JPS6161244B2 - - Google Patents

Info

Publication number
JPS6161244B2
JPS6161244B2 JP54078745A JP7874579A JPS6161244B2 JP S6161244 B2 JPS6161244 B2 JP S6161244B2 JP 54078745 A JP54078745 A JP 54078745A JP 7874579 A JP7874579 A JP 7874579A JP S6161244 B2 JPS6161244 B2 JP S6161244B2
Authority
JP
Japan
Prior art keywords
particles
polymer
semiconductor
temperature
sensitive body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54078745A
Other languages
Japanese (ja)
Other versions
JPS563905A (en
Inventor
Osamu Hotsuta
Yoshio Kishimoto
Wataru Shimoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7874579A priority Critical patent/JPS563905A/en
Publication of JPS563905A publication Critical patent/JPS563905A/en
Publication of JPS6161244B2 publication Critical patent/JPS6161244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、高分子マトリクス中に半導体粒子と
導体粒子とを併用して含有させた組成物よりな
り、半導体粒子のサーミスタ特性をひき出すよう
にした可撓性高分子感温体材料に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a flexible polymer comprising a composition containing both semiconductor particles and conductor particles in a polymer matrix, which brings out the thermistor properties of the semiconductor particles. The present invention relates to temperature-sensitive body materials.

従来、サーミスタ材料としては無機焼結体材料
が主流を占めているが、これらはいずれも可撓性
がなく、すぐれた可撓性が要求される用途には高
分子材料を用いた高分子感温体が用いられてい
る。
Conventionally, inorganic sintered materials have been the mainstream as thermistor materials, but none of these materials have flexibility, and for applications that require excellent flexibility, polymer materials using polymer sensitizers have been used. A warm body is used.

高分子感温体は次の2種類に大別される。第1
はイオン性界面活性剤の添加あるいはイオン交換
樹脂の使用によつて導電性を付与する試みであ
る。これらについては従来、数多くの例がある
が、イオンキヤリアによる導電性を利用している
ため、直流電場を印加する際、キヤリアが電極へ
移動することによつて減少し、その結果として比
抵抗の増大を招くという致命的な欠陥を有する。
このため、温度検知回路としては交流回路しか用
いることはできない。
Polymer thermosensitive bodies are broadly classified into the following two types. 1st
This is an attempt to impart conductivity by adding an ionic surfactant or using an ion exchange resin. There are many examples of these in the past, but since they utilize the conductivity of ion carriers, when a DC electric field is applied, the carriers move to the electrodes and decrease, resulting in a decrease in specific resistance. It has the fatal flaw of causing an increase in
Therefore, only an AC circuit can be used as the temperature detection circuit.

第2は電子伝導型の高分子感温体であり、次の
a,b,cの3種の構成がある。
The second type is an electron-conducting polymer temperature sensitive body, which has three types of configurations: a, b, and c.

(a) 金属酸化物あるいは有機半導体などの電子伝
導性のサーミスタ粉末を高分子マトリクスに配
合した高分子感温体。これらは一般にサーミス
タ粉未をマトリクス中に30〜50重量パーセント
程度配合しないと導電性が現れず、かかる多量
の配合によつて著しく可撓性を損ない、高分子
材料を用いる利点を失うことになる。
(a) A polymer thermosensitive material in which electronically conductive thermistor powder such as metal oxide or organic semiconductor is blended into a polymer matrix. Generally, these materials do not exhibit conductivity unless 30 to 50 weight percent of thermistor powder is mixed into the matrix, and the combination of such a large amount significantly impairs flexibility and loses the advantage of using polymeric materials. .

(b) 特公昭45―10150号公報や特開昭49―61698号
公報にみられるように、電子電導性を有する高
分子重合体を利用した感温体。
(b) A thermosensitive body using a high molecular weight polymer having electronic conductivity, as shown in Japanese Patent Publication No. 10150/1982 and Japanese Patent Application Laid-open No. 61698/1983.

