JPS60218494A - Pulse plating method - Google Patents
Pulse plating methodInfo
- Publication number
- JPS60218494A JPS60218494A JP7297784A JP7297784A JPS60218494A JP S60218494 A JPS60218494 A JP S60218494A JP 7297784 A JP7297784 A JP 7297784A JP 7297784 A JP7297784 A JP 7297784A JP S60218494 A JPS60218494 A JP S60218494A
- Authority
- JP
- Japan
- Prior art keywords
- current
- electric current
- supplied
- switches
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はアモルファス合金膜を形成するのに好適なパ
ルスめっき方法に関するものでらる。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pulse plating method suitable for forming an amorphous alloy film.
従来のめつき方法は電解液中に設けられた電極に直流電
流を連続して供給する連続直流通電めっき方法が主流と
なっていた。近年、アモルファス合金の有用性が注目さ
れ、めっきによってアモルファス合金膜を形成する方法
が各種提案されているが、このためには大電流を供給し
て電解液中のイオンの移動通路をランダムにする必要が
ある。The mainstream of conventional plating methods has been continuous direct current electroplating, in which a direct current is continuously supplied to an electrode provided in an electrolytic solution. In recent years, the usefulness of amorphous alloys has attracted attention, and various methods have been proposed to form amorphous alloy films by plating, but this requires supplying a large current to randomize the movement paths of ions in the electrolyte. There is a need.
しかし、従来の連続直流通電めっきは電解液中に濃度分
極ができるため大電流の供給が行なえなかった。このた
め、第1図に示すように供給期間T1の間は直流電流を
供給し、非供給期間T2の間は電流の供給を遮断するパ
ルスめっき方法が提案されている。この方法によると、
電流の非供給期間に濃度分極が解消するので、大電流の
供給が容易となって結晶核の発生が大きな速度でランダ
ムに起り、微細な金属組成が得られるようになる。However, conventional continuous direct current electroplating cannot supply a large current because concentration polarization occurs in the electrolyte. For this reason, a pulse plating method has been proposed in which a DC current is supplied during a supply period T1 and the current supply is cut off during a non-supply period T2, as shown in FIG. According to this method,
Since the concentration polarization is eliminated during the period when no current is supplied, it becomes easy to supply a large current, and crystal nuclei are generated randomly at a high speed, making it possible to obtain a fine metal composition.
しかしながら、電流の非供給時間を設けるために、必要
な膜厚を形成するまでの時間が長くなり、作業効率が悪
くなるという欠点を有していた。However, since the current is not supplied during the non-supply period, it takes a long time to form the required film thickness, resulting in poor working efficiency.
したがってこの発明の目的は、作業効率を向上すること
ができるパルスめっき方法を提供することにある。Therefore, an object of the present invention is to provide a pulse plating method that can improve work efficiency.
このような目的を達成するために、この発明はパルスめ
っきにおける電流の非供給期間毎に、電流供給期間と逆
方向に流れる電流を供給するようにしたものである。以
下、実施例を示す図面を用いてこの発明の詳細な説明す
る。In order to achieve such an object, the present invention supplies a current flowing in the opposite direction to the current supply period during each non-supply period during pulse plating. Hereinafter, the present invention will be described in detail using drawings showing embodiments.
第2図はこの発明によるパルスめっき方法を実現するた
めの電流供給方法を示す図である。同図において、1は
正方向電流、2は負方向電流、11は正方向電流1の電
流値、I2は負方向電流2の電流値、T4は負方向電流
の供給期間、T5は電流遮断期間である。FIG. 2 is a diagram showing a current supply method for realizing the pulse plating method according to the present invention. In the figure, 1 is a positive direction current, 2 is a negative direction current, 11 is a current value of positive direction current 1, I2 is a current value of negative direction current 2, T4 is a supply period of negative direction current, and T5 is a current interruption period. It is.
このように正方向電流1の非供給期間に負方向電流2を
供給すると、正方向電流供給時に発生した濃度分極を急
速に解消できるので、電流遮断期間T5を短かくするこ
とができ、単位時間内に供給で自る正方向パルスの個数
を増加させることができる。このため、必要な膜厚を形
成するまでの時間が従来のものより短かくなる。また、
濃度分極を急速に解消できるので、大電流を流すことが
可能となり、また、電流方向の切換りによってイオンの
移動がランダムになるので、層の厚みが均一で平坦とな
るとともに、結晶が形成されずに核の状態で金属の析出
を行なうことができるので、アモルファス合金層のめっ
きが可能となる。In this way, by supplying the negative direction current 2 during the non-supply period of the positive direction current 1, the concentration polarization that occurs when the positive direction current is supplied can be rapidly eliminated, so the current cutoff period T5 can be shortened, and the unit time It is possible to increase the number of positive direction pulses that can be supplied within the same period. Therefore, the time required to form the required film thickness is shorter than that of the conventional method. Also,
Concentration polarization can be quickly eliminated, allowing large currents to flow, and switching the direction of the current makes the movement of ions random, resulting in a uniform and flat layer thickness and the formation of crystals. Since the metal can be precipitated in the state of a nucleus without any formation, it becomes possible to plate an amorphous alloy layer.
