JPS6256231B2 - - Google Patents
Info
- Publication number
- JPS6256231B2 JPS6256231B2 JP57008567A JP856782A JPS6256231B2 JP S6256231 B2 JPS6256231 B2 JP S6256231B2 JP 57008567 A JP57008567 A JP 57008567A JP 856782 A JP856782 A JP 856782A JP S6256231 B2 JPS6256231 B2 JP S6256231B2
- Authority
- JP
- Japan
- Prior art keywords
- wear
- cutting
- steel
- present
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005520 cutting process Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 13
- 239000011247 coating layer Substances 0.000 claims description 10
- 229910000997 High-speed steel Inorganic materials 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 238000004663 powder metallurgy Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 17
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 239000010936 titanium Substances 0.000 description 12
- 229910001315 Tool steel Inorganic materials 0.000 description 10
- 239000007787 solid Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010730 cutting oil Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000007550 Rockwell hardness test Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009296 electrodeionization Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000004283 incisor Anatomy 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- ZLANVVMKMCTKMT-UHFFFAOYSA-N methanidylidynevanadium(1+) Chemical class [V+]#[C-] ZLANVVMKMCTKMT-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本発明は従来使用されているチタン合金被覆切
削工具に比較して、再研削後も切削耐久性が優れ
る、高速度工具鋼により形成された切削工具表面
に被覆処理した切削工具に関する。
従来のチタン合金被覆切削工具では再研削する
とすくい面(例えばホブ)または逃げ面(例えば
ドリル)の被覆層は取り去られるためこれら部分
の摩耗は母材である高速度工具鋼の耐摩耗性に負
うことになるため、例えばホブではすくい面のク
レーター摩耗が発達し稜線の破壊すなわちチツピ
ング摩耗に及ぶことがある。
本発明の工具では母材である高速度工具鋼が粉
末冶金法でしか製造し得ない超高V高Co成分か
ら成つているため、靭性と被研削性とをそこなう
ことなく、優れた耐熱性と耐摩耗性を有するた
め、再研削後も再研削面の摩耗が小さくかつ被覆
層の残つている面の被覆層が摩滅しても大幅な摩
耗進行を食い止め得る特徴を有するものである。
即ち本発明は、切削工具において、それぞれ重
量%で、C1.80〜3.30%.Si0.10〜0.60%.
Mn0.10〜0.60%.Mo3.0〜5.0%.W7.0〜11.0
%.Cr3.5〜5.0%.Co7.0〜10.0%.N0.005〜0.3
%であつて、V.Nb.Tiの1種類あるいはこれらの
中の2種類以上の和が8.0〜11.0%で、残部はFe
および不純物であり、粉末冶金法によつて製造さ
れた粉末高速度鋼によつて形成された切削工具表
面に、周期律表のa族、a族またはa族の
金属の炭化物、窒化物または炭窒化物、またはア
ルミナ(Al2O3)を一層、または任意異種二層以
上を蒸着させ、切削工具の再研削後被覆層の取り
去られたすい面のクレーター摩耗または逃げ面の
摩耗を低減して切刃稜線のチツピング摩耗をなく
すようにしたことを特徴とする被覆処理した切削
工具を提供するものである。
次に本発明の切削工具を形成する高速度鋼即ち
本発明鋼の製造法および各成分の限定理由を述べ
る。
本発明鋼の製造法は、本発明鋼の成分では従来
の溶解法によつた場合、巨大なバナジウム炭化物
が出来るので鋼塊の鍛造、圧延が不可能であり、
かつ鋳造法で工具を作つたとしても同様の理由で
切削、研削加工は極めて困難なばかりか、切削工
具として具備すべき靭性も持ち得ない。しかし粉
末冶金法で製造した場合は炭化物は微細均一に分
布するため全ての成形加工が従来の高速度工具鋼
と同様に行なうことができる他、靭性もJIS