(c) 特開昭51―22092号公報にみれるようにカー
ボンブラツクもしくはグラフアイトおよび7,
7,8,8―テトラシアノキノジメタンを電子
受容体とする電荷移動型有機半導体を高分子マ
トリクス中に混入させて電子伝導による導電性
を付与した高分子感温体。
(c) Carbon black or graphite and 7, as seen in JP-A-51-22092;
A polymer thermosensitive material in which a charge transfer type organic semiconductor having 7,8,8-tetracyanoquinodimethane as an electron acceptor is mixed into a polymer matrix to impart electrical conductivity through electron conduction.

上述において、cの構成が本発明における構成
と類似しているのでこのものについてさらに詳し
く述べる。特開昭51―22092号公報にみられるよ
うに感温体は20重量パーセント以下のカーボンブ
ラツクもしくはグラフアイトおよび1〜15重量パ
ーセントの7,7,8,8―テトラシアノキノジ
メタンを電子受容体とする電荷移動型有機半導体
を高分子マトリクス中に混入させた構成になつて
いるが、有機半導体物質の配合割合によつてサー
ミスタB定数の変化することが示されている。こ
のことは有機半導体物質のサーミスタ特性が十分
に得られていないことを意味し、感温体の製造時
にサーミスタB定数が製造条件によつて変動する
という不利さを免れ得ず、実用上に難点が残る。
In the above, since the configuration of c is similar to the configuration in the present invention, this will be described in more detail. As seen in Japanese Patent Application Laid-Open No. 51-22092, the temperature sensitive body accepts electrons with carbon black or graphite of 20% by weight or less and 7,7,8,8-tetracyanoquinodimethane of 1 to 15% by weight. The thermistor B constant has been shown to change depending on the blending ratio of the organic semiconductor material. This means that the thermistor properties of the organic semiconductor material are not sufficiently obtained, and the disadvantage that the thermistor B constant varies depending on the manufacturing conditions when manufacturing the temperature sensor cannot be avoided, which is a practical difficulty. remains.

本発明はこれらの材料の難点を克服した新規な
高分子感温体を提供するものであり、この特徴に
ついて以下に述べる。
The present invention provides a novel polymer thermosensitive material that overcomes the drawbacks of these materials, and its features will be described below.

高分子マトリクス中に導体粒子を分散させて導
電性材料として用いることは広く行なわれてい
る。これらのものの熱膨張率は一般に高分子マト
リクスよりも小さいために昇温により粒子同志の
接触が妨げられて正の温度係数を示し、自己温度
制御ヒータとして一般に用いられている。しかる
にこの中にさらに半導体粒子を混入させるとこれ
が導体粒子間に入りこみ、微視的にみると導体粒
子と半導体粒子の間で直列的回路を形成する。こ
こにおいて、半導体粒子とは負の抵抗温度係数を
有する有機半導体および無機酸化物半導体を総称
し、導体粒子とはカーボンブラツク、グラフアイ
トおよび金属粉末等の総称である。半導体粒子は
一般に導体粒子よりも比抵抗の値が数桁大きいの
でこのような組成のもとでは導体粒子は単に材料
内部における電極の働きをなすのみとなり、高分
子組成物の抵抗―温度特性は半導体粒子のみによ
つて規定されて材料はサーミスタ特性を示すこと
になる。
It is widely practiced to disperse conductor particles in a polymer matrix and use it as a conductive material. Since the thermal expansion coefficient of these materials is generally smaller than that of a polymer matrix, contact between particles is prevented by increasing the temperature, resulting in a positive temperature coefficient, and they are generally used as self-temperature control heaters. However, if semiconductor particles are further mixed into the particles, they will penetrate between the conductor particles and, microscopically, form a series circuit between the conductor particles and the semiconductor particles. Here, semiconductor particles are a general term for organic semiconductors and inorganic oxide semiconductors having a negative temperature coefficient of resistance, and conductor particles are a general term for carbon black, graphite, metal powder, and the like. Semiconductor particles generally have a resistivity value several orders of magnitude larger than that of conductor particles, so in such a composition, the conductor particles simply function as electrodes inside the material, and the resistance-temperature characteristics of the polymer composition are Defined solely by the semiconductor particles, the material will exhibit thermistor properties.