なお、正方向電流1、負方向電流2、電流供給期間TI
、T4、電流遮断期間T5はめつき条件によって異なり
、また負方向電流2は電解液中の濃度分極を解消するた
めに必要十分な値となるための最適値に調整される。ま
た、パルス繰返し周期は従来のものは濃度分極を解消す
るために第1図のT3の期間が必要でおったが、この発
明においては負方向電流2によって濃度分極を急速に解
消できるので期間T3 よシ短かい、期間T6 とする
ことができる。In addition, positive direction current 1, negative direction current 2, current supply period TI
, T4, and the current interruption period T5 vary depending on the plating conditions, and the negative direction current 2 is adjusted to an optimum value that is necessary and sufficient to eliminate concentration polarization in the electrolytic solution. In addition, in the conventional pulse repetition cycle, the period T3 in FIG. 1 was required to eliminate concentration polarization, but in this invention, the concentration polarization can be rapidly eliminated by the negative direction current 2, so the period T3 is required in order to eliminate concentration polarization. The period can be shortened to T6.
第3図は第2図の電流を供給するための回路図であり、
制御回路12によってスイッチ15m、15b ’をオ
ンとしてスイッチ16m、16bをオフとするか、スイ
ッチ16m、16bをオンとしてスイッチ15m 、
15bをオフとするかの状態を切換えることによって電
極19m、19bに供給する電流の向きを変え、また、
スイッチ15a、15b、15c、15dを全てオフと
することによって電流を遮断するものである。なお、1
0は直流電源、11はコンデンサ、13m、13bは抵
抗、11は容器、19a、19bは電極でおる。FIG. 3 is a circuit diagram for supplying the current shown in FIG. 2,
The control circuit 12 turns on the switches 15m and 15b' and turns off the switches 16m and 16b, or turns on the switches 16m and 16b and turns off the switch 15m,
By switching the state of turning off the electrode 15b, the direction of the current supplied to the electrodes 19m and 19b is changed, and
The current is cut off by turning off all the switches 15a, 15b, 15c, and 15d. In addition, 1
0 is a DC power supply, 11 is a capacitor, 13m and 13b are resistors, 11 is a container, and 19a and 19b are electrodes.
なお第3図においてスイッチ15a、15b、16m、
16bによって電流のオンオフを行なっているが、これ
は坐導体スイッチング素子等で行なってもよく、回路に
ついても第3図に限定されず、要は第2図の電流を供給
でき正方向電流II、負方向電流I2の大きさ、期間T
I、T4.T5を前述の条件に適合するように調節でき
るものであれば、この回路に限定されない。In addition, in FIG. 3, the switches 15a, 15b, 16m,
Although the current is turned on and off by 16b, this may be done by a swiveling conductor switching element, etc., and the circuit is not limited to that shown in FIG. 3, but the point is that it can supply the current shown in FIG. Magnitude of negative direction current I2, period T
I, T4. The circuit is not limited to this one as long as T5 can be adjusted to meet the above conditions.
以上説明したようにこの発明に係るパルスめっき方法は
、正方向電流の供給後、負方向電流を供給するようにし
たので次のような効果を有する。As explained above, the pulse plating method according to the present invention has the following effects since the negative current is supplied after the positive current is supplied.
1)濃度分極を急速に解消できる。1) Concentration polarization can be rapidly eliminated.
2)正方向電流を大きくできる。2) Can increase forward current.
3)正方向電流の繰返し周期を短かくできる。3) The repetition period of positive direction current can be shortened.
4)作業効率が良くなる。4) Improved work efficiency.
5)イオンの移動をランダムにできる。5) Ion movement can be made random.
6)めっき層の厚みが均一で平坦となる。6) The thickness of the plating layer becomes uniform and flat.
7)アモルファス合金層が得られる。7) An amorphous alloy layer is obtained.
第1図は従来のパルスめっき方法における電流波形図、
第2図はこの発明に係るパルスめっき方法における電流
波形図、第3図は第2図に示す電流を発生する回路の回
路図である。
1・・・・正方向電流、2・・・・負方向電流、10・
・・・直流電源、11・・・・コンデンサ、12・・・
・制御回路、13a t 13b・・・・抵抗、15m
+15b、16m、16b I e j +スイッチ、
17.・−−・容器、18・・・・電解液、19m、1
9b・・・・電極。
特許出願人 三井造船株式会社
代理人 山川数構(I七λ2名)Figure 1 is a current waveform diagram in the conventional pulse plating method.
FIG. 2 is a current waveform diagram in the pulse plating method according to the present invention, and FIG. 3 is a circuit diagram of a circuit that generates the current shown in FIG. 2. 1... Positive direction current, 2... Negative direction current, 10...
...DC power supply, 11...capacitor, 12...
・Control circuit, 13a t 13b...Resistance, 15m
+15b, 16m, 16b I e j + switch,
17.・---・Container, 18... Electrolyte, 19m, 1
9b...electrode. Patent applicant: Mitsui Engineering & Shipbuilding Co., Ltd. Agent: Kazutaka Yamakawa (I7λ2)
Claims (1)
してめっきを行なうパルスめっき方法において、正方向
電流の非供給期間毎に負方向電流を供給し、その負方向
電流は正方向電流供給時に発生した電解液中の濃度分極
を解消するために必要十分な値であることを特徴とする
パルスめっき方法。In a pulse plating method in which plating is performed by supplying an intermittent positive current to an electrode provided in an electrolytic solution, a negative current is supplied every time the positive current is not supplied, and the negative current is A pulse plating method characterized in that the value is necessary and sufficient to eliminate concentration polarization in an electrolytic solution that occurs when current is supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7297784A JPS60218494A (en) | 1984-04-13 | 1984-04-13 | Pulse plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7297784A JPS60218494A (en) | 1984-04-13 | 1984-04-13 | Pulse plating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60218494A true JPS60218494A (en) | 1985-11-01 |
Family
ID=13504954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7297784A Pending JPS60218494A (en) | 1984-04-13 | 1984-04-13 | Pulse plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60218494A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05287580A (en) * | 1992-04-06 | 1993-11-02 | Sakae Denshi Kogyo Kk | Method for electrodeposition |
KR100349444B1 (en) * | 1998-12-16 | 2002-11-18 | 주식회사 포스코 | Plating method of electro galvanized steel sheet with excellent whiteness |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116123A (en) * | 1975-04-04 | 1976-10-13 | Pioneer Electronic Corp | Electrocasting mold drawing method |
JPS52148438A (en) * | 1976-06-07 | 1977-12-09 | Fujitsu Ltd | Rp plating method |
JPS58161793A (en) * | 1982-03-19 | 1983-09-26 | Hitachi Ltd | Continuous electroplating method |
-
1984
- 1984-04-13 JP JP7297784A patent/JPS60218494A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116123A (en) * | 1975-04-04 | 1976-10-13 | Pioneer Electronic Corp | Electrocasting mold drawing method |
JPS52148438A (en) * | 1976-06-07 | 1977-12-09 | Fujitsu Ltd | Rp plating method |
JPS58161793A (en) * | 1982-03-19 | 1983-09-26 | Hitachi Ltd | Continuous electroplating method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05287580A (en) * | 1992-04-06 | 1993-11-02 | Sakae Denshi Kogyo Kk | Method for electrodeposition |
KR100349444B1 (en) * | 1998-12-16 | 2002-11-18 | 주식회사 포스코 | Plating method of electro galvanized steel sheet with excellent whiteness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001519480A5 (en) | ||
KR20010024422A (en) | Programmed pulse electroplating process | |
RU2008145736A (en) | METHOD OF ELECTROCHEMICAL PROCESSING | |
JP2006519931A5 (en) | ||
JP4148895B2 (en) | Hole copper plating method | |
JP2004204308A (en) | Lead-free tin alloy plating method | |
WO1989007162A1 (en) | Electrochemical processes | |
US3300683A (en) | Welding apparatus | |
JPS60218494A (en) | Pulse plating method | |
WO2008004634A1 (en) | Method for anodically oxidizing aluminum alloy and power supply for anodically oxidizing aluminum alloy | |
JPH0671516A (en) | Method and power source device for electric discharge machining | |
US4024035A (en) | Method for electric extraction of non-ferrous metals from their solutions | |
JPH11347844A (en) | Electric discharge machining method and power supply unit therefor | |
JPH0230426A (en) | Electric power supply device for electrolytic finish machining | |
US2696466A (en) | Method of electroplating | |
JPH0474128B2 (en) | ||
JPS5817274B2 (en) | Electrodeposition processing method | |
JPH0671265A (en) | Continuous electrolytic water generator | |
SU1479559A1 (en) | Apparatus for industrial pulsed electric deposition of metals and alloys | |
JPH03208520A (en) | Method for controlling machining pulse for electric discharge machine and device thereof | |
JPS60118423A (en) | Electric discharge machining power source | |
JPS6261779A (en) | Tig arc welding method for aluminum base metal | |
JPH0813420B2 (en) | Consumable electrode type gas shielded arc welding method | |
JPH11172496A (en) | Formation of plating solution and plating solution forming tank | |
US4520281A (en) | Wide pulse range periodic reverse unit |