JP3799755B2 - Method for producing polymer thermosensitive body - Google Patents

Method for producing polymer thermosensitive body Download PDF

Info

Publication number
JP3799755B2
JP3799755B2 JP18202897A JP18202897A JP3799755B2 JP 3799755 B2 JP3799755 B2 JP 3799755B2 JP 18202897 A JP18202897 A JP 18202897A JP 18202897 A JP18202897 A JP 18202897A JP 3799755 B2 JP3799755 B2 JP 3799755B2
Authority
JP
Japan
Prior art keywords
melt
particles
polyamide
temperature
child
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18202897A
Other languages
Japanese (ja)
Other versions
JPH1129703A (en
Inventor
雅彦 伊藤
忠孝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18202897A priority Critical patent/JP3799755B2/en
Publication of JPH1129703A publication Critical patent/JPH1129703A/en
Application granted granted Critical
Publication of JP3799755B2 publication Critical patent/JP3799755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気採暖具などの可撓性の温度センサやこの感温機能を組み合わせたヒータに用いる高分子感温体およびその高分子感温体を用いた感温素子に関する。
【0002】
【従来の技術】
従来、この種の高分子感温体は、一般に一対の巻き線電極間に配設され、可撓性線状の温度センサや感熱ヒータとして用いられている。この高分子感温体としては、ナイロン12や特開昭55−100693号公報に開示されている変性ナイロン12などのポリアミド組成物が用いられ、その静電容量や抵抗値あるいはインピーダンスなどの温度変化を検出することにより温度センサの機能を果たしている。また、特公平2−47083号公報では、導電性付与剤としてよう化亜鉛化合物であるよう化第一錫をポリアミド樹脂と混合させた高分子感温体が開示されている。
【0003】
【発明が解決しようとする課題】
上記のような従来の高分子感温体では、例えばナイロン12は吸湿率が低い点は優れているが、温度センサとしては湿度による感温特性の変動が大きいため、実用に供し難い。また特開昭55−100693号公報に開示されている変性ポリアミドにおいては、インピーダンスの温度依存性が小さいため温度検出感度が低く、耐熱安定性に劣る。インピーダンスの温度依存性すなわちサーミスタB定数を改善するために、特公平2−47083号公報に示された技術では、導電性付与剤としてよう化第1錫をポリアミドと混合したポリアミド組成物を開示しているが、ポリアミドと開示された導電性付与剤を配合すると、熱熔融混合等で生成されるポリアミド組成物はよう素が分離された状態になっているため、このポリアミド組成物を使用した高分子感温体を挟持する電極を設けて使用した場合、長時間が経過すると高分子感温体中で分離した負イオン性を有するよう素と、正イオン性を有する錫成分がそれぞれ異なる電極へ移動してしまい、高分子感温体中で分極状態を生じ、インピーダンスの温度依存性が小さくなり正しく温度が検知できなくなるという問題を有していた。
【0004】
このため、遊離するよう素を補足するためによう素受容体として酸化物をよう素化合物と併用配合する方法がとられる。この場合、ポリアミドに対してよう化亜鉛と酸化亜鉛を順次そのままの状態で投入したのでは、遊離したよう素が効率的に酸化物に補足されないので、作製されたポリアミド組成物からなる高分子感温体は、サーミスタB定数値、通電安定性が損なわれるという問題があった。
【0005】
本発明は、高分子感温体が高いサーミスタB定数制御性能を有し、発熱体と組み合わせた感温機能付きのヒータ線として発熱通電下でも、通電前と変化しないインピーダンス温度特性を有し、かつ安定的に所定のインピーダンスー温度特性を有する高分子感温体の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明はよう化亜鉛と酸化亜鉛の熔融混練組成物をポリアミドに配合してポリアミド組成物よりなる高分子感温体を製造する方法としたものである。
【0007】
熔融混練組成物とポリアミドを熱熔融混練合することにより、熔融混練組成物のの酸化亜鉛がよう化亜鉛の分解により生成するよう素イオンの受容体として働き、導電性付与剤であるよう化亜鉛をポリアミド組成物内に安定的に滞留させることができる。
【0008】
上記した本発明によれば、高分子感温体において、インピーダンスの温度依存性が大きく、一般に一対の巻き線電極間に配設され、可撓性線状の温度センサや感温機能を有するヒータ線として用いられて、発熱通電後でも通電前と変化しないインピーダンスー温度特性を有する通電安定性に優れた高分子感温体としてのポリアミド組成物を提供することができる。
【0009】
【発明の実施の形態】
