JPS6254828B2 - - Google Patents

Info

Publication number
JPS6254828B2
JPS6254828B2 JP54078744A JP7874479A JPS6254828B2 JP S6254828 B2 JPS6254828 B2 JP S6254828B2 JP 54078744 A JP54078744 A JP 54078744A JP 7874479 A JP7874479 A JP 7874479A JP S6254828 B2 JPS6254828 B2 JP S6254828B2
Authority
JP
Japan
Prior art keywords
polymeric substance
rubber
polymer composition
polymeric
semiconductor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54078744A
Other languages
Japanese (ja)
Other versions
JPS562350A (en
Inventor
Osamu Hotsuta
Yoshio Kishimoto
Wataru Shimoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7874479A priority Critical patent/JPS562350A/en
Publication of JPS562350A publication Critical patent/JPS562350A/en
Publication of JPS6254828B2 publication Critical patent/JPS6254828B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、互いに相溶しない2種類以上の高分
子物質よりなる高分子マトリクス中に半導体粒子
を分散させた半導電性高分子組成物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconducting polymer composition in which semiconductor particles are dispersed in a polymer matrix made of two or more types of polymer substances that are incompatible with each other.

今日、高分子マトリクス中にカーボンブラツ
ク、グラフアイトもしくは金属粉末などの導体粒
子を配合して導電性を付与することはごく一般に
行なわれている。可撓性および良好な加工性をは
じめとする高分子材料の特徴の保持あるいは材料
コストの低減を目的としてこれら導電剤の配合量
を低減させる試みも数多く行なわれている。カー
ボン繊維の使用、樹脂球への金属薄膜のコーテイ
ングなどが一例として挙げられる。
Today, it is common practice to incorporate conductor particles such as carbon black, graphite or metal powder into a polymer matrix to impart electrical conductivity. Many attempts have been made to reduce the amount of these conductive agents in order to maintain the characteristics of polymeric materials, such as flexibility and good processability, or to reduce material costs. Examples include the use of carbon fiber and the coating of resin spheres with thin metal films.

また一方、高分子マトリクス中に半導体粒子を
分散させて半導体粒子の特徴を現出させるように
した高分子材料を得る試みがなされてきた。とこ
ろが、一般に半導体粒子はマトリクス中に40〜50
重量パーセント配合しないとその特性を発揮する
ことが困難であり、かかる多量の配合によつて著
しく材料の可撓性や加工性を損ない、高分子材料
を用いる利点を失うことになる。このことが高分
子マトリクス中に半導体粒子を分散させた組成物
が広く実用化されていない事実の大きな原因をな
している。
On the other hand, attempts have been made to disperse semiconductor particles in a polymer matrix to obtain a polymer material that exhibits the characteristics of semiconductor particles. However, generally there are 40 to 50 semiconductor particles in the matrix.
It is difficult to exhibit its properties unless it is added in a weight percent, and adding such a large amount significantly impairs the flexibility and processability of the material, thereby eliminating the advantage of using a polymeric material. This is a major reason why compositions in which semiconductor particles are dispersed in a polymer matrix are not widely put into practical use.

本発明は、高分子マトリクスに半導体粒子を配
合させた組成物において、半導体物質の配合割合
を低減して可撓性および加工性を保持させた半導
電性高分子組成物を提供するものである。この特
徴について以下に述べる。
The present invention provides a semiconductive polymer composition in which flexibility and processability are maintained by reducing the blending ratio of a semiconductor substance in a composition in which semiconductor particles are blended into a polymer matrix. . This feature will be described below.

