JPS6254896B2 - - Google Patents

Info

Publication number
JPS6254896B2
JPS6254896B2 JP55023532A JP2353280A JPS6254896B2 JP S6254896 B2 JPS6254896 B2 JP S6254896B2 JP 55023532 A JP55023532 A JP 55023532A JP 2353280 A JP2353280 A JP 2353280A JP S6254896 B2 JPS6254896 B2 JP S6254896B2
Authority
JP
Japan
Prior art keywords
yarn
twisting
winding
core
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023532A
Other languages
Japanese (ja)
Other versions
JPS56123422A (en
Inventor
Hiroshi Iwata
Katsuhiko Katayama
Shigeyuki Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2353280A priority Critical patent/JPS56123422A/en
Publication of JPS56123422A publication Critical patent/JPS56123422A/en
Publication of JPS6254896B2 publication Critical patent/JPS6254896B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続多繊条糸を用いたシヤンタン調糸
条の製造方法に関する。 従来より糸条の長さ方向に太細を付与したスラ
ブ糸はフアブリツクの外観変化付与の有効な手段
として広く用いられてきた。 特に近年、天然繊維指向の市場を反映して連続
多繊条糸からのこれら糸条へのアプローチがなさ
れ、生産化されている。 これを特許的に見ると、例えば特公昭45−
16895、45−28018、47−49459、50−35147等多く
の提案がなされている。 しかしいずれの方法も仮撚加工時に加撚域で糸
条を熱固定するため、得られる糸条は捲縮糸とな
り、また2糸条の集束性を高めるためには仮撚温
度を高く保つ必要があり、特にシルキー風合を得
る場合には好ましくない。 また同様な理由で例えば現在最もシルキーであ
ると評価されている異収縮混繊糸を用いる場合に
は適当な方法ではない。 一方特公昭51−30174には加撚域で熱固定する
ことなく、芯糸の周囲に捲回糸のフイラメントに
よる無数のループを形成させるという提案があ
り、熱固定しない場合には、通常の条件下で得ら
れる糸条はループを有した態様となることを示唆
している。 従つて得られるフアブリツクはループが表面に
突出したものとなり、仮に風合的にシルキーであ
つても本絹によるシヤンタンとは外観に於て全く
異なるものとなる。 我々はこの点に注目し種々の検討を行つた結
果、ある特定の条件下で実質的にループの無いス
ラブ糸が得られることを見出した。 すなわち本発明の要旨とするところは、加撚域
での熱固定を行わない仮撚方式により仮撚加工が
行なわれている多繊条糸からなる芯糸Aの加撚域
に他の多繊条糸からなる捲付糸Bを供給して芯糸
Aに捲付ける際、芯糸Aの加撚時の撚係数((α))
を15500〜10600とすること、捲付糸Bの有する撚
係数((β))を1100〜0とすること、捲付糸Bの有
する撚の方向を芯糸Aの加撚方向とは同一としな
いこと、捲付糸Bがその熱応力が最大を示す乾熱
温度での収縮率が15%以上である潜在収縮性を有
すること、及び芯糸Aへ捲付糸Bを捲付けた後引
続いて捲付糸Bの熱応力が最大を示す乾熱温度以
上で、かつ(融点−50℃)以下で熱処理すること
を特徴とするシヤンタン調糸の製法にある。但
し、α=TAA、β=TBBであり、TA
芯糸A単独で仮撚した時の加撚数(T/M)、DA
は芯糸Aのデニールであり、同様にTB、DBは捲
付糸Bに関するものである。 以下図面に従つて本発明を詳細に説明すると第
1図は本発明の実施に使用する装置の一例を示す
側面図で、同図において芯糸Aは2対のローラ
1,2間に設置された加撚装置3により仮撚さ
れ、一方他のローラ4により捲付糸Bが加撚域に
給糸される。 本発明の目的がシルキー風合を有した実質的に
ループを有しないスラブヤーンであることより加
撚域での熱固定は行なわないことが好ましい風合
を得るために必要である。 しかしながら、特公昭51−30174に見られるよ
うに通常条件に於いては第2図に示すごとく得ら
れるヤーンはループ5を有したものとなり、ため
にフアブリツク表面にループが突出した外観を呈
し、シヤンタン調外観を表現するためには好まし
くない。 本発明者等はスラブを付与しつつ、ループを減
少させる方法につき種々検討し、第1表の結果を
得た。
The present invention relates to a method for manufacturing a shantan-like yarn using a continuous multi-filament yarn. Conventionally, slub yarns having thick and thin yarns in the longitudinal direction have been widely used as an effective means for changing the appearance of fabrics. In particular, in recent years, reflecting the natural fiber-oriented market, continuous multifilament yarns have been approached and produced. If we look at this from a patent perspective, for example,