本発明は、各請求項に記載される形態で実施できるものであり、請求項1記載のようによう化亜鉛と酸化亜鉛の熔融混練組成物をポリアミドに配合することによりポリアミド組成物中に導電性付与剤として配合したよう素の持つイオンキャリア性により著しくインピーダンスの温度依存性を高める。つまり、ポリアミド組成物の温度が高くなるとインピーダンス値が低くなるNTC特性を有するようになる。しかし、高温度で長期間通電使用した場合に、よう素はアミド基周辺に局在する一方、余ったよう素イオンが金属電極に作用し電気絶縁体であるよう化金属を生成し、電極間インピーダンスの温度特性の経時安定性を損ねる。そこで、よう化亜鉛と酸化亜鉛の熔融混練組成物をポリアミドと熔融混練して配合すると、酸化亜鉛がよう素イオンの受容体として働き、金属電極表面のよう化金属の生成を防止することができる。さらに、よう素と反応した酸化亜鉛は、よう化亜鉛を生成し、通電安定性を向上させる作用が働くという連環サイクルが機能する。このため安定的にポリアミド組成物中によう素化合物を含有することができる。
【0010】
このように作成されたポリアミド組成物よりなる高分子感温体のインピーダンス−温度特性を向上させ、通電状態でも高分子感温体中の感温性が損なわれることなく、温度センサや感熱ヒータとしてインピーダンス−温度特性の安定性を著しく向上することができる。
【0011】
そして、請求項2記載のようによう化亜鉛と酸化亜鉛の配合は重量部で、いずれか一方を他方に対して1から3倍にし、また請求項3記載のようによう化亜鉛と酸化亜鉛のいずれか一方を他方に対して粒径を50から200倍とし、また請求項4記載のようによう化亜鉛と酸化亜鉛のいずれか一方を0.1から0.5μmにするとよい。
【0012】
また、よう化亜鉛と酸化亜鉛との熔融混練組成分はポリアミド100重量部に対して1から50重量部の割合で配合するとよい。
【0013】
以上についての具体的実施例を以下の実施例の項において詳述する。
【0014】
【実施例】
以下の本発明の実施例について説明する。
【0015】
(実施例1)
本発明の実施例1について述べる。本実施例では、ポリアミドとして吸湿性の少ないナイロン12を選んだ。これらのポリマーのインピーダンスの温度依存性を高める導電性付与剤および通電安定剤としてよう化亜鉛を用い、熔融混練組成物をつくるよう素受容体として、酸化亜鉛を用いる。よう化亜鉛粉末の平均粒子径は5から10μm、酸化亜鉛粉末の平均粒子径は0.1〜0.5μmを用いた。
【0016】
図1に、本発明に係る高分子感温体としてのポリアミド組成物の製造方法の一実施例を示す。図1に示すように、まず導電性付与剤のよう化亜鉛粉末の粒子径が5から10μmの母粒子1と粒子径が0.1〜0.5μmの酸化亜鉛粉末からなる子粒子2を2軸押出装置で熔融混練させて熔融混練組成物3を製造する。作製した熔融混練組成物3に約数10〜100μmのポリアミド粉末5をヘンシルミキサー等により均一になるように混合する。そして、これらを二軸押出装置により、溶融混合して射出成型後、ポリアミド組成物を製造した。測定用の試料は、加熱プレスで約70×70mm、厚さ1mmのシートに成形し、その両面に銅板の電極を設けて測定電極を作製した。
【0017】
インピーダンスの温度依存性は40〜80℃におけるサーミスタB定数で表した。
【0018】
さらに通電安定性の評価については、図2を用いて説明する。図2のように、温度20〜120℃まで変化させたときの体積固有インピーダンスを測定する。初期の体積固有インピーダンス特性(図2の初期)から100℃での体積固有インピーダンスを求め、100℃中で100Vの半波整流通電を1000時間行った後(図2の特性A、特性B)、初期と同じ体積固有インピーダンスを示す温度を求め、100℃での温度差を比較する。図2では温度差△TB>△TAであるので特性Aのほうが通電安定性が高いと判断する。ここでは温度差をΔTzで表した。なお40〜80℃におけるサーミスタB定数は40℃におけるインピーダンスZ40および80℃におけるインピーダンスZ80を測定し、その結果をもとに算出した。
【0019】
(表1)に本発明の実施例1の高分子感温体の前記述の測定用試料を20枚作った場合のサーミスタB定数の範囲と、100℃中で100Vの半波整流通電を1000時間行った後の温度差ΔTzの平均と、比較例として、さきによう化亜鉛と酸化亜鉛を熔融混練させずにそのままナイロンに順次配合して溶融混練させたポリアミド組成物からなる高分子感温体の場合を示した。
【0020】
また、図1と同様に酸化亜鉛が母粒子に、よう化亜鉛が子粒子の場合も表1に示す。よう素受容体となる酸化亜鉛の粒子径が5から10μmの母粒子1と子粒子2である粒子径0.1〜0.5μmのよう化亜鉛を前記記述と同様に熔融混練させた熔融混練組成物3を作製し、ポリアミド粉末4をヘンシルミキサー等により均一になるように混合して、溶融混練してポリアミド組成物を作製する。作製したポリアミド組成物からなる高分子感温体の試料を20枚作り、そのサーミスタB定数値の範囲、半波整流通電後の温度差の平均値を表1に示す。
【0021】
【表1】

Figure 0003799755
【0022】
本発明の実施例1によれば、サーミスタB定数は母粒子によう化亜鉛、子粒子に酸化亜鉛の場合で、13,500〜13,800、母粒子に酸化亜鉛、子粒子によう化亜鉛で、13,300〜13,600(K)でよう化亜鉛と酸化亜鉛をそのまま順次配合した場合と比較してサーミスタB定数の範囲は小さくなり、通電安定性も温度差ΔTzは小さくなり、特性安定性が向上する。
【0023】
これは、導電性付与剤であるよう化亜鉛とよう素受容体である酸化亜鉛の混練組成物を形成してポリアミドに配合するため、ポリアミドとの配合時に、よう化亜鉛から遊離する余計なよう素がないので安定的にポリアミドとに反応するため、サーミスタB定数値の制御、通電特性の安定化が図られたものである。
【0024】
(実施例2)
図3に、本発明に係る高分子感温体の製造方法において、熔融混練組成物の母粒子と子粒子の配合重量部比を変化させたとき、実施例1で試作した特性評価試料を100℃中で100Vの半波整流通電を1000時間行った後の温度差ΔTzがどれだけ変化するかをグラフで示す。このとき、母粒子はよう化亜鉛粉末、子粒子は酸化亜鉛粉末である。
【0025】