本発明の感温体は上記の構成によるものであ
り、導体粒子と半導体粒子の体積比が0.25〜4.0
の場合に優れた特性の感温体が得られることがわ
かり本発明に至つたものである。このような構成
のもとでは感温体のサーミスタB定数は半導体粒
子のそれに一致する。このことは本発明の大きな
特徴の1つをなし、マトリクス中に配合させる導
体粒子と半導体粒子の体積比を上記範囲に保つた
まま導体粒子と半導体粒子との合計の配合割合を
変化させることによつて、サーミスタB定数を一
定に保つたまま比抵抗の値を任意に変化させうる
感温体を提供することを意味する。かつ、この領
域の組成を有する感温体は非常に安定した電気特
性を示す。
The temperature sensitive body of the present invention has the above configuration, and the volume ratio of the conductor particles to the semiconductor particles is 0.25 to 4.0.
It has been found that a temperature sensitive body with excellent characteristics can be obtained in the case of the above method, leading to the present invention. Under such a configuration, the thermistor B constant of the temperature sensitive body matches that of the semiconductor particles. This is one of the major features of the present invention, and allows the total mixing ratio of conductor particles and semiconductor particles to be changed while keeping the volume ratio of conductor particles and semiconductor particles mixed in the matrix within the above range. Therefore, it is meant to provide a temperature sensing element whose specific resistance value can be arbitrarily changed while keeping the thermistor B constant constant. Moreover, a temperature sensitive body having a composition in this range exhibits extremely stable electrical characteristics.

ここで導体粒子と半導体粒子の性状について若
干補足しておく。すなわち、両粒子の種類、粒径
および粒子形状における多様さは高分子感温体の
電気特性に大きな影響を与える。例えば導体粒子
としてカーボン繊維あるいは半導体粒子として針
状構造を有するものを用いれば、両粒子の合計配
合量を低減することが可能となる。このことは感
温体材料に可撓性と良好な加工性を与えるうえで
有利である。しかし、このことによつて両粒子の
配合比そのものに大きな変動はみられず、両粒子
の体積比がやはり0.25〜4.0である範囲において
最も望ましい電気特性を有する感温体を与える。
Here, I would like to add some additional information about the properties of conductor particles and semiconductor particles. That is, the variety in the type, particle size, and particle shape of both particles has a great influence on the electrical properties of the polymer thermosensitive material. For example, if carbon fibers are used as the conductor particles or those having an acicular structure are used as the semiconductor particles, it is possible to reduce the total blending amount of both particles. This is advantageous in providing flexibility and good processability to the temperature sensitive material. However, this does not cause a large change in the blending ratio of both particles, and a temperature sensitive body having the most desirable electrical characteristics is obtained when the volume ratio of both particles is in the range of 0.25 to 4.0.

一般に無機焼結体サーミスタにおいては、抵抗
値を変化させるとサーミスタB定数も変化する
が、本発明のものはこれとは大きな相違を示す。
すなわち、抵抗値の変化によつてもサーミスタB
定数が変化しないということは、本感温体材料に
大きな有用性を与えるものであり、電子制御回路
との結合を容易ならしめ、工業上の大きな特長と
なるものである。
Generally, in inorganic sintered body thermistors, when the resistance value is changed, the thermistor B constant also changes, but the one of the present invention shows a big difference from this.
In other words, even if the resistance value changes, thermistor B
The fact that the constant does not change gives the present thermosensitive material great utility, and makes it easy to connect it to electronic control circuits, making it a major industrial feature.