一般に高分子物質はきわめて長い鎖状分子より
成るから、単に混練操作によるだけでは2種類以
上の高分子物質を分子レベルに至るまで完全に混
合させることは困難である。とくに互いに相溶し
ない2種類以上の高分子物質を選択してこれらに
混練操作を施してやれば、これら高分子物質の分
子鎖の配列が局所的に乱されるという現象が生起
する。ここにおいて上記の複合系高分子マトリク
ス中に半導体粒子を配合させて混練すると粒子が
構造の乱れた部分に局在して単一の高分子マトリ
クス中に混練するよりも小さい配合率において導
電経路を形成し、半導体としての特性が表れるこ
とになる。本発明においては以上の構成を用いる
わけである。上記の半導体粒子は金属酸化物およ
び有機半導体を指す。
Since polymeric substances generally consist of very long chain molecules, it is difficult to completely mix two or more types of polymeric substances down to the molecular level simply by kneading. In particular, if two or more types of polymeric substances that are incompatible with each other are selected and subjected to a kneading operation, a phenomenon occurs in which the arrangement of the molecular chains of these polymeric substances is locally disturbed. Here, when semiconductor particles are blended and kneaded in the above-mentioned composite polymer matrix, the particles are localized in areas with disordered structure, and conductive paths are formed at a smaller blending ratio than when kneaded in a single polymer matrix. formation, and exhibits properties as a semiconductor. The above configuration is used in the present invention. The above semiconductor particles refer to metal oxides and organic semiconductors.

これらの非相溶複合系高分子マトリクスがポリ
エチレン、ポリプロピレンあるいはポリ弗化ビニ
リデンのような結晶性の高い高分子物質とゴム状
物質のような非結晶性の高分子物質とからなりた
つている場合は上記の効果はさらに顕著に現れ
る。これは結晶性高分子物質の結晶構造が非結晶
性の高分子物質との混練によつて著しく乱される
ことに起因しているものと思われる。とくに高分
子マトリクスが互いに相溶しない2種類の高分子
物質よりなるときにはこれら高分子物質の重量比
が1:0.25〜4.0であるときにこのような効果が
顕著に現れる。
When these incompatible composite polymer matrices are composed of a highly crystalline polymer material such as polyethylene, polypropylene or polyvinylidene fluoride and an amorphous polymer material such as a rubbery material, The above effect appears even more clearly. This is thought to be due to the fact that the crystal structure of the crystalline polymer material is significantly disturbed by kneading with the amorphous polymer material. In particular, when the polymer matrix is composed of two types of polymer substances that are incompatible with each other, such an effect becomes remarkable when the weight ratio of these polymer substances is 1:0.25 to 4.0.

互いに相溶しない高分子物質群は、例えば、次
のようにA〜Dの各群に分かたれ、同じ群に属す
る高分子物質はいずれも互いに相溶し、異なる群
に属するものは互いに相溶しない。また各群中、
1に含まれるものは結晶性高分子物質であり、2
に含まれるものは非結晶性高分子物質である。こ
れらの群を下に示す。
Groups of polymeric substances that are incompatible with each other are, for example, divided into groups A to D as shown below. All polymeric substances that belong to the same group are compatible with each other, and those that belong to different groups are compatible with each other. do not. Also, in each group,
What is included in 1 is a crystalline polymer substance, and 2
What is included in this is an amorphous polymeric substance. These groups are shown below.