この結果から、温度差△Tzが10(k)以下である場合は、母粒子配合重量部が子粒子配合重量部の1から3倍を有する場合である。
【0026】
これは混練組成物を作成する母粒子と子粒子のバランスで、母粒子がよう化亜鉛で子粒子が酸化亜鉛である場合、母粒子配合重量部が子粒子配合重量部より小さい場合、よう素化合物が少ないために、高分子感温体の特性が不安定になる。
【0027】
粒子配合重量部が3倍より多い場合、よう素を補足する酸化亜鉛が少ないために、高分子感温体中で分極状態が生じて通電安定性が損なわれる。
【0028】
母粒子が酸化亜鉛で、子粒子がよう化亜鉛の場合、母粒子配合重量部が子粒子配合重量部より小さい場合、よう化亜鉛量が多いので遊離するよう素を補足する酸化亜鉛量が少ないので通電安定性が損なわれる。粒子配合重量部が粒子配合重量部3倍より多い場合、酸化物の量が増えるので高分子感温体中の特性が不安定になる。
【0029】
(実施例3)
図4に、本発明に係る高分子感温体の製造方法において、熔融混練組成物の母粒子粒径と子粒子粒径の比を変化させたとき、実施例1で試作した特性評価試料を100℃中で100Vの半波整流通電を1000時間行った後の温度差ΔTzがどれだけ変化するかをグラフで示す。このとき、母粒子はよう化亜鉛粉末、子粒子は酸化亜鉛粉末である。
【0030】
この結果から、温度差△Tzが10(k)以下である場合は、母粒子の粒径が子粒子の粒径の50から200倍を有する場合である。
母粒子がよう化亜鉛で子粒子が酸化亜鉛である場合、母粒子の粒径が子粒子の粒径の50倍未満の時、よう化亜鉛から分離したよう素を捕足するにあまりある大きさの酸化亜鉛粉末であるため、ポリアミドと溶融混練した場合、ポリアミドと均一に分散しなくなり、試料の通電安定性を阻害する。母粒子の粒径が子粒子の粒径の200倍より大きい場合、よう化亜鉛から分離するよう素成分を多く含むため、酸化亜鉛粉末が補足できなかったよう素成分が、半波通電によりポリアミド組成物中で分極現象を起こしたために温度差が大きくなったものである。
【0031】
(実施例4)
図5に、本発明に係る高分子感温体の製造方法において、熔融混練組成物の子粒子の粒径を変化させた時の実施例1で試作した特性評価試料を100℃中で100Vの半波整流通電を1000時間行った後の温度差ΔTzがどれだけ変化するかをグラフで示す。
【0032】
この結果から、温度差△Tzが10(k)以下である場合は、熔融混練組成物を形成する子粒子の粒径は0.1から0.5μmを有する場合である。
【0033】
これは熔融混練時に、子粒子が、母粒子の表面にまんべんなく配置され、効果的に分離するよう素を補足できるからである。子粒子が0.1μmより小さいと子粒子自身のよう素を補足する性能が低く、逆に0.5μmより大きいと母粒子の周りの表面に付着できないため効果的によう素を補足することができない。
【0034】
(実施例5)
図6に、本発明に係る高分子感温体の製造方法において、ナイロン12の粉末に熔融混練組成物の配合量を変化させたときの高分子感温体試料のサーミスタB定数の変化をグラフに示す。熔融混練組成物の母粒子はよう化亜鉛、子粒子は酸化亜鉛を用いた。
【0035】
この結果、ナイロン粉末12に対して、熔融混練組成物の配合量が1から30重量部までが、サーミスタB定数が13,000(k)以上である。これは、1重量部未満では、ナイロン12と反応する量が少ないため、サーミスタB定数値が小さくなり、30重量部より多く配合すると反応する量が多くなるためにナイロン12の粉末と均一に反応することができないため高分子感温体中に熔融混練組成物が残留し、高分子感温体自身を劣化させるためインピーダンスの温度依存性が小さくなるためである。 なお、熔融混練組成物の母粒子に酸化亜鉛、子粒子によう化亜鉛を用いても図6と同様の結果になる。
【0036】
【発明の効果】
以上の説明から明らかなように本発明によれば、以下の効果が得られる。
【0037】
(1)請求項1記載の発明ではよう化亜鉛と酸化亜鉛のうちどちらか一方が母粒子となる熔融混練組成物を作ってポリアミドと配合する高分子感温体の製造方法であるから、高分子感温体となるポリアミド組成物中に酸化亜鉛がよう素イオンの受容体として働き、金属電極表面のよう化金属の生成を防止することができる。さらに、よう素と反応した酸化亜鉛は、よう化亜鉛を生成する連環サイクルが機能し、高分子感温体のサーミスタB定数の制御と温度検知感度の向上、半波通電安定性に寄与する。
【0038】
(2)請求項2記載の発明では、前記(1)の効果に加えて熔融混練組成物を作る母粒子と子粒子の配合重量比を、母粒子が子粒子の1から3倍としたため、よう素化合物を生成する連環サイクルが効果的に働き、高分子感温体の整流波通電安定特性を高める。
【0039】
(3)請求項3記載の発明では、前記(1)の効果に加えて熔融混練組成物を作製する母粒子は子粒子の粒径の50から200倍としたので、前記の連環サイクルが機能し、安定的にポリアミド組成物中によう素化合物を含有することができる半波整流通電安定性が向上する。
【0040】
(4)請求項4記載の発明では、前記(1)の効果に加えて熔融混練組成物の子粒子の粒径が0.1から0.5μmとしたので、子粒子が、母粒子の表面にまんべんなく配置され、効果的に分離するよう素を補足して、高分子感温体のインピーダンスー温度特性が長期間安定する。
【0041】
(5)請求項5記載の発明では、前記(1)の効果に加えて熔融混練組成物がポリアミド100重量部に対して1から30重量部で配合されているので、高いサーミスタB定数を得ることができる。また、一定範囲で制御することができる。
【図面の簡単な説明】
【図1】本発明の高分子感温体の製造方法の一実施例を説明する説明図
【図2】本発明の高分子感温体の温度と体積固有インピーダンスとの関係を示すグラフ
【図3】本発明における熔融混練組成物中の母粒子と子粒子の配合重量比を変化させたときの通電安定性を示すグラフ
【図4】本発明における熔融混練組成物の子粒子の粒径に対して母粒子の粒径を変化させたときの通電安定性を示すグラフ