ここで、導体粒子がカーボンブラツクあるいは
グラフアイトである場合、これらは高分子材料に
対して補強効果を与えるので、感温体材料に対し
て大きな可撓性を付与することになつて有利であ
る。さらに半導体粒子が有機半導体である場合、
これらは高分子マトリクスに対する良好な親和性
のためマトリクス中に細かく分散され、導体粒子
間に緊密に入りこむことによつて安定な構造の実
現に寄与し、感温体の抵抗安定化をもたらす。さ
らにこれが金属あるいは窒素原子を含む化合物を
電子供与体とする7,7,8,8―テトラシアノ
キノジメタン(以下、TCNQと略する。)塩であ
る場合は、材料自体の優れた安定性、耐熱性によ
つてさらに良好な結果を示す。例えば、電子供与
体としてアルカリ金属類、アルカリ土金属類、
銅、亜鉛および鉄あるいは金属錯イオン、オニウ
ムイオン、第四級アンモニウムイオンなどが挙げ
られる。とりわけ、ナトリウム、カリウムまたは
銅を電子供与体として用いる場合には、200℃程
度の加熱によつても長時間分解しないほど安定な
イオンラジカル塩が得られ、これらを用いるとき
はとくに優れた結果をもたらす。すなわち、導体
粒子として上記のカーボンブラツクあるいはグラ
フアイト、半導体粒子としてナトリウム、カリウ
ムあるいは銅を電子供与体とするTCNQ塩を選択
し、高分子マトリクスとしてポリ塩化ビニル、ポ
リエチレン、ポリプロピレンまたはポリ弗化ビニ
リデンなどの熱可塑性高分子組成物を用いれば、
これらを混合し、マトリクス組成物の溶融温度下
において混練するだけで優秀なサーミスタ材料を
得ることができる。
Here, when the conductor particles are carbon black or graphite, they have a reinforcing effect on the polymer material, which is advantageous in that they impart great flexibility to the thermosensitive material. . Furthermore, when the semiconductor particles are organic semiconductors,
Because of their good affinity for the polymer matrix, they are finely dispersed in the matrix, and by closely intercalating between the conductor particles, they contribute to the realization of a stable structure and stabilize the resistance of the thermosensor. Furthermore, if this is a 7,7,8,8-tetracyanoquinodimethane (hereinafter abbreviated as TCNQ) salt that uses a metal or a compound containing a nitrogen atom as an electron donor, the material itself has excellent stability. , shows even better results in terms of heat resistance. For example, alkali metals, alkaline earth metals,
Examples include copper, zinc and iron, metal complex ions, onium ions, and quaternary ammonium ions. In particular, when sodium, potassium, or copper is used as an electron donor, an ionic radical salt is obtained that is so stable that it does not decompose for a long time even when heated to about 200°C, and when these are used, particularly excellent results can be obtained. bring. That is, the above carbon black or graphite is selected as the conductor particle, TCNQ salt with sodium, potassium or copper as an electron donor is selected as the semiconductor particle, and polyvinyl chloride, polyethylene, polypropylene, polyvinylidene fluoride, etc. are selected as the polymer matrix. If you use a thermoplastic polymer composition of
An excellent thermistor material can be obtained simply by mixing these and kneading them at the melting temperature of the matrix composition.

以下にさらに実施例を挙げて本発明の詳細を説
明する。
The details of the present invention will be further explained below with reference to Examples.

実施例 1 ポリプロピレン700gに対し、常温における比
抵抗がそれぞれ3×106Ω・cmおよび0.003Ω・cm
のカリウムTCNQおよびグラフアイトをカリウム
TCNQとグラフアイトの配合割合を変化させて合
計300g加えて十分に混合した後、190℃の熱ロー
ルを用いて20分間混練した。得られた試料を190
℃、50Kg重/cm2においてプレス成形し、10cm×10
cm×1mmのテストピースを作成して両面に直径5
cmの円状にコロイダルカーボンを塗布し、電気特
定測定用シートとした。
Example 1 For 700 g of polypropylene, the specific resistance at room temperature is 3 × 10 6 Ω・cm and 0.003 Ω・cm, respectively.
potassium TCNQ and potassium graphite
A total of 300 g of TCNQ and graphite were added at different blending ratios, thoroughly mixed, and then kneaded for 20 minutes using a heated roll at 190°C. The obtained sample was 190
Press molded at ℃, 50Kg weight/ cm2 , 10cm x 10
Create a test piece of cm x 1 mm and have a diameter of 5 mm on both sides.
Colloidal carbon was coated in a circular shape of cm to form a sheet for electrical specific measurements.

温度を変化させて直流抵抗および60Hzにおける
インピーダンスを測定し、各温度での体積固有抵
抗および体積固有インピーダンスを計算して30℃
と60℃との間のサーミスタB定数をグラフより読
みとつた。
Measure the DC resistance and impedance at 60Hz by varying the temperature, calculate the volume specific resistance and volume specific impedance at each temperature, and calculate the volume specific resistance and volume specific impedance at 30℃.
I read the thermistor B constant between and 60℃ from the graph.

60℃における体積固有抵抗および体積固有イン
ピーダンスをρならびにZSPとし、カリウム
TCNQとグラフアイトの合計量に対するカリウム
TCNQの配合割合(体積パーセント)をPとして
Pに対するρおよびZSPの関係を第1図に示す。
さらにPに対するBρおよびBZの関係を第2図
に示す。ここにBρおよびBZはそれぞれ体積固
有抵抗および体積固有インピーダンスの温度変化
から求めたサーミスタB定数の値を示す。
The volume specific resistance and volume specific impedance at 60℃ are ρ and Z SP , and potassium
Potassium relative to the total amount of TCNQ and graphite
The relationship between ρ and Z SP with respect to P is shown in FIG. 1, where P is the blending ratio (volume percentage) of TCNQ.
Furthermore, the relationship between Bρ and B Z with respect to P is shown in FIG. Here, Bρ and B Z respectively indicate the values of the thermistor B constant determined from the temperature change of volume resistivity and volume resistivity.

第1図ではP=60(%)の付近において変曲点
がみられ、P=20〜80(%)、すなわち、グラフ
アイトとカリウムTCNQとの体積比が0.25〜4.0
の範囲で比抵抗は大きくは変化しないことが示さ
れる。第2図においてもP=20〜80の範囲ではB
およびBZともに一定しており、この領域の配合
割合をもつ組成物が良好な結果を与えることがわ
かる。
In Figure 1, an inflection point is seen near P = 60 (%), and P = 20 to 80 (%), that is, the volume ratio of graphite to potassium TCNQ is 0.25 to 4.0.
It is shown that the specific resistance does not change significantly within the range of . Also in Figure 2, B in the range of P = 20 to 80
It can be seen that both B and Z are constant, and compositions with blending ratios in this range give good results.

実施例 2 弗化ビニリデン樹脂650gに対して常温におけ
る比抵抗がそれぞれ105Ω・cmおよび0.1Ω・cmの
ナトリウムTCNQおよびチヤンネルブラツクを実
施例1のように合計350g加え、実施例1と同様
の操作によつてテストピースを作成した。この試
料に120℃においてDC100V/mmの直流電場を300
時間印加して、60℃において電場印加前と後の直
流抵抗を測定した。ナトリウムTCNQとチヤンネ
ルブラツクの合計量に対するナトリウムTCNQの
配合割合(体積パーセント)をPとしてPに対す
る電場印加後の印加前に対する抵抗比の関係を第
3図に示す。
Example 2 To 650 g of vinylidene fluoride resin, a total of 350 g of sodium TCNQ and channel black, each having a specific resistance of 10 5 Ω・cm and 0.1 Ω・cm at room temperature, were added as in Example 1, and the same procedure as in Example 1 was carried out. A test piece was created by the operation. A direct current electric field of DC100V/mm was applied to this sample at 120°C for 300°C.
The DC resistance was measured before and after the electric field was applied at 60°C. FIG. 3 shows the relationship between the resistance ratio after and before application of an electric field with respect to P, where P is the mixing ratio (volume percentage) of sodium TCNQ to the total amount of sodium TCNQ and channel black.

第3図からP=20〜80すなわち、チヤンネルブ
ラツクとナトリウムTCNQの体積比が0.25〜4.0
の範囲にある組成物は一定の抵抗値を示す安定な
組成物であることがわかる。
From Figure 3, P = 20~80, that is, the volume ratio of channel black and sodium TCNQ is 0.25~4.0.
It can be seen that compositions within this range are stable compositions that exhibit a constant resistance value.

実施例1,2からみられるように、導体粒子と
半導体粒子の配合量が体積比にして0.25〜4.0の
範囲である感温体組成物が良好な結果を示すこと
が確認されたが、さらにこれらの組成物の可撓性
と加工性とをみた。すなわち、上記の組成物を細
かく刻んでペレツトとし、それを製線押出機によ
つてチユービングして線状組成物を得たが、いず
れの組成物もチユービングの操作が無理なく行わ
れ、かつ得られた線状組成物が十分な可撓性と屈
曲性とをもつことを確認した。
As can be seen from Examples 1 and 2, it was confirmed that thermosensitive compositions in which the blending amount of conductor particles and semiconductor particles was in the range of 0.25 to 4.0 in terms of volume ratio showed good results. The flexibility and processability of the composition were examined. That is, the above composition was finely chopped into pellets and then tubed using a wire making extruder to obtain a linear composition. It was confirmed that the resulting linear composition had sufficient flexibility and bendability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカリウムTCNQとグラフアイトとを配
合した高分子感温体におてカリウムTCNQの配合
量と感温体の体積固有抵抗および体積固有インピ
ーダンスとの関係を示す図、第2図はカリウム
TCNQの配合量と感温体のサーミスタB定数との
関係を示す図、第3図はナトリウムTCNQとチヤ
ンネルブラツクとを配合した高分子感温体におい
てナトリウムTCNQの配合量と直流電場印加の前
後における感温体の抵抗比との関係を示す図であ
る。
Figure 1 is a diagram showing the relationship between the amount of potassium TCNQ blended and the volume specific impedance of the thermosensor in a polymer thermosensor containing potassium TCNQ and graphite.
Figure 3 shows the relationship between the amount of TCNQ blended and the thermistor B constant of the thermosensor. FIG. 3 is a diagram showing the relationship with the resistance ratio of a temperature sensitive body.

Claims (1)

【特許請求の範囲】 1 高分子マトリクス中に導体粒子とサーミスタ
特性を有する半導体粒子とを分散した高分子組成
物よりなり、その電気抵抗あるいはインピーダン
スの温度による変化を検出する高分子感温体にお
いて、前記導体粒子と前記半導体粒子の体積比が
0.25〜4.0であることを特徴とする高分子感温
体。 2 前記導体がカーボンブラツクあるいはグラフ
アイトである特許請求の範囲第1項記載の高分子
感温体。 3 前記半導体が金属酸化物あるいは有機半導体
である特許請求の範囲第1項または第2項記載の
高分子感温体。 4 前記有機半導体が金属あるいは窒素原子を含
む化合物を電子供与体とする7,7,8,8―テ
トラシアノキノジメタン塩である特許請求の範囲
第3項記載の高分子感温体。 5 前記金属原子がナトリウム、カリウムまたは
銅である特許請求の範囲第4項記載の高分子感温
体。
[Scope of Claims] 1. A polymeric temperature sensitive body made of a polymeric composition in which conductive particles and semiconductor particles having thermistor characteristics are dispersed in a polymeric matrix, and for detecting changes in electrical resistance or impedance due to temperature. , the volume ratio of the conductor particles and the semiconductor particles is
A polymer thermosensitive body characterized by having a temperature of 0.25 to 4.0. 2. The polymer temperature sensitive body according to claim 1, wherein the conductor is carbon black or graphite. 3. The polymer temperature sensitive body according to claim 1 or 2, wherein the semiconductor is a metal oxide or an organic semiconductor. 4. The polymer thermosensitive material according to claim 3, wherein the organic semiconductor is a 7,7,8,8-tetracyanoquinodimethane salt in which a metal or a compound containing a nitrogen atom is used as an electron donor. 5. The polymer temperature sensitive body according to claim 4, wherein the metal atom is sodium, potassium, or copper.
JP7874579A 1979-06-21 1979-06-21 High molecular temperature sensitive element Granted JPS563905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7874579A JPS563905A (en) 1979-06-21 1979-06-21 High molecular temperature sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7874579A JPS563905A (en) 1979-06-21 1979-06-21 High molecular temperature sensitive element

Publications (2)

Publication Number Publication Date
JPS563905A JPS563905A (en) 1981-01-16
JPS6161244B2 true JPS6161244B2 (en) 1986-12-24

Family

ID=13670415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7874579A Granted JPS563905A (en) 1979-06-21 1979-06-21 High molecular temperature sensitive element

Country Status (1)

Country Link
JP (1) JPS563905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154340U (en) * 1987-03-31 1988-10-11
JPH0440513Y2 (en) * 1987-12-26 1992-09-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226047A (en) * 1991-03-18 1993-09-03 Hitachi Ltd Commutator with built-in capacitor and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122092A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd KOBUNSHIKANONTAI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122092A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd KOBUNSHIKANONTAI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154340U (en) * 1987-03-31 1988-10-11
JPH0440513Y2 (en) * 1987-12-26 1992-09-22

Also Published As

Publication number Publication date
JPS563905A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
US5344591A (en) Self-regulating laminar heating device and method of forming same
US5206482A (en) Self regulating laminar heating device and method of forming same
US4910389A (en) Conductive polymer compositions
US20080251510A1 (en) Conductive Composition for Producing Carbon Flexible Heating Structure, Carbon Flexible Heating Structure Using the Same, and Manufacturing Method Thereof
EP0219678B1 (en) Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
JPS59502161A (en) self-control electric heating device
Luo et al. Study on effect of carbon black on behavior of conductive polymer composites with positive temperature coefficient
JPS6161244B2 (en)
JPS6254828B2 (en)
Ghofraniha et al. Electrical conductivity of polymers containing carbon black
JP2852778B2 (en) Heat-sensitive electrical resistance composition
Elimat et al. DC electrical conductivity of poly (methyl methacrylate)/carbon black composites at low temperatures
Verma et al. Transport studies of the copper solid superionic conductor CuPb2Br7
JPS59122524A (en) Composition having positive temperature characteristics of resistance
CN113826174A (en) PPTC compositions and devices with low thermal deration and low process jump
JPH10223406A (en) Ptc composition and ptc element employing it
Singh et al. Electrical resistivity behavior of solution‐cast metal‐filled composites
JP3301866B2 (en) Polymer thermosensor, manufacturing method thereof, and heat-sensitive heater wire
JP3799755B2 (en) Method for producing polymer thermosensitive body
JP3588980B2 (en) Manufacturing method of polymer thermosensor
JP2630884B2 (en) Polymer thermosensor
JP3001889B2 (en) Polymer PTC element
JPH05234707A (en) Resistance material with positive temperature coefficient
JPS5882501A (en) High molecular temperature sensitive element
JPS63219102A (en) Ptc resistance material