Many proposals have been made, including 16895, 45-28018, 47-49459, and 50-35147. However, in both methods, the yarn is heat-set in the twisting region during false twisting, resulting in a crimped yarn, and it is necessary to maintain a high false-twisting temperature in order to improve the cohesiveness of the two yarns. This is particularly undesirable when obtaining a silky texture. Furthermore, for the same reason, this is not an appropriate method when using, for example, a differential shrinkage mixed fiber yarn that is currently evaluated to be the silkiest. On the other hand, in Japanese Patent Publication No. 51-30174, there is a proposal to form countless loops of filaments of wound yarn around the core yarn without heat setting in the twisting region. It is suggested that the yarn obtained below has a looped form. Therefore, the resulting fabric will have loops protruding from the surface, and even if it has a silky feel, it will be completely different in appearance from a shantung made of real silk. We focused on this point and conducted various studies, and as a result, we found that under certain specific conditions, a slub yarn with virtually no loops can be obtained. That is, the gist of the present invention is that the core yarn A, which is made of a multi-filament yarn that has been false-twisted by a false-twisting method that does not perform heat fixation in the twisting region, has other multi-filament yarns in the twisting region. When supplying the wound yarn B made of thread yarn and winding it around the core yarn A, the twist coefficient ((α)) when twisting the core yarn A
is 15,500 to 10,600, the twist coefficient ((β)) of the wrapped yarn B is 1100 to 0, and the direction of twist of the wrapped yarn B is the same as the twisting direction of the core yarn A. The winding yarn B must have a latent shrinkage of 15% or more at the dry heat temperature at which its thermal stress is at its maximum, and the winding yarn B must not be pulled after winding around the core yarn A. Next, there is a method for producing a slanted yarn characterized by heat-treating the wound yarn B at a dry heat temperature at which the thermal stress is at its maximum and at a temperature below (melting point -50° C.). However, α=T AA , β= T BB , and T A is the number of twists (T/M) when core yarn A is false twisted alone, D A
is the denier of the core yarn A, and similarly, T B and D B are related to the wrapped yarn B. The present invention will be described in detail below with reference to the drawings. Fig. 1 is a side view showing an example of an apparatus used for carrying out the present invention, and in the figure, a core yarn A is installed between two pairs of rollers 1 and 2. The twisted yarn B is falsely twisted by the twisting device 3, and the wrapped yarn B is fed to the twisting area by another roller 4. Since the object of the present invention is to provide a slub yarn having a silky feel and substantially no loops, it is necessary to not perform heat setting in the twisting region in order to obtain a preferable feel. However, as seen in Japanese Patent Publication No. 51-30174, under normal conditions, the yarn obtained has loops 5 as shown in Figure 2, which gives the appearance of protruding loops on the surface of the fabric, resulting in a shunt. It is not preferable for expressing a toned appearance. The present inventors investigated various methods of reducing loops while applying slabs, and obtained the results shown in Table 1.