【図5】本発明における熔融混練組成物の子粒子の粒径を変化させたときの通電安定性を示すグラフ
【図6】本発明においてナイロン粉末に対して、熔融混練組成物の配合重量部を変化させたときのサーミスタBである定数値の変化を示すグラフ
【符号の説明】
1 母粒子
2 子粒子
3 熔融混練組成物
4 ポリアミド[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer temperature sensor used in a flexible temperature sensor such as an electric warming tool or a heater combined with this temperature sensing function, and a temperature sensing element using the polymer temperature sensor.
[0002]
[Prior art]
Conventionally, this type of polymer temperature sensing element is generally disposed between a pair of wound electrodes and is used as a flexible linear temperature sensor or a thermal heater. As this polymer thermosensitive material, a polyamide composition such as nylon 12 or modified nylon 12 disclosed in Japanese Patent Application Laid-Open No. 55-1000069 is used, and the temperature change of its capacitance, resistance value, impedance, etc. It functions as a temperature sensor by detecting Japanese Patent Publication No. 2-47083 discloses a polymer thermosensitive material in which stannous iodide, which is a zinc iodide compound, is mixed with a polyamide resin as a conductivity imparting agent.
[0003]
[Problems to be solved by the invention]
In the conventional polymer thermosensitive material as described above, for example, nylon 12 is excellent in that it has a low moisture absorption rate, but it is difficult to put it to practical use because a temperature sensor has a large variation in temperature sensitive characteristics due to humidity. Further, the modified polyamide disclosed in Japanese Patent Application Laid-Open No. Sho 55-1000069 has low temperature dependency of impedance, and therefore has low temperature detection sensitivity and poor heat stability. In order to improve the temperature dependence of impedance, that is, the thermistor B constant, the technique disclosed in Japanese Patent Publication No. 2-47083 discloses a polyamide composition in which stannous iodide is mixed with polyamide as a conductivity imparting agent. However, when the polyamide and the disclosed conductivity-imparting agent are blended, the polyamide composition produced by hot melt mixing is in a state where iodine is separated. When an electrode that sandwiches a molecular temperature sensor is provided and used, the negative ion element separated in the polymer temperature sensor and the positive ion tin component are separated from each other over a long period of time. As a result, the temperature of the polymer temperature sensor becomes polarized, and the temperature dependence of the impedance is reduced, making it impossible to detect the temperature correctly.