A−1:ポリエチレン、ポリプロピレン A−2:ポリオレフイン系エラストマー、ポリ
エステル系エラストマー、エチレン−
プロピレンラバー、ブタジエンラバ
ー、ブチルラバー B−1:ポリ弗化ビニル、ポリ弗化ビニリデン B−2:ポリ塩化ビニル、塩化ビニリデン共重
合体、塩素化ポリエチレン、クロロプ
レンラバー、弗素ゴム、ポリウレタン C−2:シリコン樹脂、シリコンラバー D−1:ポリアミド樹脂 D−2:共重合ポリアミド樹脂 ここで、半導体粒子を単独に使用するかわりに
導体粒子と併用するとさらに望ましい結果を与え
る。すなわち、上記構成による組成物において、
さらに導体粒子を配合させることによつて導体粒
子が半導体粒子の間の橋渡しをするような構成を
与えて半導体粒子と導体粒子とが直列的回路を形
成するようにしてやれば、導体粒子は一般に半導
体粒子よりも比抵抗が数桁小さいので材料内部に
おける電極の役割を果たすことになつて半導体粒
子の特性を十分に引き出すことが可能になり、か
つ高分子組成物の電気特性の安定化を図ることが
できる。こうして半導体粒子の配合量の低減をな
し得ることができ、同時に電気特定を半導体粒子
のみによつて規定することが可能となる。上記に
おいて導体粒子はカーボンブラツク、グラフアイ
トおよび金属粉末の総称である。
A-1: Polyethylene, polypropylene A-2: Polyolefin elastomer, polyester elastomer, ethylene-
Propylene rubber, butadiene rubber, butyl rubber B-1: Polyvinyl fluoride, polyvinylidene fluoride B-2: Polyvinyl chloride, vinylidene chloride copolymer, chlorinated polyethylene, chloroprene rubber, fluororubber, polyurethane C-2: Silicone resin, silicone rubber D-1: Polyamide resin D-2: Copolymerized polyamide resin Here, instead of using semiconductor particles alone, when they are used in combination with conductor particles, more desirable results can be obtained. That is, in the composition having the above structure,
Furthermore, by blending conductor particles, a configuration is provided in which the conductor particles act as a bridge between the semiconductor particles, so that the semiconductor particles and the conductor particles form a series circuit. Since the specific resistance is several orders of magnitude lower than that of the particles, it plays the role of an electrode inside the material, making it possible to fully bring out the characteristics of the semiconductor particles and stabilizing the electrical properties of the polymer composition. Can be done. In this way, it is possible to reduce the blended amount of semiconductor particles, and at the same time, it is possible to define electrical characteristics only by semiconductor particles. In the above, conductor particles are a general term for carbon black, graphite, and metal powder.

本発明においては、とくにこの導体粒子がカー
ボンブラツクもしくはグラフアイトである場合、
これらは高分子材料に対して補強効果を与えるの
で組成物に対して大きな可撓性を付与することに
なり、有利である。また半導体粒子が有機半導体
である場合、これらは高分子マトリクス中に細か
く分散され、導体粒子間に緊密に入りこむことに
よつて安定な構造の実現に寄与する。さらにこれ
が金属あるいは窒素原子を含む化合物を電子供与
体とする7,7,8,8−テトラシアノキノジメ
タン(以下、TCNQと略する。)塩である場合は
材料自身の優れた安定性によつてさらに良好な結
果を示す。例えば、電子供与体としてアルカリ金
属類、アルカリ土金属類、銅、亜鉛および鉄ある
いは金属錯イオン、オニウムイオン、第四級アン
モニウムイオンなどが挙げられる。とりわけ、ナ
トリウム、カリウム、もしくは銅を電子供与体と
して用いる場合には、200℃程度の加熱によつて
も長時間分解しないほど安定な塩が得られ、これ
らを用いるときはとくに優れた結果をもたらす。
In the present invention, particularly when the conductor particles are carbon black or graphite,
These are advantageous because they provide a reinforcing effect on the polymeric material, thereby imparting greater flexibility to the composition. Furthermore, when the semiconductor particles are organic semiconductors, they are finely dispersed in the polymer matrix and are closely intercalated between the conductor particles, thereby contributing to the realization of a stable structure. Furthermore, if this is a 7,7,8,8-tetracyanoquinodimethane (hereinafter abbreviated as TCNQ) salt that uses a metal or a compound containing a nitrogen atom as an electron donor, the material itself has excellent stability. Therefore, even better results are shown. Examples of electron donors include alkali metals, alkaline earth metals, copper, zinc and iron, metal complex ions, onium ions, quaternary ammonium ions, and the like. In particular, when sodium, potassium, or copper is used as an electron donor, a stable salt can be obtained that does not decompose for a long time even when heated to about 200°C, and when these are used, particularly excellent results can be obtained. .