SKH9を溶解法で製造したものと大差ない程度の
ものとなる。従つて本発明鋼の製造法は粉末冶金
法に限定される。
Cは本発明鋼に十分な硬さ(HRC65〜69)を
熱処理によつて与えるために不可欠な成分である
がその含有量が1.80%未満では硬さが不十分であ
り、3.30%を超えると熱間塑性加工性及び靭性を
損なうので、Cの含有量は1.80〜3.30%とした。
Si及びMnは脱酸剤として一般的に含有する範
囲である0.1〜0.6%とした。
W.Moは耐摩耗性、耐熱性を与えるため不可欠
であるが本発明鋼では耐熱性に対するCo及びV
の補助効果を大きくしてW.Moのバランスを靭
性、焼入性重視のものとした。すなわちW7.0%
未満では焼入性さらには耐熱性が低下し11.0%を
超えると靭性が低下するため、Wの範囲を7.0〜
11.0%とした。またMoは3.0%未満で十分な耐熱
性を与えるにはW11%以上が必要であつて靭性低
下が著しくまた5.0%をこえかつWを7%以下に
した場合は、焼入性と耐熱性が低下する。よつて
Moは3.0〜5.0%の範囲に限定した。
Crは焼入性、焼もどし抵抗性を与えるが、3.5
%未満では効果が少なくかつ5%以上では靭性を
損なうため3.5〜5.0%の範囲とした。
V.NbおよびTiはCと結合してVc.Nbcあるいは
TiC炭化分を形成し、これが著しく耐摩耗性を向
上させる。本発明鋼の最も特徴とするのは、この
V.Nb.Tiの1種または2種以上の合計即ち(V+
Nb+Ti)が大量に含有されていることにあり、
これがCとの適切なバランスによりオーステナイ
ト結晶粒の粗大化を抑え、焼入性を損なわず耐熱
性の向上にも寄与している。しかして、前記Cの
範囲では(V+Nb+Ti)は8%以下ではこれら
の効果が小さく、11%以上では焼入性を著しく損
なうことになるためその範囲を8.0〜11.0%とし
た。(V+Nb+Ti)で限定したのは三者同様な作
用を有するためである。
Coは基地に固溶し耐熱性を向上させるが靭性
を損なう。すなわち7%未満では耐熱性が不十分
であり、10%以上では靭性低下が著しい。したが
つてCoは7.0〜10.0%をその範囲とした。
Nは溶解法、粉末冶金法いずれの製法でも微量
含有されてくるが、本材料は製造上Nを0.005%
以下におさえることは困難であること。特に結晶
粒の微細化を促進して高靭性と要する工具材料と
してはNは0.03〜0.3がのぞましいことから両者
を包含する0.005〜0.3%をその含有量として限定
した。
次に上記材料を使用した工具にa族、a
族、あるいはa族金属の炭化物、窒化物あるい
は炭窒化物およびアルミナ(Al2O3)を一層また
は任意異種二層以上を蒸着させる理由を述べる。
本発明鋼は大量に微粒VC・NbCあるいはTiC
炭化物を含有しており、上記被覆層と同族あるい
は近似族であり、いずれも面心方晶の原子配列を
しているため蒸着層のエピタキシ―生長がスムー
ズに進行するため密着性及び膜の緻密性も良好で
ある。
上記化合物は種類によりHV1300〜3800に達す
る高硬さにあり蒸着厚さ1〜5μmでも一般の切
削に対し同一摩耗量に達するまでに2〜20倍に及
ぶ切削長さを確保することが可能でありすでに工
業化されている化学蒸着法及び物理蒸着法を容易
に適用することができることにより限定した。
a.a.a各族のいずれも炭化物、窒化物を
限定した理由は夫々耐摩耗性、潤滑性に差違があ
りアブレツシブな摩耗を受け易い用途には炭化物
を、凝着摩耗を受け易い用途には窒化物を用いる
使い分けが有効であるためであり、炭窒化物はそ
の中間的な存在として限定した。任意異種二層以
上を蒸着させる理由は上記のとおり夫々の化合物
には特徴があり二層あるいはそれ以上を積層にす
ることにより相乗効果を得ることができるばかり
でなく、母材質との熱膨張係数の違いに起因する
膜内ストレス極端な場合は無着層のはく離を防止
する効果も大なるがためである。
以上限定した高速度工具鋼の切削工具に蒸着処
理を施こしたものが本発明であるが次にその特徴
を図をもつて例示し本発明によつて得られる利点
を説明する。なお図中「発明鋼N」は本発明の切
削工具を形成する高速度工具鋼の1例をとりあげ
たものであり、次の化学成分を有するものであ
る。
C2.41%.Si0.36%.Mn0.37%.P0.021%.
S0.011%.Cr4.13%.Ni0.08%.Cn0.04%.
Mo3.21%.W9.90%.V8.73%.Co9.88%.
N0.0181%
第1図は「発明鋼N」とJIS SKH9との高温硬
さを示すグラフ、第2図は「発明鋼N」とSKH9
の大越式迅速摩耗試験法による耐摩耗性を示すグ
ラフである。いずれの場合も「発明鋼N」には被
覆処理が施されていない。本発明の切削工具を形
成する工具鋼の特徴である切削耐摩耗性について
は対比して示したが、溶解法で製造したJIS
SKH9にくらべ優れていることが明らかである。
また第3図は第1図、第2図の場合と同様の被覆
処理の施されていない「発明鋼N」の曲げ試験結
果を同様に示したが靭性はJIS SKH9にくらべ何
ら劣るものでなく十分に工具刃先として耐え得る
ことがわかる。すなわち「発明鋼N」は粉末冶金
法で製造するが故に、あらゆる被加工性は経済性
を大きくそこなうものでなく、かつ数10体積%に
も及ぶ微粒VC.NbCあるいはTiC炭化物の均一分
布組織なるがため、著しい耐摩耗性を発揮し得
る。
かかる材料の「発明鋼N」に本発明の蒸着被覆
を施すと、硬質物質の蒸着工具の特徴である(1)一
般条件での長寿命化(2)高速切削(100m/min以
上)領域への拡大(3)難削材切削領域への拡大等に
対し再研削面の摩耗低下、蒸着層の摩滅後の急激
な摩耗進行を食いとめることを可能ならしめてい
るのである。また数10数体積%にも及ぶ微粒VC.