[0004]
For this reason, in order to supplement free iodine, an oxide is used in combination with an iodine compound as an iodine acceptor. In this case, if zinc iodide and zinc oxide are sequentially added to the polyamide as they are, the released iodine is not efficiently captured by the oxide, so that the polymer feel of the prepared polyamide composition is not affected. The warm body has a problem that the thermistor B constant value and the conduction stability are impaired.
[0005]
The present invention has a high thermistor B constant control performance of the polymer thermosensitive body, and has an impedance temperature characteristic that does not change from that before energization even under heat generation as a heater wire with a temperature sensing function combined with a heating element, Another object of the present invention is to provide a method for producing a polymer thermosensitive body having a predetermined impedance-temperature characteristic stably.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is a method for producing a polymer thermosensitive material comprising a polyamide composition by blending a melt-kneaded composition of zinc iodide and zinc oxide with polyamide.
[0007]
Zinc iodide, which is a conductivity-imparting agent, acts as an acceptor for iodine ions produced by the decomposition of zinc iodide by hot-melt-kneading the melt-kneaded composition and polyamide. Can be stably retained in the polyamide composition.
[0008]
According to the above-described present invention, in the polymer temperature sensing element, the temperature dependence of impedance is large, and generally a flexible linear temperature sensor or a temperature sensing function is provided between a pair of wound electrodes. It can be used as a wire, and can provide a polyamide composition as a polymer thermosensitive body excellent in energization stability having impedance temperature characteristics that do not change even after energization and before energization.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be carried out in the form described in each claim. As described in claim 1, a conductive kneaded composition of zinc iodide and zinc oxide is blended in polyamide to conduct electricity. Impedance temperature dependency is remarkably increased by the ion carrier property of iodine blended as a property-imparting agent. That is, when the temperature of the polyamide composition increases, it has NTC characteristics in which the impedance value decreases. However, when energized for a long time at a high temperature, iodine is localized around the amide group, while the remaining iodine ions act on the metal electrode to form a metal oxide so that it is an electrical insulator. Impairs temperature stability of impedance over time. Therefore, when a melt-kneaded composition of zinc iodide and zinc oxide is blended with polyamide and melt-mixed, zinc oxide can act as an acceptor for iodine ions and can prevent formation of metal iodide on the surface of the metal electrode. . Furthermore, the zinc oxide reacted with iodine functions as a continuous cycle in which zinc iodide is generated and the action of improving the current-carrying stability works. For this reason, an iodine compound can be stably contained in the polyamide composition.
[0010]
Improves the impedance-temperature characteristics of the polymer thermosensitive body made of the polyamide composition thus prepared, and does not impair the temperature sensitivity in the polymer thermosensitive body even when energized. The stability of the impedance-temperature characteristic can be remarkably improved.
[0011]
Further, as described in claim 2, the blending of zinc iodide and zinc oxide is in parts by weight, one of which is 1 to 3 times that of the other, and as described in claim 3, zinc iodide and zinc oxide. It is preferable that the particle diameter of any one of the above is 50 to 200 times that of the other, and one of zinc iodide and zinc oxide is 0.1 to 0.5 μm as described in claim 4.
[0012]
Further, the melt-kneaded composition of zinc iodide and zinc oxide may be blended at a ratio of 1 to 50 parts by weight with respect to 100 parts by weight of polyamide.
[0013]
Specific examples of the above will be described in detail in the following Examples section.
[0014]
【Example】
The following examples of the present invention will be described.
[0015]
Example 1
Example 1 of the present invention will be described. In this example, nylon 12 having a low hygroscopic property was selected as the polyamide. Zinc iodide is used as a conductivity-imparting agent and a current-carrying stabilizer that increase the temperature dependence of the impedance of these polymers, and zinc oxide is used as an element acceptor to form a melt-kneaded composition. The average particle diameter of zinc iodide powder was 5 to 10 μm, and the average particle diameter of zinc oxide powder was 0.1 to 0.5 μm.
[0016]
In FIG. 1, one Example of the manufacturing method of the polyamide composition as a polymer thermosensitive body which concerns on this invention is shown. As shown in FIG. 1, first, two particles 2 made of a base particle 1 having a particle size of 5 to 10 μm and a zinc oxide powder having a particle size of 0.1 to 0.5 μm are used. A melt-kneaded composition 3 is produced by melt-kneading with a shaft extruder. About 10 to 100 μm of polyamide powder 5 is mixed with the produced melt-kneaded composition 3 so as to be uniform with a Hensyl mixer or the like. And these were melt-mixed with the twin-screw extruder, the injection molding was carried out, and the polyamide composition was manufactured. A sample for measurement was formed into a sheet having a thickness of about 70 × 70 mm and a thickness of 1 mm with a heating press, and a copper electrode was provided on both sides to prepare a measurement electrode.