【表】 第1表の結果より次のことが明らかになつた。 第1図の加撚域での糸条Aの加撚数(撚係数)
と加撚されつつある糸条Aへ撚廻らせる糸条Bの
加撚数(撚係数)及び糸条Aの加撚方向と糸条B
の有する撚方向はループ発生及びスラブ形態に極
めて大きな要因となり、好ましい条件は糸条Aの
加撚数は2200〜1500T/M(撚係数で15556〜
10607但し 撚係数=撚数T/M×√糸条のデニ
ール)であり、糸条Bの有する撚数は156〜0T/
M(撚係数で1103〜0)であり、さらに最も好ま
しい条件としては糸条Aの撚係数=14142〜
10610、糸条Bの撚係数=848〜0であり、かつ糸
条Aへの加撚方向と糸条Bの有する撚方向とが同
方向でないことが重要な条件となることを見出し
た。 この理由は明確ではないが、糸条Aの撚数は解
撚撚後の糸条A,Bの単位長さ当りの糸長差を左
右し、ために集束性を保つための適正範囲を規制
するためと解撚後の糸条A,Bのトルクが少くと
も逆方向にならないことにより集束性を保つため
の相乗効果と思われる。 しかしながら、特に織物の経糸密度が大である
ものに用いる場合には隣り合う糸条の絡み合いが
発生し、開口がスムースでない場合があることが
拡大検討を行う過程で明らかになつた。 即ち、第3図に示すごとく、得られたスラブ糸
の一部が糸割れ6し、開口運動により相互に絡み
合うことが明らかになつた。 これを解決するためには追撚による方法が考え
られるが経済的にも不利であり、他の手法につき
種々検討した結果、糸条Bを熱応力が最大を示す
乾熱温度(T℃)での収縮率が15%以上である潜
在収縮率を有した糸条とし、第4図のごとく芯糸
Aに巻付けたる後引続き熱板7にて熱応力が最大
を示す温度(T℃)以上で、かつ(融点−50℃)
以下で熱処理することにより収縮を顕在化せしめ
芯糸Aの周囲へ固定する方法を見出した。 ここにT℃での乾熱収縮率を指標としたのはシ
ルキー風合を保つためには出来るだけ低温で効果
的に収縮処理することが好ましく、また仮撚機の
第2ヒータを用ることが経済的に有利であるから
である。さらに説明すると第2表にポリエステル
についてのT℃で処理したときの熱収縮率(1m
枠周にて100回巻取り、初荷重0.1g/dにて綛長
(l0)を測定し、T℃乾熱中で10分間自由収縮させ
た後、再び0.1g/dにて測定した綛長(l)か
ら、熱収縮率={(l0−l)/l0}×100で表わし
た)と第2ヒータ温度を変更したときの開口性及
び風合の関係を示したものである。 なお収縮率の設定は第5図に示すごとく紡速
2000m/分で得たデニールが186、フイラメント数
24のポリエステル未延伸糸8を延伸倍率2.381、
第1ピン9温度を85℃、巻取り速度を650m/分と
し、第2ピン10温度を変更して得たものであ
り、熱応力が最大を示す乾熱温度(T℃)は全て
150℃、融点(示差熱による)は258℃であつた。 また仮撚加工時の条件は次の通りであつた。 芯糸Aはポリエステル、ブライト50デニール、
フイラメント数24である普通糸を用い、第1図に
於る芯糸Aの加撚方向Z、撚数1900T/M、他の
糸条Bの撚方向S、撚数13T/M、仮撚機種LS−
6(三菱重工業(株)製)、第2ヒータ内のオーバー
フイード量を+3.0%とし、第2ヒータ温度を変
更した。 なお他の条件は第1表と同一とした。また開口
の評価としては経糸密度40.0羽/2本/吋とし、
組織を平織、織機回転数120回/分とした肉眼判
定した。
[Table] From the results in Table 1, the following became clear. Number of twists (twist coefficient) of yarn A in the twisting area shown in Figure 1
The number of twists (twist coefficient) of yarn B to be twisted around yarn A that is being twisted, the twisting direction of yarn A, and yarn B
The twist direction of yarn A is an extremely important factor in loop generation and slab form, and the preferred condition is that the number of twists of yarn A is 2200 to 1500 T/M (twisting coefficient is 15556 to
10607 However, twist coefficient = number of twists T/M x √ denier of yarn), and the number of twists of yarn B is 156 to 0T/
M (twist coefficient: 1103 to 0), and the most preferable condition is that the twist coefficient of yarn A = 14142 to 0.
10610, it has been found that the important conditions are that the twist coefficient of yarn B is 848 to 0, and that the twisting direction of yarn A and the twisting direction of yarn B are not the same. The reason for this is not clear, but the number of twists in yarn A affects the difference in yarn length per unit length between yarns A and B after untwisting and twisting, and therefore regulates the appropriate range for maintaining cohesiveness. This is thought to be a synergistic effect of maintaining convergence by ensuring that the torques of the yarns A and B do not go in opposite directions after untwisting. However, in the process of conducting an expanded study, it became clear that especially when used in fabrics with a high warp density, adjacent threads may become entangled and the opening may not be smooth. That is, as shown in FIG. 3, it became clear that some of the obtained slub yarns were cracked 6 and became entangled with each other due to shedding motion. In order to solve this problem, a method of additional twisting can be considered, but it is economically disadvantageous, and after various studies on other methods, yarn B was heated at the dry heat temperature (T°C) where the thermal stress is maximum. The yarn has a latent shrinkage rate of 15% or more, and after being wound around the core yarn A as shown in Fig. 4, it is heated to a temperature (T°C) or higher at which the thermal stress is at its maximum on the hot plate 7. And (melting point -50℃)
We have found a method for fixing around the core thread A by making the shrinkage more apparent by heat treatment as described below. Here, the dry heat shrinkage rate at T°C was used as an index.In order to maintain the silky texture, it is preferable to shrink effectively at as low a temperature as possible, and also to use the second heater of the false twisting machine. This is because it is economically advantageous. To explain further, Table 2 shows the heat shrinkage rate (1 m
The skein was wound around the frame 100 times, the skein length (l 0 ) was measured at an initial load of 0.1 g/d, and after free shrinkage for 10 minutes in T℃ dry heat, the skein was measured again at 0.1 g/d. This figure shows the relationship between the thermal shrinkage rate (expressed as {(l 0 − l)/l 0 }×100) and the openness and texture when the second heater temperature is changed from the length (l). . The shrinkage rate is set according to the spinning speed as shown in Figure 5.
Denier obtained at 2000m/min is 186, number of filaments
24 undrawn polyester yarn 8 at a stretching ratio of 2.381,
The results were obtained by setting the first pin 9 temperature to 85°C, the winding speed to 650 m/min, and changing the second pin 10 temperature, and the dry heat temperature (T°C) at which the thermal stress is maximum is all
The melting point (by differential heating) was 258°C. The conditions during false twisting were as follows. Core yarn A is polyester, bright 50 denier,
Using a regular yarn with a filament count of 24, the twisting direction Z of the core yarn A in Fig. 1, the number of twists is 1900T/M, the twisting direction S of the other yarn B, the number of twists 13T/M, a false twisting machine. LS−
6 (manufactured by Mitsubishi Heavy Industries, Ltd.), the overfeed amount in the second heater was set to +3.0%, and the second heater temperature was changed. The other conditions were the same as in Table 1. In addition, for the evaluation of the opening, the warp density was 40.0 feathers/2 yarns/inch,
The texture was plain woven and the loom was rotated at 120 revolutions/min for visual judgment.

【表】 第2表の結果より次のことが言える。 本発明の目的であるシルキー風合を保つために
は第2ヒータ温度は210℃、即ち融点−50℃以下
にする必要がある。また開口性を良好にするため
には効果的熱処理が必要であり、その温度は熱応
力が最大となる温度とし、かつその時の収縮率が
15.0%以上であることが必要である。 以下実施例により本発明を更に具体的に説明す
る。 実施例 1 第6図のごとく第1ヒータ11の温度を室温と
した2ヒータタイプの仮撚機(LS−6、三菱重
工業(株)製)を用い、供給原糸として芯糸Aをポリ
エステル、ブライト75デニール、36フイラメント
であつて、乾熱160℃×10分熱処理後の収縮率が
10.3%、撚数14T/MS撚、捲付糸Bをポリエステ
ル、ブライト50デニール、24フイラメントであつ
て、乾熱160℃×10分熱処理後の収縮率が20.0
%、撚数13T/MS撚を用い、芯糸Aの加撚数を
1800T/M Zとし、このときの張力を8gとな
るようにローラ12,13の周速を設定したる後
ローラ14により捲付糸Bをオーバーフイード量
70%(ローラ13に対するローラ14の周速)に
て芯糸Aの周囲へ撚廻させた。 引続き第2ヒータ15の温度を160℃、第2ヒ
ータ15内でのオーバーフイード量を+3.0%と
し、ローラ16の周速を100m/minとして引取つ
た。 得られたスラブ糸を糊付後経糸とし、平織で織
規格 スラブ糸(経糸)×スラブ糸(緯糸)/42.5羽
/2本/吋×45.0本/吋 にて製織した。結果は良好な開口運動を示し、得
られたフアブリツクを仕上した結果はドレープ性
に富んだシヤンタン調となつた。 実施例 2 実施例1と同じ仮撚機を用い、供給原糸として
芯糸A、捲付糸Bともにポリエステル、37.5デニ
ール、18フイラメントが沸水収縮率17.5%の高収
縮成分と残りの成分が沸水収縮率7.5%の低収縮
成分が混繊された、撚数15T/MS撚であるブラ
イト75デニール、36フイラメントを用い、芯糸A
への加撚数1800T/M Z、このときの張力を8
gとした後捲付糸Bをオーバーフイド量70%にて
芯糸Aの周囲へ撚廻させた。 引続き第2ヒータの温度を160℃、第2ヒータ
内のオーバーフイード量を15%とし、ローラ16
の周速を100m/minとして引取つた。 得られたスラブ糸はバルクが発生し、かつ収束
性に富んだ糸となつた。 このスラブ糸を用い、経糸は糊付けし、組織を
平織、織規格を スラブ糸(経糸)×スラブ糸(緯糸)/40.0羽
/2本/吋×43.0本/吋 にて製織した。結果は良好な開口運動を示し、得
られたフアブリツクを仕上した所、ドレープ性に
富んだシヤンタン調となつた。
[Table] From the results in Table 2, the following can be said. In order to maintain the silky texture which is the object of the present invention, the temperature of the second heater needs to be 210°C, that is, below the melting point -50°C. In addition, effective heat treatment is necessary to improve the opening property, and the temperature is the temperature at which the thermal stress is maximum, and the shrinkage rate at that time is the same.
It needs to be 15.0% or more. The present invention will be explained in more detail with reference to Examples below. Example 1 Using a two-heater type false twisting machine (LS-6, manufactured by Mitsubishi Heavy Industries, Ltd.) with the temperature of the first heater 11 set to room temperature as shown in FIG. Bright 75 denier, 36 filament, shrinkage rate after dry heat treatment at 160℃ x 10 minutes
10.3%, twist number 14T/MS, winding yarn B is polyester, bright 50 denier, 24 filament, and the shrinkage rate after dry heat treatment at 160℃ x 10 minutes is 20.0
%, the number of twists is 13T/MS, and the number of twists of core yarn A is
1800T/M Z, and set the circumferential speed of rollers 12 and 13 so that the tension at this time is 8g. Overfeed the wound yarn B by roller 14.
The yarn was twisted around core yarn A at 70% (peripheral speed of roller 14 relative to roller 13). Subsequently, the temperature of the second heater 15 was set to 160° C., the overfeed amount in the second heater 15 was set to +3.0%, and the peripheral speed of the roller 16 was set to 100 m/min. After sizing, the obtained slub yarn was used as the warp, and woven in a plain weave at the following weaving specifications: slub yarn (warp) x slub yarn (weft)/42.5 threads/2/inches x 45.0 threads/inch. The results showed good opening movement, and the finished fabric had a shantung style with excellent drapability. Example 2 Using the same false twisting machine as in Example 1, the core yarn A and wound yarn B were both polyester, 37.5 denier, and 18 filament, a high shrinkage component with a boiling water shrinkage rate of 17.5%, and the remaining components were boiled water. Using bright 75 denier, 36 filament with 15T/MS twist and mixed fiber with low shrinkage component with shrinkage rate of 7.5%, core yarn A
The number of twists is 1800T/M Z, and the tension at this time is 8
A post-wound yarn B with a weight of 70% was twisted around the core yarn A with an overfied amount of 70%. Continuing, the temperature of the second heater was set to 160°C, the overfeed amount in the second heater was set to 15%, and the roller 16
The peripheral speed was set at 100 m/min. The obtained slub yarn had bulk and had good convergence. Using this slub yarn, the warp was glued, the structure was plain weave, and the weaving standard was slub yarn (warp) x slub yarn (weft) / 40.0 threads / 2 / inch x 43.0 threads / inch. . The results showed good opening movement, and when the fabric was finished, it had a shantung style with excellent drapability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図及び第6図は本発明の実施に使
用する装置の各種例を示す側面図、第2図、第3
図は従来の糸の側面図、第5図は本発明における
捲付糸の製造に使用する装置の一例を示す斜視図
で、第1図〜第6図において1は芯糸Aの供給ロ
ーラ、2は引取ローラ、3は加撚装置、4は捲付
糸の供給ローラ、7はヒータである。
1, 4 and 6 are side views showing various examples of devices used to carry out the present invention, and FIGS.
The figure is a side view of a conventional yarn, and FIG. 5 is a perspective view showing an example of an apparatus used for manufacturing a wound yarn according to the present invention. In FIGS. 1 to 6, 1 is a supply roller for core yarn A; 2 is a take-up roller, 3 is a twisting device, 4 is a winding yarn supply roller, and 7 is a heater.

Claims (1)

【特許請求の範囲】[Claims] 1 加撚域で熱固定を行なわない仮撚方式により
仮撚加工が行なわれている多繊条糸からなる芯糸
Aの加撚域に、他の多繊条糸からなる捲付糸Bを
供給して芯糸Aに捲付ける際、芯糸Aに対する加
撚時の撚係数を15560〜10600とすること、捲付糸
Bの有する撚係数を1100〜0とすること、捲付糸
Bの有する撚の方向を芯糸Aに対する加撚方向と
同一にしないこと、捲付糸Bがその熱応力が最大
を示す乾熱温度での収縮率が15%以上である潜在
収縮性を有すること、及び芯糸Aへ捲付糸Bを捲
付けた後捲付糸Bの熱応力が最大を示す乾熱温度
以上で、かつ(融点−50℃)以下で熱処理するこ
とを特徴とするシヤンタン調糸の製法。
1. Wrapped yarn B made of another multi-filament yarn is placed in the twisting region of core yarn A made of multi-filament yarn which has been false-twisted by a false twisting method without heat setting in the twisting region. When feeding and winding the core yarn A, the twist coefficient of the core yarn A when twisting should be 15560 to 10600, the twist coefficient of the winding yarn B should be 1100 to 0, and the twist coefficient of the winding yarn B should be 15560 to 10600. The direction of the twist is not the same as the twisting direction of the core yarn A, and the wrapped yarn B has a latent shrinkage of 15% or more at a dry heat temperature where its thermal stress is at its maximum. and a shantan-like yarn characterized in that after winding the winding yarn B around the core yarn A, the winding yarn B is heat-treated at a dry heat temperature at which the thermal stress of the winding yarn B is at its maximum but at or below (melting point -50°C). manufacturing method.
JP2353280A 1980-02-27 1980-02-27 Production of shantung like yarn Granted JPS56123422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2353280A JPS56123422A (en) 1980-02-27 1980-02-27 Production of shantung like yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2353280A JPS56123422A (en) 1980-02-27 1980-02-27 Production of shantung like yarn

Publications (2)

Publication Number Publication Date
JPS56123422A JPS56123422A (en) 1981-09-28
JPS6254896B2 true JPS6254896B2 (en) 1987-11-17

Family

ID=12113058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2353280A Granted JPS56123422A (en) 1980-02-27 1980-02-27 Production of shantung like yarn

Country Status (1)

Country Link
JP (1) JPS56123422A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959928A (en) * 1982-09-30 1984-04-05 旭化成株式会社 Production of slub yarn
JPS5959937A (en) * 1982-09-30 1984-04-05 旭化成株式会社 Slub yarn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182051A (en) * 1975-01-09 1976-07-19 Toyo Boseki Konenshino seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182051A (en) * 1975-01-09 1976-07-19 Toyo Boseki Konenshino seizohoho

Also Published As

Publication number Publication date
JPS56123422A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
JPS5876536A (en) Stretchable spun like yarn
JPS6254896B2 (en)
JP2877817B2 (en) Method for producing bulky franc yarn
JPH0447050B2 (en)
JPS6338469B2 (en)
JPS63315632A (en) Composite interlaced yarn
JP2820997B2 (en) Mixed yarn with small protrusions and slack
JPS5953732A (en) Production of crimp yarn crepe weaving and knitting
JP2675350B2 (en) Specially designed fabric and its manufacturing method
JP2878758B2 (en) Method for producing bulky entangled yarn
JPS5943573B2 (en) Georgette style knitted fabric
JP3059211B2 (en) Method for producing composite crimped yarn
JPS5939532B2 (en) Silk spun processed yarn and its manufacturing method
JPS5912777B2 (en) Manufacturing method of twisted yarn
JPS59125929A (en) Non-torque false twisted yarn and production thereof
JPS6319613B2 (en)
JPS5855269B2 (en) Manufacturing method for bulky knitted fabric
JPH0657564A (en) Compound false-twisted processed yarn having silky wool feeling and its production
JPS6339705B2 (en)
JP2002249937A (en) False-twist textured yarn
JPH034655B2 (en)
JPS6112950A (en) Composite processed yarn and its production
JPS63165538A (en) Production of bulky alternate twisted yarn
JPS6254895B2 (en)
JPS605692B2 (en) Method for manufacturing brushed woven and knitted fabrics