is controlled separately. The method described in any one of the above. Description The present invention relates to a method for electroplating alloy coatings on metal objects, in particular zinc-nickel alloy coatings on steel strips, using soluble anodes each containing only one alloying element. Steel strips with a zinc-nickel alloy coating are used when corrosion resistance is required. In this case, it is important that the steel strip maintains good corrosion resistance even in the formed state. In this respect, the known electroplating method does not provide sufficiently satisfactory results. When electroplating alloy coatings on metal objects, in particular zinc-nickel alloy coatings on steel strips, it is also necessary that the alloy coating contains a certain constant composition percentage of the alloying elements. However, the plating of constant composition alloy coatings is influenced by various factors, primarily the concentration of the various alloy coatings in the electrolyte. Simple control of the concentration of various alloy coatings in the electrolyte has been almost impossible to date. In the known method of electroplating zinc-nickel alloy coatings on steel wire (see U.S. Pat. No. 2,419,231), separate nickel and zinc anodes are used;
Its respective surface area is % of the desired composition of the alloy coating
The ratio of In this case, a number of zinc and nickel anodes were distributed on a common anode support in such a way that the desired current distribution occurred. However, in this case, each change in the process conditions, for example the current density or the deposition voltage, caused a change in the concentration of the electrolyte, and thus an uncontrolled change in the alloy composition and a change in the layer thickness. Furthermore, in the known process the alloy composition can only be varied by changing the respective ratio of the nickel and zinc anodes arranged on the anode support, which leads to a considerable increase in operating costs. means. “Handbuch der” by Dettner, Elze
Galvanotechnik” Band, Carl Hanser
On pages 468-469 of Verlag 1966, Nickel
For cobalt alloy plating, the use of an electrolyte containing a certain ratio of nickel and cobalt is described, and in order to keep the composition of the electrolyte constant, the anode consisting of the two alloys is connected to a separate current circuit. It is desirable to connect. In order to keep the electrolyte composition constant, anodes made of alloys with a high cobalt content (70% cobalt) or anodes made of individual metals with a surface area ratio of cobalt:nickel = 3:1 must be used. Again, no controls are disclosed for adapting to changes in process conditions or changes in alloy composition. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for electroplating a metal object, particularly a zinc-nickel alloy coating, on a steel strip, which provides an alloy coating with good corrosion resistance even in the processed state. Furthermore, it must be possible to easily control the concentration of the various alloying elements in the electrolyte and thus to plate an alloy coating with the desired constant composition percentage. The object is solved by a method having the features of claim 1. Further developments of the invention are set out in claims 2-5. Surprisingly, in the case of the method for producing zinc-nickel alloy coatings, the good corrosion resistance of this material in the working state is due to the fact that the metal object, e.g. It has become clear that this can only be achieved by intensive electroless pretreatment with a flow rate of . The electroless pretreatment can be carried out in this case by first passing the steel strip through a currentless electrolyte bath or by spraying the electrolyte onto the running steel strip. This electroless pretreatment under high relative velocities between the electrolyte bath and the strip deposits a thin primary layer containing zinc-nickel, so that the electroplating of the original zinc-nickel alloy coating is It is done on top of the primary layer. The control of the concentration of the various alloying elements in the electrolyte, and thus the plating of the alloy coating at a desired constant composition %,
This is accomplished by connecting the anodes, each containing a different alloying element, to separate current supply circuits and controlling the current in each anode separately. This means, for example, that a number of zinc anodes are arranged on a common anode support and that this support is connected to a specific current supply circuit. An anode comprising a second alloy element, for example nickel, is arranged on another anode support, which support is connected to a second separate current supply circuit. This arrangement offers the advantage that the concentration of the components in the electrolyte can be easily controlled by differential control of the currents in both zinc or nickel anode supports. The anode supports, each containing only one alloying element, are in this case arranged in two different electrolyte tanks, which are connected to each other via a storage tank, so that the composition of the electrolyte is different from that of the anode supports. However, it guarantees the precipitation of a uniform alloy composition. By appropriate control of the current supply, other composition percentages of the alloy coating that achieve good corrosion resistance can be obtained in a simple manner, and the composition can also be kept constant. Advantageously, this method involves arranging multiple anodes of one alloying element, for example zinc, in a common anode cage, which cage is connected to a separate current supply circuit different from the current supply circuit for the anode cages containing the anodes of one other alloying element, for example nickel. It is implemented so as to be connected to the current supply circuit of. The method of the present invention is not limited to electroplating zinc-nickel alloy coatings. Depending on the case, it can also be applied to plating lead-zinc or copper-zinc alloys. Next, the method of the present invention will be briefly explained with reference to the drawings. The drawing schematically shows an apparatus for electroplating a zinc-nickel alloy coating onto a steel strip 1. This type of alloy coating is provided on one side of the steel strip 1. The steel strip 1 is connected via a current supply roller 2 as a cathode. Before the strip 1 passes through the electrolyte tank, the surface to be plated is pretreated with 20, during which the strip is sprayed with an electrolyte without an electric current, thereby giving the strip a thin zinc-nickel-containing coating. A primary layer is deposited. An anode cage 4 filled with a zinc anode 5 is placed in a first tank 3 filled with a suitable electrolyte. This anode cage is connected to a current supply circuit 6. By means of an electrical circuit 7 of known construction, the current can be controlled depending on the length of the strip, the strip speed, the strip width and the desired composition of the alloy coating. Furthermore, a second tank 8 similarly filled with electrolyte is provided, and an anode cage 9 is disposed therein.
This anode cage 9 is filled with a nickel anode 10. The current supply circuit 11 to the second anode cage 9 is connected to the first
It is independent from the current supply circuit 6. Via a circuit 12 corresponding to circuit 7, the current in anode cage 9 is controlled independently of anode cage 4. A tank 3 is placed on the steel strip 1 passing through the device from right to left.
Zinc is first dissolved inside. Next, the nickel is melted in the tank 8. In both tanks 3, 8 metal is deposited and an alloy is formed. Separate current control of the anode cages 4 and 9 regulates the concentration of zinc and nickel in the electrolyte, thereby keeping the composition of the deposited alloy constant in the desired ratio. The electrolyte in the two tanks 3, 8 is the same and is supplied to the tanks 3, 8 from a common storage container 13. Optionally, it is also conceivable to provide an electrically insulating structure for each anode cage 4 or 9 behind the inlet and outlet sides of the strip 1. Example 1 (In the case of no electroless pretreatment) A thin strip steel (non-alloyed steel) that had been degreased with an electrolytic solution and immersed in 20% hydrochloric acid was treated with 40 g of Zn/Ni alloy per 1 m2 of surface area. and coated using soluble anodes containing only one alloying element in each case in a Zn/Ni sulfate bath with a Ni content of 12%. The bath composition was 30 g Zn/, 60 g Ni as sulfate and 12 g Cl as NH 4 Cl/
It was hot. The bath had a temperature of 70°C and a PH number of 3.2. The adhesion of the coating was determined by drawing the cup using a drawing ratio of β=2.0. DIN for plates and cups from coated ribbon steel
A salt spray test was conducted using 50021:

【表】 例 2 (無電解前処理した場合) 例1の記載と同一の薄帯鋼を例1の記載と同様
に差当り電解液により脱脂しかつ浸漬した。
Zn/Niメツキの被覆前に、この薄帯鋼に無電解
で10秒間電解液を強力に噴霧し、この場合薄帯鋼
に対する電解液の相対流速は2〜3m/secであ
つた。引続き、例1の記載と同様にして被覆を行
なつた。こうして被覆された材料に同じ試験を実
施した。 付着力および耐蝕性の値は、この処理過程によ
つて著しく改善された。
[Table] Example 2 (When subjected to electroless pretreatment) The same ribbon steel as described in Example 1 was first degreased and immersed in an electrolytic solution in the same manner as described in Example 1.
Before coating with Zn/Ni plating, the ribbon steel was electrolessly sprayed with an electrolyte for 10 seconds, the relative flow velocity of the electrolyte to the ribbon being 2 to 3 m/sec. Coating was then carried out as described in Example 1. The same tests were carried out on the material thus coated. The adhesion and corrosion resistance values were significantly improved by this treatment process.

【表】【table】
JP50105782A 1981-04-01 1982-03-16 OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO Expired - Lifetime JPH0233797B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3110317.0 1981-03-17
FR8106569A FR2503524A1 (en) 1981-04-01 1981-04-01 IMPROVEMENTS IN MACHINES FOR DRYING WIRED PRINTED CIRCUIT BOARDS AFTER CLEANING THE SAME FOLLOWING AN AUTOMATIC COMPONENT WELDING OPERATION

Publications (2)

Publication Number Publication Date
JPS58500486A JPS58500486A (en) 1983-03-31
JPH0233797B2 true JPH0233797B2 (en) 1990-07-30

Family

ID=9256892

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50105782A Expired - Lifetime JPH0233797B2 (en) 1981-04-01 1982-03-16 OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO
JP50113282A Pending JPS58500452A (en) 1981-04-01 1982-04-01 Improvement of a machine for drying printed wiring boards after cleaning them following automatic element soldering work

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP50113282A Pending JPS58500452A (en) 1981-04-01 1982-04-01 Improvement of a machine for drying printed wiring boards after cleaning them following automatic element soldering work

Country Status (4)

Country Link
JP (2) JPH0233797B2 (en)
DE (1) DE8209397U1 (en)
FR (1) FR2503524A1 (en)
WO (1) WO1982003523A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713311B (en) * 2015-03-18 2017-01-25 湖南铁达能源科技有限公司 Drying method for drying interior of gas bottle
PL3461933T3 (en) 2017-09-28 2020-03-31 Atotech Deutschland Gmbh Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated
CN110332765B (en) * 2019-06-29 2021-06-18 汕尾市索思电子封装材料有限公司 Drying method and drying device for electroplating product
CN112867254A (en) * 2020-12-31 2021-05-28 苏州统硕科技有限公司 Manufacturing method of printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1567023A (en) * 1920-10-30 1925-12-22 Norton Co Continuous drying kiln and method of drying ware
US3579853A (en) * 1968-12-05 1971-05-25 Joseph J Martino Circuit board drier
DE2750973A1 (en) * 1977-11-15 1979-05-17 Famatex Gmbh Fabrik Fuer Texti Cleaning aerosol laden hot air used for drying textiles - by passing air through heat exchanger to cool down to optimal constant temp. and then passing through filter
FR2461907B1 (en) * 1979-07-16 1987-08-21 Remonato Giancarlo CONTINUOUS MULTI-STAGE DRYER, PARTICULARLY FOR TANNED SKIN

Also Published As

Publication number Publication date
FR2503524B1 (en) 1984-10-26
JPS58500452A (en) 1983-03-24
JPS58500486A (en) 1983-03-31
DE8209397U1 (en) 1982-12-16
WO1982003523A1 (en) 1982-10-14
FR2503524A1 (en) 1982-10-08

Similar Documents

Publication Publication Date Title
JPS58100695A (en) Method and apparatus for electroplating
US4242180A (en) Ammonia free palladium electroplating bath using aminoacetic acid
US2044431A (en) Method of electroplating metal
US3970537A (en) Electrolytic treating apparatus
JPH0233797B2 (en) OBIKONIAENNNITSUKERUGOKINHIFUKUODENKIMETSUKISURUHOHO
JPS58174592A (en) Preparation of steel plate electoplated with fe-zn alloy having different kind of composition
US4036600A (en) Steel substrate electroplated with Al powder dispersed in Zn
US1920964A (en) Electrodeposition of alloys
EP0061130B1 (en) Process for the galvanic deposit of a zinc-nickel-alloy layer on a metal object, in particular on steel strip
US4518474A (en) Device for the electrolytic treatment of metal strip
JPH07331483A (en) Production of electrogalvanized steel sheet
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPH0352551B2 (en)
JP2578441B2 (en) Method for producing Zn-Ni alloy plated steel with excellent adhesion
US4451336A (en) Additive-free, fast precipitating palladium electrolyte bath and process
JPH0635665B2 (en) Method for dissolving copper particles formed during electroless copper coating
JPS6023200B2 (en) Manufacturing equipment for iron-zinc alloy electroplated steel sheets
JPS6256240B2 (en)
JPS61133395A (en) Plated stainless steel bar and its manufacture
US4822457A (en) Method of eliminating a fern-like pattern during electroplating of metal strip
JPS6144157B2 (en)
KR0124830B1 (en) MANUFACTURING METHOD FOR Zn ALLOY COATED STEEL SHEET
JPS6215635B2 (en)
JPH01152296A (en) Method for electroplating steel sheet with zn-ni alloy
DE1934081C3 (en) Process to improve the electro-weldability and the corrosion resistance of electro-galvanized