[0017]
The temperature dependence of impedance was expressed by the thermistor B constant at 40 to 80 ° C.
[0018]
Further, the evaluation of energization stability will be described with reference to FIG. As shown in FIG. 2, the volume specific impedance when the temperature is changed to 20 to 120 ° C. is measured. After obtaining the volume specific impedance at 100 ° C. from the initial volume specific impedance characteristics (the initial stage in FIG. 2), and performing 100 V half-wave rectification at 100 ° C. for 1000 hours (characteristic A and characteristic B in FIG. 2), The temperature showing the same volume specific impedance as the initial is obtained, and the temperature difference at 100 ° C. is compared. In FIG. 2, since the temperature difference ΔTB> ΔTA, it is determined that the characteristic A has higher energization stability. Here, the temperature difference is represented by ΔTz. The thermistor B constant at 40 to 80 ° C. was calculated based on the results of measuring impedance Z40 at 40 ° C. and impedance Z80 at 80 ° C.
[0019]
Table 1 shows the range of the thermistor B constant when 20 samples for measurement of the polymer thermosensitive material of Example 1 of the present invention are prepared, and the half wave rectification energization of 100 V at 100 ° C. is 1000. The average temperature difference ΔTz after time, and, as a comparative example, a polymer temperature sensitivity comprising a polyamide composition prepared by sequentially blending zinc iodide and zinc oxide into nylon without melting and kneading them and then kneading them. The case of the body was shown.
[0020]
Similarly to FIG. 1, Table 1 also shows the case where zinc oxide is the mother particle and zinc iodide is the child particle. Melt kneading in which zinc oxide serving as an iodine acceptor has a particle diameter of 5 to 10 μm and zinc iodide having a particle diameter of 0.1 to 0.5 μm as a child particle 2 are melt-kneaded as described above. A composition 3 is prepared, and the polyamide powder 4 is mixed uniformly with a Hensyl mixer or the like, and melt-kneaded to prepare a polyamide composition. Twenty samples of the polymer thermosensitive material made of the prepared polyamide composition were prepared, and the range of the thermistor B constant value and the average value of the temperature difference after half-wave rectification energization are shown in Table 1.
[0021]
[Table 1]
Figure 0003799755
[0022]
According to Example 1 of the present invention, the thermistor B constant is 13,500 to 13,800 in the case of zinc iodide as the mother particle and zinc oxide as the child particle, zinc oxide as the mother particle, and zinc iodide as the child particle. Therefore, the range of the thermistor B constant is smaller than the case where zinc iodide and zinc oxide are sequentially blended as they are at 13,300 to 13,600 (K), and the temperature difference ΔTz is also reduced in terms of current stability. Stability is improved.
[0023]
This is because it forms a kneaded composition of zinc iodide, which is a conductivity-imparting agent, and zinc oxide, which is an iodine acceptor, and is blended with polyamide. Since there is no element, since it reacts with polyamide stably, control of the thermistor B constant value and stabilization of current-carrying characteristics are achieved.
[0024]
(Example 2)
In FIG. 3, in the method for producing a polymer thermosensitive material according to the present invention, when the mixing weight part ratio of the mother particle and the child particle of the melt-kneaded composition is changed, the characteristic evaluation sample manufactured in Example 1 is 100. The graph shows how much the temperature difference ΔTz changes after 1000 V half-wave rectification energization at 1000 ° C. for 1000 hours. At this time, the mother particles are zinc iodide powder and the child particles are zinc oxide powder.
[0025]
From this result, when temperature difference (DELTA) Tz is 10 (k) or less, it is a case where a mother particle compounding weight part has 1 to 3 times the child particle compounding weight part.
[0026]
This is the balance between the mother particles and the child particles that make up the kneaded composition. When the mother particles are zinc iodide and the child particles are zinc oxide, Due to the small amount of compounds, the characteristics of the polymer thermosensitive material become unstable.
[0027]
When the blended part by weight of the mother particles is more than 3 times, the amount of zinc oxide supplementing iodine is small, so that a polarization state is generated in the polymer thermosensitive body, and the conduction stability is impaired.
[0028]
When the mother particles are zinc oxide and the child particles are zinc iodide, the amount of zinc oxide to supplement free iodine is small because the amount of zinc iodide is large when the weight part of the mother particles is smaller than the weight part of the child particles. Therefore, the current-carrying stability is impaired. If the blended part by weight of the mother particles is more than 3 times the blended part by weight of the child particles, the amount of oxide increases, and the characteristics in the polymer thermosensitive body become unstable.
[0029]
Example 3
In FIG. 4, in the method for producing a polymer thermosensitive material according to the present invention, when the ratio between the base particle size and the child particle size of the melt-kneaded composition is changed, the characteristic evaluation sample manufactured in Example 1 is manufactured. A graph shows how the temperature difference ΔTz changes after 100 hours of half-wave rectification energization at 100 ° C. for 1000 hours. At this time, the mother particles are zinc iodide powder and the child particles are zinc oxide powder.