半導体粒子として有機半導体を用いる場合は、
かかる半導電性高分子組成物をサーミスタ材料と
して用いれば有機半導体の有する特性を十分に引
き出すことができる。すなわち、このものはマト
リクスに用いる高分子物質と同程度の熱膨張率を
有するので、マトリクス中に分散された有機半導
体の粒子は自身が周囲のマトリクスと同程度の熱
膨張をうけ、組成物の温度上昇によつても粒子同
志の接触は妨げられない。よつてサーミスタB定
数の低下すなわち温度検知感度の鈍化をきたすこ
とのない優れたサーミスタ材料を得ることができ
る。
When using an organic semiconductor as a semiconductor particle,
If such a semiconductive polymer composition is used as a thermistor material, the characteristics possessed by an organic semiconductor can be fully brought out. In other words, since this material has a coefficient of thermal expansion comparable to that of the polymer material used for the matrix, the organic semiconductor particles dispersed in the matrix undergo thermal expansion to the same extent as the surrounding matrix, and the particles of the composition Even an increase in temperature does not prevent particles from contacting each other. Therefore, it is possible to obtain an excellent thermistor material that does not cause a decrease in the thermistor B constant, that is, a decrease in temperature detection sensitivity.

次にさらに実施例を挙げて詳細を説明する。 Next, details will be explained with further examples.

実施例 1 クロロプレンラバーとエチレン−プロピレンラ
バーとを配合割合をかえて合計700gとなるよう
に配合し、これにそれぞれ10gの加硫剤および老
化防止剤を加えて混練した。さらに比抵抗が4.5
×105Ω・cmのマンガン−コバルト−ニツケル系
酸化物半導体粉末300gを加えて混練した後に得
られた試料を加熱プレスによつて成形し、10cm×
10cm×1mmのシートを作成して両面に直径5cmの
円状にコロイダルグラフアイトを塗布した。常温
下においてシートの抵抗値を測定し、これから体
積固有抵抗ρを求めた。一方、クロロプレンラバ
ーとエチレン−プロピレンラバーの合計量に対し
するクロロプレンラバーの配合割合(重量パーセ
ント)をpとし、pに対するρの関係を求めた。
これを第1図に示す。
Example 1 Chloroprene rubber and ethylene-propylene rubber were mixed in different proportions to give a total of 700 g, and 10 g of each of a vulcanizing agent and an anti-aging agent were added and kneaded. Furthermore, the resistivity is 4.5
The sample obtained after adding and kneading 300 g of manganese-cobalt-nickel-based oxide semiconductor powder of ×10 5 Ω・cm was molded using a hot press to form a 10 cm ×
A 10 cm x 1 mm sheet was prepared, and colloidal graphite was coated on both sides in a circular shape with a diameter of 5 cm. The resistance value of the sheet was measured at room temperature, and the volume resistivity ρ was determined from this. On the other hand, the blending ratio (weight percent) of chloroprene rubber to the total amount of chloroprene rubber and ethylene-propylene rubber was defined as p, and the relationship of ρ to p was determined.
This is shown in FIG.

実施例 2 ポリ弗化ビニリデンとポリエステル系エラスト
マーとを配合割合をかえて合計750gとなるよう
に配合し、これに比抵抗がそれぞれ3×106Ω・
cmおよび0.1Ω・cmのカリウムTCNQおよびフア
ーネスブラツクを125gずつ加えて熱ロールによ
つて溶融混練した。実施例1と同様にして常温下
における体積固有抵抗を求め、マトリクス中のポ
リ弗化ビニリデンの占める重量配合率pに対する
体積固有抵抗ρの関係を第2図に示す。
Example 2 Polyvinylidene fluoride and polyester elastomer were mixed in different proportions to give a total of 750 g, and each had a specific resistance of 3 x 10 6 Ω.
125 g each of potassium TCNQ and furnace black of 0.1 Ω·cm and 0.1 Ω·cm were added and melt-kneaded using hot rolls. The volume resistivity at room temperature was determined in the same manner as in Example 1, and the relationship between the volume resistivity ρ and the weight ratio p of polyvinylidene fluoride in the matrix is shown in FIG.