NbCあるいはTiC炭化物が均一にマトリツクスに
分散しているが故、蒸着層が同質系の物質で構成
されるので密着性ならびに結晶成長がエピタキシ
ーになり易く極めて切削性能に有利な膜質が得ら
れる利点がある。即ち第4A図と第4B図はそれ
ぞれ本発明の実施例の切削工具であるソリツドホ
ブと他の高速度鋼で形成したホブと他の高速度鋼
で形成したソリツドホブをそれぞれ切削速度
117m/min、送り4mm/rev.シフトなし、被削ギ
ヤ(SCM415.HB150〜160.モジユール3、圧力角
20゜)クライムカツト、切削油使用の切削条件で
切削したホブ切削の切削長さに対応する逃げ面摩
耗(第4A図)とクレータ摩耗(第4B図)をそ
れぞれ示すグラフである。即ち、JIS SKH10と
「発明鋼N」で作られたホブのイオンプレーテイ
ング法によるTiCコーテイングの施こしてあるも
のと無いものの同一条件による切削試験結果の一
例である。この結果明らかにホブ逃げ面摩耗に対
するTiCコーテイング効果、「発明鋼N」の耐ク
レーター効果、更に逃げ面摩耗に対する「発明鋼
N」+TiCコーテイング(実施例)の組み合わせ
効果が認められ「発明鋼N」に生成する蒸着層の
膜厚が切削性向上に寄与しているところが大きい
ことがわかる。第5A図および第5B図は本発明
の実施例のソリツドホブと従来品ソリツドホブを
切削条件、切削速度120m/min、送り1.6mm/
rev、シフト1.35mm、被削ギヤ(SCr415(Hv160
〜200)、モジユール3、圧力角20゜)クライムカ
ツト、切削油使用の条件で切削したホブ切りのギ
ヤー加工数に対応する逃げ面摩耗(第5A図)と
クレーター摩耗(第5B図)との関係をそれぞれ
示すグラフである。この結果、明らかにJIS
SKH55(溶解法)+TiCコーテイングより、逃げ
面摩耗およびクレーター摩耗のいずれも本発明の
ものが優れており、工具寿命の延長に大きな寄与
をしていることがわかる。
また、第6図はソリツドホブで切削速度20m/
min、送り0.5mm/rev、シフトなし、被削ギヤ
(S50C HB475モジユール3、圧力角20゜)をクラ
イムカツト、切削油使用条件でいわゆる難削材切
削した結果であるが本発明の工具はJIS SKH55に
TiCをコーテイングしたものより逃げ面摩耗量少
なく2倍以上の切削量に耐え得ることが示され
る。本条件ではクレーター量はいずれも微少であ
るが逃げ面は強くアブレージプルな摩耗を受けて
コーテイング層も摩滅していくが母材の耐摩耗性
の影響が強く出てこのような性能差が見られるに
至つた実施例である。なお、本発明の各実施例に
おいて「発明鋼N」としてモジユール:3、圧力
角:20゜の標準型ホブを用い、これにチタン化合
物のコーテイングを施した。コーテイング装置と
して第7図に示す特公昭56−42672号公報に開示
されている装置を用いた。すなわち1は減圧室、
2は電子銃、3はチタンの蒸発源、4は被覆材料
すなわちチタン、5は被処理品の支持部材、6は
回転軸、7は電流導通用のブラシ、8は被処理品
すなわちソリツドホブ、9はイオン化電極、10
はイオン化電源、11は被覆材料チタンと結合す
るに要するガスの導入管、12はガス導入管の吹
出口、13はガス制御弁、14はソリツドホブに
負電位を与えるためのバイアス電源、15は真空
ポンプへ連がる排気口を示す。
コーテイング条件は次のとおりである。
減圧室1の圧力:2×10-3Torr(0.266Pa)
電子銃2:直流800V,1A,270゜磁場偏向
チタンの蒸発源3:水冷機構をそなえた銅製る
つぼ
チタン4:99.9%純度のチタン
支持部材5:ボルト締め機構をそなえたステン
レス鋼(SUS304)製治具
回転軸6:直径20mmのステンレス鋼
(SUS304)製丸棒、回転数毎分30回転
ブラシ7:ステンレス鋼(SUS304)製
イオン化電極9:リング状モリブデン線(直径
8mm)電極
イオン化電源10:直流200V 50A
ガス導入管11:外径10mm、内径6mmのステン
レス鋼(SUS304)製パイプ
ガス吹出口12:径6mm
ガス制御弁13:アセチレンガス(第4,5及
び第6図のTiCコーテイングの場合)または
窒素ガス(第6図のTiNコーテイングの場
合)を減圧室1の圧力を2×10-3Torr
(0.266Pa)になるように制御
バイアス電源14:直流1000V 1A
排気口15:真空排気ポンプへ直結
コーテイング時間:第4図の場合は30分、第5図
の場合は40分、第6図の場合は50分
さらに、ソリツドホブの左端側切刃を切断し、
すくい面側を研削して切歯外周を1000倍光学顕鏡
でコーテイング層の厚みを測定した。その結果は
第1表に示すとおりである。
The present invention relates to a cutting tool whose surface is coated and made of high-speed tool steel, which has superior cutting durability even after re-grinding compared to conventionally used titanium alloy-coated cutting tools. When conventional titanium alloy-coated cutting tools are reground, the coating layer on the rake face (e.g., hob) or flank face (e.g., drill) is removed, so the wear on these parts is due to the wear resistance of the base material, high-speed tool steel. For example, in a hob, crater wear develops on the rake face, leading to destruction of the ridge line, that is, chipping wear. In the tool of the present invention, the high-speed tool steel that is the base material is made of ultra-high V and high Co components that can only be produced by powder metallurgy, so it has excellent heat resistance without sacrificing toughness and grindability. Because of its wear resistance, even after re-grinding, the wear on the re-ground surface is small, and even if the coating layer on the surface where the coating layer remains is worn away, it has the characteristics of being able to significantly stop the progress of wear. That is, the present invention provides cutting tools with C1.80 to 3.30% by weight, respectively. Si0.10~0.60%.
Mn0.10~0.60%. Mo3.0~5.0%. W7.0~11.0
%. Cr3.5~5.0%. Co7.0-10.0%. N0.005~0.3