[0030]
From this result, when the temperature difference ΔTz is 10 (k) or less, the particle size of the mother particles is 50 to 200 times the particle size of the child particles.
When the mother particles are zinc iodide and the child particles are zinc oxide, when the particle size of the mother particles is less than 50 times the particle size of the child particles, it is too large to capture iodine separated from the zinc iodide. Since it is a zinc oxide powder, when melt-kneaded with polyamide, it does not disperse uniformly with the polyamide, thereby inhibiting the current-carrying stability of the sample. When the particle size of the mother particles is larger than 200 times the particle size of the child particles, it contains a large amount of iodine components that are separated from zinc iodide. The temperature difference is increased due to the occurrence of a polarization phenomenon in the composition.
[0031]
(Example 4)
In FIG. 5, in the method for producing a polymer thermosensitive material according to the present invention, the characteristic evaluation sample manufactured in Example 1 when the particle size of the child particles of the melt-kneaded composition is changed is 100 V at 100 ° C. The graph shows how the temperature difference ΔTz changes after the half-wave rectification energization is performed for 1000 hours.
[0032]
From this result, when the temperature difference ΔTz is 10 (k) or less, the particle size of the child particles forming the melt-kneaded composition is from 0.1 to 0.5 μm.
[0033]
This is because at the time of melt-kneading, the child particles are evenly arranged on the surface of the mother particles, and the elements can be supplemented so as to be effectively separated. If the child particle is smaller than 0.1 μm, the performance of capturing the iodine of the child particle itself is low. Conversely, if the child particle is larger than 0.5 μm, it cannot adhere to the surface around the mother particle, so iodine can be effectively captured. Can not.
[0034]
(Example 5)
FIG. 6 is a graph showing the change in the thermistor B constant of the polymer thermosensitive material sample when the blending amount of the melt-kneaded composition is changed to the nylon 12 powder in the method for producing the polymer thermosensitive material according to the present invention. Shown in Zinc iodide was used for the mother particles of the melt-kneaded composition, and zinc oxide was used for the child particles.
[0035]
As a result, the thermistor B constant is 13,000 (k) or more when the blended amount of the melt-kneaded composition is 1 to 30 parts by weight with respect to the nylon powder 12. When the amount is less than 1 part by weight, the amount of reaction with nylon 12 is small, so the thermistor B constant value is small, and when it is added more than 30 parts by weight, the amount of reaction is large and reacts uniformly with the nylon 12 powder. This is because the melt-kneaded composition remains in the polymer temperature sensitive body because it cannot be performed, and the temperature dependence of the impedance becomes small because the polymer temperature sensitive body itself is deteriorated. Even when zinc oxide is used for the mother particles of the melt-kneaded composition and zinc iodide is used for the child particles, the same results as in FIG. 6 are obtained.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, the following effects can be obtained.
[0037]
(1) Since the invention according to claim 1 is a method for producing a polymer thermosensitive body in which a melt kneaded composition in which either zinc iodide or zinc oxide becomes mother particles is prepared and blended with polyamide, Zinc oxide acts as an acceptor of iodine ions in the polyamide composition serving as the molecular temperature sensor, and the formation of metal iodide on the surface of the metal electrode can be prevented. Furthermore, the zinc oxide reacted with iodine functions as a continuous cycle for generating zinc iodide, and contributes to the control of the thermistor B constant of the polymer thermosensitive body, the improvement of the temperature detection sensitivity, and the half-wave conduction stability.
[0038]
(2) In the invention of claim 2, in addition to the effect of (1), the blending weight ratio of the mother particles and the child particles making the melt-kneaded composition is 1 to 3 times that of the child particles. A continuous cycle for producing an iodine compound works effectively to enhance the rectified wave conduction stability characteristics of the polymer thermosensitive body.
[0039]
(3) In the invention described in claim 3, in addition to the effect of (1), the mother particles for producing the melt-kneaded composition are 50 to 200 times the particle size of the child particles, so that the above-mentioned chain cycle functions. In addition, the stability of the half-wave rectification current that can stably contain an iodine compound in the polyamide composition is improved.
[0040]
(4) In the invention according to claim 4, in addition to the effect of (1), the particle size of the child particles of the melt-kneaded composition is 0.1 to 0.5 μm. Evenly arranged and supplemented with iodine for effective separation, the impedance temperature characteristic of the polymer thermosensitive body is stabilized for a long time.
[0041]
(5) In the invention of claim 5, since the melt-kneaded composition is blended in an amount of 1 to 30 parts by weight with respect to 100 parts by weight of polyamide in addition to the effect of (1), a high thermistor B constant is obtained. be able to. Further, it can be controlled within a certain range.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining one embodiment of a method for producing a polymer thermosensitive material of the present invention. FIG. 2 is a graph showing the relationship between the temperature and volume specific impedance of the polymer thermosensitive material of the present invention. 3 is a graph showing the current-carrying stability when the blending weight ratio of mother particles and child particles in the melt-kneaded composition in the present invention is changed. FIG. 4 shows the particle size of the child particles of the melt-kneaded composition in the present invention. FIG. 5 is a graph showing the current-carrying stability when the particle size of the mother particles is changed. FIG. 5 is a graph showing the current-carrying stability when the particle size of the child particles of the melt-kneaded composition in the present invention is changed. 6 is a graph showing the change in the constant value which is the thermistor B when the blending weight part of the melt-kneaded composition is changed with respect to the nylon powder in the present invention.