実施例 3 ポリプロピレンと塩素化ポリエチレンとを配合
割合をかえて合計800gとなるように配合し、こ
れに比抵抗がそれぞれ105Ω・cmおよび0.003Ω・
cmのナトリウムTCNQおよびグラフアイトをそれ
ぞれ120gおよび80g加えて熱ロールによつて混
練した。実施例1と同様にしてテストシートを作
成し、温度を変化させて各温度において60Hzの周
波数をもつ交流電場によりシートのインピーダン
スを測定して30℃と60℃との間のサーミスタB定
数をグラフより読みとつた。マトリクス中のポリ
プロピレンの占める重量配合率をpとし、pに対
するサーミスタB定数の関係を第3図に示す。ま
た第4図にpと常温下における体積固有インピー
ダンスZspとの関係をも示す。
Example 3 Polypropylene and chlorinated polyethylene were mixed in different proportions to give a total of 800 g, and the resistivity was 10 5 Ω・cm and 0.003 Ω・cm, respectively.
120g and 80g of sodium TCNQ and graphite, respectively, were added and kneaded using hot rolls. Create a test sheet in the same manner as in Example 1, change the temperature, measure the impedance of the sheet using an AC electric field with a frequency of 60Hz at each temperature, and graph the thermistor B constant between 30°C and 60°C. I was able to read more. The weight ratio of polypropylene in the matrix is defined as p, and the relationship of the thermistor B constant to p is shown in FIG. FIG. 4 also shows the relationship between p and the volume specific impedance Z sp at room temperature.

実施例1〜3のいずれにおいても抵抗値はマト
リクスを構成する2種類の高分子物質の適当な配
合割合において極小を示し、かつこの付近の配合
割合すなわち、2種類の高分子物質の重量比が
1:0.25〜4.0(第1,2および4図においてp
=20〜80)の範囲にある組成物においては抵抗値
低減の効果が顕著である。
In all of Examples 1 to 3, the resistance value shows a minimum value at an appropriate blending ratio of the two types of polymeric substances constituting the matrix, and when the blending ratio around this point, that is, the weight ratio of the two types of polymeric substances, 1:0.25~4.0 (p in Figures 1, 2 and 4)
= 20 to 80), the effect of reducing the resistance value is remarkable.

また、これらの組成物は良好な可撓性と加工性
をも有する。このことは得られた組成物をペレツ
トとし、それを製線押出機によつてチユービング
する操作が無理なく行われ、かつこのようにして
得た線状組成物が十分な可撓性と屈曲性とをもつ
ことによつて確認した。
These compositions also have good flexibility and processability. This means that the obtained composition can be pelletized and tubed using a wire extruder without difficulty, and the linear composition obtained in this way has sufficient flexibility and bendability. It was confirmed by having

さらに実施例3においては、抵抗値が極小を示
す組成においてサーミスタB定数の値が極大値を
とり、かつこの値が半導体物質であるナトリウム
TCNQのそれとほとんど一致している。またポリ
プロピレンと塩素化ポリエチレンの配合割合が重
量比にして0.25〜4.0すなわち、第3図において
p=20〜80の範囲にある組成物はサーミスタとし
て十分に大きい値のサーミスタB定数を有するの
で、これらの組成物においてはナトリウムTCNQ
の半導体特性が十分に引き出されているものとみ
なし得る。
Furthermore, in Example 3, the value of the thermistor B constant takes the maximum value in the composition showing the minimum resistance value, and this value is
It almost matches that of TCNQ. In addition, compositions in which the proportion of polypropylene and chlorinated polyethylene are in the range of 0.25 to 4.0 by weight, that is, in the range of p = 20 to 80 in Figure 3, have a thermistor B constant of a sufficiently large value as a thermistor. Sodium TCNQ in the composition of
It can be considered that the semiconductor characteristics of the semiconductor are fully brought out.

これらの実施例からもわかるように、本発明に
おける半導電性高分子組成物は良好な可撓性およ
び加工性を有し、かつ半導体粒子の特性を十分に
生かした組成物であることがわかる。
As can be seen from these Examples, it can be seen that the semiconductive polymer composition of the present invention has good flexibility and processability, and is a composition that fully takes advantage of the characteristics of semiconductor particles. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクロロプレンラバーとエチレン−プロ
ピレンラバーとをマトリクスとし、サーミスタ粉
末を分散させた組成物においてクロロプレンラバ
ー配合量と体積固有抵抗との関係を示した図、第
2図はポリ弗化ビニリデンとポリエステル系エラ
ストマーとをマトリクスとし、カリウムTCNQお
よびフアーネスブラツクを分散させた組成物にお
いてポリ弗化ビニリデン配合量と体積固有抵抗と
の関係を示した図、第3図はポリプロピレンと塩
素化ポリエチレンとをマトリクスとし、ナトリウ
ムTCNQおよびグラフアイトを分散させた組成物
においてポリプロピレン配合量とサーミスタB定
数との関係を示した図、第4図は上記組成物にお
いてポリプロピレン配合量と体積固有インピーダ
ンスとの関係を示した図である。
Figure 1 is a diagram showing the relationship between the amount of chloroprene rubber blended and the volume resistivity in a composition in which thermistor powder is dispersed in a matrix of chloroprene rubber and ethylene-propylene rubber. Figure 3 shows the relationship between the amount of polyvinylidene fluoride and the volume resistivity in a composition in which a polyester elastomer is used as a matrix and potassium TCNQ and furnace black are dispersed. Figure 4 shows the relationship between the amount of polypropylene blended and the thermistor B constant in a composition in which sodium TCNQ and graphite are dispersed as a matrix. Figure 4 shows the relationship between the amount of polypropylene blended and the volume specific impedance in the above composition. This is a diagram.

Claims (1)

【特許請求の範囲】 1 高分子マトリクス中に金属酸化物半導体粒子
もしくは有機半導体粒子を30重量%未満の範囲で
分散させ、前記半導体の導電特性を検出しうるよ
うにした半導電性高分子組成物において、前記高
分子マトリクスが第1の高分子物質とこれに相溶
しない少なくとも1種類の第2の高分子物質との
重量比1:0.25〜4.0の混合物よりなることを特
徴とする半導電性高分子組成物。 2 高分子物質の混合物が結晶性高分子物質と非
結晶性高分子物質とからなる特許請求の範囲第1
項記載の半導電性高分子組成物。 3 第1の高分子物質と第2の高分子物質が、
各々下記A〜Dの異なる群から選択された物質か
らなる特許請求の範囲第1項記載の半導電性高分
子組成物。 A:ポリエチレン、ポリプロピレン、ポリオレフ
イン系エラストマー、ポリエステル系エラスト
マー、エチレン−プロピレンラバー、ブタジエ
ンラバー、ブチルラバー B:ポリ弗化ビニル、ポリ弗化ビニリデン、ポリ
塩化ビニル,塩化ビニリデン共重合体、塩素化
ポリエチレン、クロロプレンラバー、弗素ゴ
ム、ポリウレタン C:シリコン樹脂、シリコンラバー D:ポリアミド樹脂、共重合ポリアミド樹脂。
[Claims] 1. A semiconductive polymer composition in which metal oxide semiconductor particles or organic semiconductor particles are dispersed in a polymer matrix in an amount of less than 30% by weight, and the conductive properties of the semiconductor can be detected. A semiconducting material, wherein the polymer matrix is made of a mixture of a first polymeric substance and at least one second polymeric substance that is incompatible therewith at a weight ratio of 1:0.25 to 4.0. Polymer composition. 2 Claim 1 in which the mixture of polymeric substances consists of a crystalline polymeric substance and an amorphous polymeric substance
The semiconductive polymer composition described in . 3 The first polymeric substance and the second polymeric substance are
The semiconductive polymer composition according to claim 1, each comprising a substance selected from the following different groups A to D. A: Polyethylene, polypropylene, polyolefin elastomer, polyester elastomer, ethylene-propylene rubber, butadiene rubber, butyl rubber B: Polyvinyl fluoride, polyvinylidene fluoride, polyvinyl chloride, vinylidene chloride copolymer, chlorinated polyethylene, Chloroprene rubber, fluororubber, polyurethane C: silicone resin, silicone rubber D: polyamide resin, copolymerized polyamide resin.
JP7874479A 1979-06-21 1979-06-21 Semiconductive polymer composition Granted JPS562350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7874479A JPS562350A (en) 1979-06-21 1979-06-21 Semiconductive polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7874479A JPS562350A (en) 1979-06-21 1979-06-21 Semiconductive polymer composition

Publications (2)

Publication Number Publication Date
JPS562350A JPS562350A (en) 1981-01-12
JPS6254828B2 true JPS6254828B2 (en) 1987-11-17

Family

ID=13670388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7874479A Granted JPS562350A (en) 1979-06-21 1979-06-21 Semiconductive polymer composition

Country Status (1)

Country Link
JP (1) JPS562350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266780A (en) * 2017-07-31 2017-10-20 江苏德威新材料股份有限公司 A kind of power cable non-crosslinked semi-conductive shielding material and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076796A (en) * 1983-10-03 1985-05-01 ローランド株式会社 Echo effect apparatus
JP2603511B2 (en) * 1988-04-15 1997-04-23 昭和電工株式会社 Conductive plastic
JP2621670B2 (en) * 1991-03-01 1997-06-18 ヤマハ株式会社 Electronic musical instrument
EP0684613A3 (en) * 1994-05-27 1996-06-26 Bridgestone Corp Semiconductive polymer member, method for making the same, and device comprising the member.
CN106589510B (en) * 2016-12-21 2018-10-09 柳州市昌泉贸易有限公司 A kind of preparation method of fire-resistant cable material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52118596A (en) * 1976-03-31 1977-10-05 Matsushita Electric Works Ltd Voltage-sensitive resistor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52118596A (en) * 1976-03-31 1977-10-05 Matsushita Electric Works Ltd Voltage-sensitive resistor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266780A (en) * 2017-07-31 2017-10-20 江苏德威新材料股份有限公司 A kind of power cable non-crosslinked semi-conductive shielding material and preparation method thereof
CN107266780B (en) * 2017-07-31 2020-08-07 江苏德威新材料股份有限公司 Non-crosslinked semiconductive shielding material for power cable and preparation method thereof

Also Published As

Publication number Publication date
JPS562350A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
US6277303B1 (en) Conductive polymer composite materials and methods of making same
Sau et al. Electrical and mechanical properties of conducting carbon black filled composites based on rubber and rubber blends
EP0468710B1 (en) Protection of devices
JPH0428744B2 (en)
US20110021360A1 (en) Superconductive nanocomposite
CA1057948A (en) Conductive polyolefin compositions
JPS6254828B2 (en)
AU740765B2 (en) Conductive polymer composite materials and methods of making same
Zhou et al. Effect of shape and size of nickel‐coated particles fillers on conductivity of silicone rubber‐based composites
US5472639A (en) Electroconductive foams
El‐Tantawy et al. New smart conducting elastomer blends of Bi‐based superconductor ceramics nanoparticles reinforced natural rubber/low‐density polyethylene for double thermistors, antistatic protectors, and electromagnetic interference shielding effectiveness applications
Sommers Carbon black for electrically conductive plastics
JPS6161244B2 (en)
JPS6053560A (en) Conductive polyphenylene sulfide resin composition
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JP3001889B2 (en) Polymer PTC element
CN113826174A (en) PPTC compositions and devices with low thermal deration and low process jump
US6534582B1 (en) Adaptive material of ternary composition
JPS61101554A (en) Preparation of electrically conductive resin composition
US3632526A (en) Heat-sensitive high molecular weight resistors
JPS62256847A (en) Electrically conductive composition
Bhattacharyya et al. Multiple hopping conduction in interpenetrating polymer network composites of poly pyrrole and poly (styrene-co-butyl acrylate)
JP2000119449A (en) Conductive rubber composition
JPS5882501A (en) High molecular temperature sensitive element
JPS60165004A (en) Power cable