%, one type of V.Nb.Ti or the sum of two or more types of these is 8.0 to 11.0%, and the balance is Fe.
and impurities, such as carbides, nitrides, or carbons of metals of Group A, Group A, or Group A of the Periodic Table, which are present on the surface of cutting tools made of powdered high-speed steel manufactured by powder metallurgy. Deposit one layer of nitride or alumina (Al 2 O 3 ), or two or more layers of any different kind, to reduce crater wear on the flank face or flank wear from which the coating layer has been removed after re-grinding the cutting tool. The present invention provides a coated cutting tool characterized by eliminating chipping wear on the cutting edge line. Next, the method for manufacturing the high-speed steel that forms the cutting tool of the present invention, that is, the steel of the present invention, and the reasons for limiting each component will be described. The method for producing the steel of the present invention is that when conventional melting methods are used with the ingredients of the steel of the present invention, huge vanadium carbides are formed, making it impossible to forge and roll a steel ingot.
Even if a tool is made using a casting method, cutting and grinding is not only extremely difficult for the same reason, but it also cannot have the toughness required for a cutting tool. However, when manufactured using the powder metallurgy method, the carbides are distributed finely and uniformly, so all forming processes can be performed in the same way as conventional high-speed tool steel, and the toughness is also JIS.
The product is not much different from SKH 9 produced by the melting method. Therefore, the manufacturing method for the steel of the present invention is limited to powder metallurgy. C is an essential component for imparting sufficient hardness (H R C65 to 69) to the steel of the present invention through heat treatment, but if its content is less than 1.80%, the hardness is insufficient; If the content exceeds C, hot plastic workability and toughness are impaired, so the content of C was set to 1.80 to 3.30%. Si and Mn were set at 0.1 to 0.6%, which is the range generally included as a deoxidizing agent. W.Mo is essential to provide wear resistance and heat resistance, but in the steel of the present invention, Co and V
By increasing the auxiliary effect of W.Mo, the balance of W.Mo was focused on toughness and hardenability. i.e. W7.0%
If it is less than 11.0%, the hardenability and heat resistance will decrease, and if it exceeds 11.0%, the toughness will decrease.
It was set at 11.0%. In addition, when Mo is less than 3.0%, W11% or more is required to provide sufficient heat resistance, and toughness is significantly reduced.If Mo exceeds 5.0% and W is 7% or less, hardenability and heat resistance deteriorate. descend. Sideways
Mo was limited to a range of 3.0 to 5.0%. Cr gives hardenability and tempering resistance, but 3.5
If it is less than 5%, the effect will be small, and if it is more than 5%, the toughness will be impaired, so the range is set to 3.5 to 5.0%. V.Nb and Ti combine with C to form Vc.Nbc or
TiC forms carbonized components, which significantly improves wear resistance. The most distinctive feature of the steel of the present invention is this
The sum of one or more types of V.Nb.Ti, i.e. (V+
This is because it contains a large amount of Nb+Ti).
A suitable balance with C suppresses the coarsening of austenite crystal grains and contributes to improving heat resistance without impairing hardenability. However, in the range of C mentioned above, if (V+Nb+Ti) is less than 8%, these effects will be small, and if it is more than 11%, the hardenability will be significantly impaired, so the range was set to 8.0 to 11.0%. The reason for limiting it to (V+Nb+Ti) is that the three have similar effects. Co dissolves in the matrix and improves heat resistance, but impairs toughness. That is, if it is less than 7%, the heat resistance is insufficient, and if it is more than 10%, the toughness is significantly reduced. Therefore, the range for Co was 7.0 to 10.0%. Although N is contained in trace amounts in both melting and powder metallurgy manufacturing methods, this material contains 0.005% N during manufacturing.
It is difficult to keep it below. In particular, for a tool material that promotes grain refinement and requires high toughness, N is preferably 0.03 to 0.3, so the content was limited to 0.005 to 0.3%, which includes both. Next, tools using the above materials are group a,
The reason why one layer or two or more optionally different layers of carbides, nitrides, or carbonitrides of group metals or group a metals and alumina (Al 2 O 3 ) are vapor-deposited will be described. The steel of the present invention contains a large amount of fine grain VC, NbC or TiC.
Contains carbide, which is the same group or similar group to the above-mentioned coating layer, and both have a face-centered cubic atomic arrangement, so epitaxial growth of the deposited layer progresses smoothly, improving adhesion and film density. The quality is also good. The above compounds have high hardness reaching HV1300 to 3800 depending on the type, and even with a deposition thickness of 1 to 5 μm, it is possible to secure a cutting length that is 2 to 20 times longer than normal cutting before reaching the same amount of wear. This is because chemical vapor deposition and physical vapor deposition methods, which have already been commercialized, can be easily applied. The reason for limiting the use of carbides and nitrides in each of the aaa groups is that they have different wear resistance and lubricity, and carbides are used for applications that are susceptible to abrasive wear, while nitrides are used for applications that are susceptible to adhesive wear. This is because it is effective to use different types of carbonitrides, and carbonitrides are limited as being intermediate between them. The reason for depositing two or more layers of arbitrary different types is, as mentioned above, that each compound has its own characteristics, and by laminating two or more layers, it is possible to not only obtain a synergistic effect, but also to improve the coefficient of thermal expansion with the base material. This is because the effect of preventing peeling of the non-adhesive layer is great in extreme cases of stress within the film due to differences in the amount of stress. The present invention is a cutting tool made of high-speed tool steel as defined above and subjected to a vapor deposition treatment.Next, the features will be illustrated with drawings and the advantages obtained by the present invention will be explained. In the figure, "Invention Steel N" is an example of a high-speed tool steel that forms the cutting tool of the present invention, and has the following chemical composition. C2.41%. Si0.36%. Mn0.37%. P0.021%.
S0.011%. Cr4.13%. Ni0.08%. Cn0.04%.
Mo3.21%. W9.90%. V8.73%. Co9.88%.
N0.0181% Figure 1 is a graph showing the high temperature hardness of "Invention Steel N" and JIS SKH 9. Figure 2 is a graph showing the high temperature hardness of "Invention Steel N" and SKH 9 .
2 is a graph showing wear resistance according to the Ohkoshi rapid wear test method. In either case, "invention steel N" was not coated. The cutting wear resistance, which is a characteristic of the tool steel that forms the cutting tool of the present invention, was shown in comparison, but the JIS steel manufactured by the melting method
It is clearly superior to SKH 9 .
In addition, Figure 3 similarly shows the bending test results of "Invention Steel N" which was not coated in the same way as in Figures 1 and 2, but its toughness was in no way inferior to JIS SKH 9 . It can be seen that it can be used as a tool cutting edge without any problems. In other words, since "Invention Steel N" is manufactured using a powder metallurgy method, its workability does not significantly impair economic efficiency, and it has a uniformly distributed structure of fine grains of VC, NbC, or TiC carbide, amounting to several tens of volume percent. Therefore, it can exhibit remarkable wear resistance. When the vapor deposition coating of the present invention is applied to such material "Invention Steel N", the characteristics of vapor deposition tools for hard materials are (1) Longer life under normal conditions (2) High speed cutting (100 m/min or more) Expansion (3) When expanding into the area of cutting difficult-to-cut materials, it is possible to reduce the wear of the re-ground surface and to stop the rapid progress of wear after the vapor deposited layer is worn away. In addition, fine VC particles amounting to several tens of volume percent.
Because NbC or TiC carbide is uniformly dispersed in the matrix, the deposited layer is composed of a homogeneous material, so adhesion and crystal growth tend to be epitaxial, resulting in a film quality that is extremely advantageous for cutting performance. be. That is, FIGS. 4A and 4B show cutting speeds of a solid hob, a cutting tool according to an embodiment of the present invention, a hob made of other high-speed steel, and a solid hob made of other high-speed steel, respectively.
117m/min, feed 4mm/rev.No shift, work gear (SCM415.HB150~160.Module 3, pressure angle
20°) is a graph showing flank wear (Fig. 4A) and crater wear (Fig. 4B) corresponding to the cutting length of hob cutting performed under cutting conditions using climb cut and cutting oil. That is, this is an example of the cutting test results of hobs made of JIS SKH 10 and "Invention Steel N" with and without TiC coating applied by the ion plating method under the same conditions. As a result, the effect of TiC coating on hob flank wear, the anti-crater effect of "invention steel N", and the combined effect of "invention steel N" + TiC coating (example) on flank wear were clearly recognized. It can be seen that the thickness of the vapor-deposited layer produced in the above-mentioned process greatly contributes to the improvement in machinability. Figures 5A and 5B show the cutting conditions of the solid hob according to the embodiment of the present invention and the conventional solid hob, cutting speed 120 m/min, feed rate 1.6 mm/min.
rev, shift 1.35mm, work gear (SCr415 (Hv160)
~200), module 3, pressure angle 20°) climb cut, flank wear (Fig. 5A) and crater wear (Fig. 5B) corresponding to the number of gear machining of hobbing cut under the conditions of using cutting oil. It is a graph showing each relationship. As a result, it is clear that JIS
Compared to SKH 55 (melting method) + TiC coating, the present invention is superior in both flank wear and crater wear, and it can be seen that it greatly contributes to extending tool life. Figure 6 shows a solid hob with a cutting speed of 20m/
min, feed rate 0.5 mm/rev, no shift, work gear (S 50 C HB 475 module 3, pressure angle 20°), climb cut, and cutting of so-called difficult-to-cut materials using cutting oil conditions. Tools are JIS SKH 55
It has been shown that there is less flank wear than that coated with TiC, and it can withstand more than twice the amount of cutting. Under these conditions, the amount of craters is small in both cases, but the flank faces are subjected to strong abrasion-pull wear and the coating layer is also worn away, but the wear resistance of the base material has a strong influence, and this difference in performance is seen. This is an example that led to this. In each of the Examples of the present invention, a standard hob having a module of 3 and a pressure angle of 20° was used as the "invention steel N", and was coated with a titanium compound. As a coating apparatus, the apparatus disclosed in Japanese Patent Publication No. 56-42672, shown in FIG. 7, was used. In other words, 1 is a decompression chamber,
2 is an electron gun, 3 is a titanium evaporation source, 4 is a coating material, that is, titanium, 5 is a support member for the object to be processed, 6 is a rotating shaft, 7 is a brush for current conduction, 8 is the object to be processed, that is, a solid hob, 9 is an ionizing electrode, 10
11 is an ionization power supply, 11 is an introduction pipe for the gas required to combine with the coating material titanium, 12 is an outlet of the gas introduction pipe, 13 is a gas control valve, 14 is a bias power supply for giving a negative potential to the solid hob, and 15 is a vacuum Shows the exhaust port leading to the pump. The coating conditions are as follows. Pressure in decompression chamber 1: 2×10 -3 Torr (0.266Pa) Electron gun 2: DC 800V, 1A, 270° magnetic field deflection Titanium evaporation source 3: Copper crucible with water cooling mechanism Titanium 4: 99.9% pure titanium Support member 5: Stainless steel (SUS304) jig with bolt tightening mechanism Rotating shaft 6: Stainless steel (SUS304) round bar with a diameter of 20 mm, rotation speed 30 revolutions per minute Brush 7: Stainless steel (SUS304) Ionization Electrode 9: Ring-shaped molybdenum wire (diameter 8 mm) electrode Ionization power source 10: DC 200V 50A Gas introduction pipe 11: Stainless steel (SUS304) pipe with outer diameter 10 mm and inner diameter 6 mm Gas outlet 12: Diameter 6 mm Gas control valve 13: Acetylene gas (for TiC coating in Figures 4, 5 and 6) or nitrogen gas (for TiN coating in Figure 6) is applied to reduce the pressure in vacuum chamber 1 to 2 x 10 -3 Torr.
(0.266Pa) Bias power supply 14: DC 1000V 1A Exhaust port 15: Directly connected to vacuum pump Coating time: 30 minutes in the case of Fig. 4, 40 minutes in the case of Fig. 5, 40 minutes in the case of Fig. 6 In addition, cut the left end cutting edge of the solid hob,
The rake face side was ground and the thickness of the coating layer was measured around the outer periphery of the incisor using a 1000x optical microscope. The results are shown in Table 1.
【表】
て最小値と最大値を示す。
さらに密着性については、コーテイング層の上
からJIS Z2245ロツクウエル硬さ試験方法のロツ
クウエル硬さCスケール測定法を適用し圧痕周辺
の塑性変形によつて発生するコーテイング層の剥
離状況を判定したところ第2表に示す供試材のテ
ストピース(10×10×20mm)をHRC66〜67に焼
入焼もどしして研削し、第6図の場合と同一の条
件にして回転可能な治具にとりつけ、同時処理を
行なつたものについて前述の方法によつて密着性
を評価した結果は第3表に示す通りであつた。こ
の表の結果からも発明材にコーテイングされた
TiN層の密着性は比較材にくらべて明確に改良さ
れており切削性能でよりすぐれたフランク摩耗を
示していたことを裏付けた。[Table] shows the minimum and maximum values.
Furthermore, regarding adhesion, we applied the Rockwell hardness C scale measurement method of JIS Z2245 Rockwell hardness test method from above the coating layer to judge the peeling of the coating layer caused by plastic deformation around the indentation. A test piece (10 x 10 x 20 mm) of the sample material shown in the table was quenched and tempered to H R C66~67, ground, and mounted on a rotatable jig under the same conditions as in Figure 6. Table 3 shows the results of evaluating the adhesion using the method described above for those treated simultaneously. The results in this table also show that the invention material was coated with
The adhesion of the TiN layer was clearly improved compared to the comparative material, confirming that the cutting performance showed better flank wear.
【表】【table】
【表】
以上のとおり本発明は従来の高速度工具鋼の切
削工具の摩耗を大巾に縮減することを可能ならし
めるものであり、工具母材質に超高V(Nbある
いはTi)型の溶解法では製造し得ない成分を与
えかつ化学蒸着法または物理蒸着法によつて炭化
物、窒化物、酸化物のうち有効な化合物をコーテ
イングしてなることを特徴とする最高級高速度工
具鋼切削工具を提供するものである。[Table] As described above, the present invention makes it possible to significantly reduce the wear of conventional high-speed tool steel cutting tools. A cutting tool made of the highest quality high-speed tool steel, characterized in that it is coated with an effective compound among carbides, nitrides, and oxides by chemical vapor deposition or physical vapor deposition. It provides:
第1図は本発明で切削工具を形成する工具鋼の
1例即ち「発明鋼N」とJIS SKH9との高温硬さ
を示すグラフ、第2図は「発明鋼N」とSKH9と
の大越式迅速摩耗試験法による耐摩耗性を示すグ
ラフ、第3図は「発明鋼N」とSKH9との曲げ試
験による抗折力を示すグラフ、第4A図と第4B
図とはそれぞれ本発明の実施例の切削工具である
ホブと他の高速度鋼で形成したホブとにおける切
削長さに対応する逃げ面摩耗(第4A図)とクレ
ーター摩耗(第4B図)とのそれぞれの関係を示
すグラフ、第5A図と第5B図とは本発明の実施
例のホブと従来品ホブとの第4A図および第4B
図とは異なる切削条件により切削したホブ切りの
ギヤー加工数に対応する逃げ面摩耗(第5A図)
とクレーター摩耗(第5B図)との関係をそれぞ
れ示すグラフである。更に第6図は本発明の実施
例の切削工具であるホブと他の高速度鋼で形成し
たホブとにおける高硬度被削材の切削時の切削長
と逃げ面摩耗の関係を示すグラフ、第7図は本発
明鋼のコーテイングに用いられたコーテイング装
置の一例を示す概略図である。
Figure 1 is a graph showing the high-temperature hardness of an example of tool steel used to form a cutting tool according to the present invention, ie, "Invention Steel N" and JIS SKH 9. Figure 2 is a graph showing the high temperature hardness of "Invention Steel N" and JIS SKH 9 . Graph showing wear resistance by Okoshi type rapid wear test method, Figure 3 is a graph showing transverse rupture strength by bending test of "Invention Steel N" and SKH 9 , Figures 4A and 4B
The figures show flank wear (Figure 4A) and crater wear (Figure 4B) corresponding to the cutting length in a hob that is a cutting tool according to an embodiment of the present invention and a hob made of other high-speed steel, respectively. 5A and 5B are graphs showing the respective relationships between the hob of the embodiment of the present invention and the conventional hob.
Flank wear corresponding to the number of hobbing gears cut using different cutting conditions from those shown in the figure (Figure 5A)
FIG. 5B is a graph showing the relationship between the temperature and crater wear (FIG. 5B). Furthermore, FIG. 6 is a graph showing the relationship between the cutting length and flank wear when cutting high-hardness work materials in a hob that is a cutting tool according to an embodiment of the present invention and a hob made of other high-speed steel. FIG. 7 is a schematic diagram showing an example of a coating device used for coating the steel of the present invention.
Claims (1)
C1.80〜3.30%.Si0.10〜0.60%.Mn0.10〜0.60
%.Mo3.0〜5.0%.W7.0〜11.0%.Cr3.5〜5.0
%.Co7.0〜10.0%.N0.005〜0.3%であつて、V.
Nb.Tiの1種類あるいはこれらの中の2種類以上
の和が8.0〜11.0%で、残部はFeおよび不純物で
あり、粉末冶金法によつて製造された粉末高速度
鋼によつて形成された切削工具表面に、周期律表
のa族、a族またはa族の金属の炭化物、
窒化物または炭窒化物、またはアルミナ
(Al2O3)を一層、または任意異種二層以上を蒸着
させ、切削工具の再研削後被覆層の取り去られた
すくい面のクレーター摩耗または逃げ面の摩耗を
低減して稜線のチツピング摩耗をなくすようにし
たことを特徴とする被覆処理した切削工具。1 In cutting tools, respectively in weight%,
C1.80~3.30%. Si0.10~0.60%. Mn0.10~0.60
%. Mo3.0~5.0%. W7.0~11.0%. Cr3.5~5.0
%. Co7.0-10.0%. N0.005-0.3% and V.
One type of Nb.Ti or the sum of two or more of these types is 8.0 to 11.0%, the balance is Fe and impurities, and it is formed by powder high speed steel manufactured by powder metallurgy method. Carbide of a metal of Group A, Group A or Group A of the periodic table on the surface of the cutting tool,
Deposit one layer of nitride, carbonitride, or alumina (Al 2 O 3 ), or two or more layers of arbitrary different types, and prevent crater wear on the rake face from which the coating layer has been removed after regrinding the cutting tool, or on the flank surface. A coated cutting tool characterized by reducing wear and eliminating chipping wear on ridge lines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP856782A JPS58126902A (en) | 1982-01-22 | 1982-01-22 | Coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP856782A JPS58126902A (en) | 1982-01-22 | 1982-01-22 | Coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58126902A JPS58126902A (en) | 1983-07-28 |
JPS6256231B2 true JPS6256231B2 (en) | 1987-11-25 |
Family
ID=11696635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP856782A Granted JPS58126902A (en) | 1982-01-22 | 1982-01-22 | Coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58126902A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044203A (en) * | 1983-08-22 | 1985-03-09 | Sumitomo Electric Ind Ltd | Coated cemented carbide tool |
JPS616254A (en) * | 1984-06-20 | 1986-01-11 | Kobe Steel Ltd | High hardness and high toughness nitrided powder high speed steel |
JPH02200783A (en) * | 1989-01-30 | 1990-08-09 | Daido Steel Co Ltd | Surface hardened die material |
DE69527236T2 (en) * | 1994-09-16 | 2003-03-20 | Sumitomo Electric Industries, Ltd. | Multi-layer film made of ultra-fine particles and hard composite material for tools that contain this film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457477A (en) * | 1977-10-18 | 1979-05-09 | Sumitomo Electric Ind Ltd | Throw away tip of coated tool steel |
JPS572142A (en) * | 1980-06-06 | 1982-01-07 | Nippon Telegr & Teleph Corp <Ntt> | Optical repeater |
-
1982
- 1982-01-22 JP JP856782A patent/JPS58126902A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457477A (en) * | 1977-10-18 | 1979-05-09 | Sumitomo Electric Ind Ltd | Throw away tip of coated tool steel |
JPS572142A (en) * | 1980-06-06 | 1982-01-07 | Nippon Telegr & Teleph Corp <Ntt> | Optical repeater |
Also Published As
Publication number | Publication date |
---|---|
JPS58126902A (en) | 1983-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1347076B1 (en) | PVD-Coated cutting tool insert | |
US4450205A (en) | Surface-coated blade member of super hard alloy for cutting tools and process for producing same | |
EP1683875B1 (en) | High-speed tool steel gear cutting tool | |
US11365472B2 (en) | Coated cutting tool | |
EP2636764B1 (en) | Nanolaminated coated cutting tool | |
JP2007001007A (en) | Composite coating film for finishing hardened steel | |
WO2001018272A1 (en) | Coated cemented carbide insert | |
US8142621B2 (en) | Insert for milling of cast iron | |
CN1572415A (en) | CVD coated cutting tool insert | |
RU2096518C1 (en) | Layered composite coating on cutting and stamping tools | |
EP2031090B1 (en) | Hard covering film for cutting tool | |
JPS6256231B2 (en) | ||
JP3586218B2 (en) | Coated cutting tool | |
JP3333081B2 (en) | Crystal orientation high strength coated member | |
JP7492683B2 (en) | Surface-coated cutting tools | |
JPH0582471B2 (en) | ||
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP2019155570A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
EP3263736A1 (en) | A coated cutting tool and a method for coating the cutting tool | |
EP1222316B1 (en) | Coated cemented carbide insert | |
JP3333080B2 (en) | High-strength coated members with consistent interfaces | |
EP4082699A1 (en) | Coated cutting tool | |
CN109576670B (en) | Hard coating film for cutting tool | |
JPH09241825A (en) | High strength coated body | |
JP7108966B2 (en) | coated cutting tools |