1 Mother particle 2 Child particle 3 Melt-kneaded composition 4 Polyamide

Claims (5)

よう化亜鉛と酸化亜鉛のいずれか一方を母粒子として、他方を子粒子として母粒子と子粒子を熔融混練した熔融混練組成物をポリアミドに配合する高分子感温体の製造方法。A method for producing a polymer thermosensitive material, wherein a melt kneaded composition obtained by melting and kneading mother particles and child particles with one of zinc iodide and zinc oxide as mother particles and the other as child particles is blended with polyamide. 母粒子と子粒子の熔融混練組成物は、母粒子が、子粒子に対して1から3倍の配合重量部である請求項1記載の高分子感温体の製造方法。The method for producing a polymer thermosensitive material according to claim 1, wherein the melt-kneaded composition of the mother particles and the child particles has a mother particle of 1 to 3 times by weight of the child particles. 熔融混練組成物を作製する母粒子は子粒子の粒径の50から200倍の粒径を有する請求項1記載の高分子感温体の製造方法。The method for producing a polymer thermosensitive material according to claim 1, wherein the mother particles for producing the melt-kneaded composition have a particle size 50 to 200 times the particle size of the child particles. 子粒子の粒径は、0.1から0.5μmとした請求項1記載の高分子感温体の製造方法。The method for producing a polymer thermosensitive material according to claim 1, wherein the particle size of the child particles is 0.1 to 0.5 µm. 母粒子と子粒子の熔融混練組成物がポリアミド100重量部に対して1から30重量部配合された請求項1記載の高分子感温体の製造方法。The method for producing a polymer thermosensitive material according to claim 1, wherein the melt-kneaded composition of mother particles and child particles is blended in an amount of 1 to 30 parts by weight with respect to 100 parts by weight of polyamide.
JP18202897A 1997-07-08 1997-07-08 Method for producing polymer thermosensitive body Expired - Fee Related JP3799755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18202897A JP3799755B2 (en) 1997-07-08 1997-07-08 Method for producing polymer thermosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18202897A JP3799755B2 (en) 1997-07-08 1997-07-08 Method for producing polymer thermosensitive body

Publications (2)

Publication Number Publication Date
JPH1129703A JPH1129703A (en) 1999-02-02
JP3799755B2 true JP3799755B2 (en) 2006-07-19

Family

ID=16111083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18202897A Expired - Fee Related JP3799755B2 (en) 1997-07-08 1997-07-08 Method for producing polymer thermosensitive body

Country Status (1)

Country Link
JP (1) JP3799755B2 (en)

Also Published As

Publication number Publication date
JPH1129703A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
KR100226038B1 (en) Temperature sensing polymer body and temperature sensing element made therefrom
JP3799755B2 (en) Method for producing polymer thermosensitive body
JP3588980B2 (en) Manufacturing method of polymer thermosensor
JPH115897A (en) Production of polymer temperature sensitizer
JPH11186005A (en) Manufacture of temperature-sensitive polymer material
JP3000426B2 (en) Polymer thermosensitive body and thermosensitive element using the same
JP3171078B2 (en) Polymer thermosensor and thermosensor using the same
JP2743834B2 (en) Polymer thermosensor and thermosensor using the same
JP2743832B2 (en) Polymer thermosensor and thermosensor using the same
JPS6161244B2 (en)
JP3000416B2 (en) Polymer thermosensitive body and thermosensitive element using the same
JPH0855707A (en) High molecular temperature-sensitive material, its manufacture, and heat-sensitive heater wire
JP2001214017A (en) Polymer temperature sensor and temperature sensing element produced by using the same
JP3171054B2 (en) Polymer thermosensor and thermosensor using the same
JP3171076B2 (en) Polymer thermosensor and thermosensor using the same
JPH0244125B2 (en) KOBUNSHIKANONTAI
JP3036403B2 (en) Polymer thermosensor, thermosensor using the same, and electric heater
JP3000425B2 (en) Polymer thermosensitive body and thermosensitive element using the same
JPH07142211A (en) Temperature-sensitive polymer material and temperature sensor
JP3077593B2 (en) Polymer thermosensitive body and thermosensitive element using the same
JPH0247083B2 (en) KOBUNSHIKANONTAI
JP2001247764A (en) High molecular thermo sensitive body and thermo sensitive element using the same
JPH0244127B2 (en) KOBUNSHIKANONTAI
JP2001183244A (en) Polymer temperature sensing body and temperature sensing element using the sensing body
JPH07142208A (en) Temperature-sensitive polymer material and temperature sensor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees