JPS625450B2 - - Google Patents

Info

Publication number
JPS625450B2
JPS625450B2 JP2116381A JP2116381A JPS625450B2 JP S625450 B2 JPS625450 B2 JP S625450B2 JP 2116381 A JP2116381 A JP 2116381A JP 2116381 A JP2116381 A JP 2116381A JP S625450 B2 JPS625450 B2 JP S625450B2
Authority
JP
Japan
Prior art keywords
prepreg
heat
epoxy resin
quinazolone
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2116381A
Other languages
Japanese (ja)
Other versions
JPS57135833A (en
Inventor
Hiroyuki Nakajima
Shohei Eto
Norimoto Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2116381A priority Critical patent/JPS57135833A/en
Publication of JPS57135833A publication Critical patent/JPS57135833A/en
Publication of JPS625450B2 publication Critical patent/JPS625450B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な耐熱性プリプレグの製法に関す
る。さらに詳しくは、電気機器用コイルの層間絶
縁またはスロツト、リードなどの絶縁に際し半硬
化状で可撓性のある、耐熱性にすぐれたプリプレ
グの製法に関する。 従来行なわれている半硬化状のプリプレグ絶縁
シートまたはプリプレグ絶縁テープを用いて電気
機器用コイルなどを絶縁する方法は、絶縁ワニス
の刷け塗りや含浸処理などの操作を必要としない
のでコスト面および製造時間の点からきわめて有
利な方法であり、それらのプリプレグの製造には
プリプレグ樹脂としての硬化物の諸特性にすぐれ
たエポキシ樹脂に三フツ化ホウ素アミン錯塩やジ
シアンジアミドなどの潜在性硬化剤を配合したエ
ポキシ樹脂組成物が広範に使用されている。また
プリプレグの基材としてはガラスクロスなどの無
機質繊維基材、テトロンクロスなどの有機質繊維
基材、熱収縮性フイルム類、紙、マイカシートな
どが使用されている。 しかしながら従来のエポキシ樹脂組成物を用い
てえられるプリプレグにおいては、耐熱性、耐水
性などの点で充分に満足しうるものではなく、と
くに高温域での電気的特性および機械的特性に劣
るという欠点を有し、かつプリプレグ製造時にお
いて加熱の必要があり、製造工程が非常に煩雑に
なつている。 本発明者らは叙上の欠点を克服するべく鋭意研
究を重ねた結果、ポリアミド繊維に高分子フイブ
リツドを1〜50%(重量%、以下同様)混合し水
に分散させて抄紙した不織布を加熱乾燥させた基
材(A)に、キナゾロン環含有ジカルボン酸化合物1
当量に対してエポキシ樹脂1.2〜10当量を反応さ
せてキナゾロン変性エポキシ樹脂(B)をえ、(B)の1
当量に対し不飽和一塩基酸(C)を0.1〜0.8当量反応
させることによりえられる樹脂組成物(D)を塗布ま
たは含浸したのち、該基材に光照射することによ
りBステージ化するときは耐熱性のすぐれたプリ
プレグがえられることを見出し、本発明を完成す
るにいたつた。 すなわち本発明によれば煩雑な加熱処理工程を
経ることなしに、単に短時間の光照射のみで容易
にプリプレグを製造することができ、かつ成形後
の特性において耐熱性がすぐれ、とくに高温域に
おける電気的特性、機械的特性にすぐれた成形物
がえられるというきわめて顕著な効果が奏され
る。 また本発明における耐熱性プリプレグは貯蔵寿
命が長く、プリプレグとしての性質を充分に具備
しうるものである。 本発明における耐熱性プリプレグに用いる耐熱
性樹脂(すなわちプリプレグ樹脂)はキナゾロン
環含有ジカルボン酸化合物1当量に対しエポキシ
樹脂1.2〜10当量を反応させてキナゾロン変性エ
ポキシ樹脂(B)をえ、(B)の1当量に対し不飽和一塩
基酸(C)を0.1〜0.8当量反応させることにより容易
にうることができる。 キナゾロン環含有ジカルボン酸化合物1当量に
対するエポキシ樹脂の量が1.2当量より少ないと
生成する樹脂の分子量が大きくなつて軟化温度が
上がることおよび溶解性が低下することにより作
業性が低下し、10当量より多いと耐熱性が不充分
となり、いずれも好ましくない。 また不飽和一塩基酸(C)の量がキナゾロン変性エ
ポキシ樹脂(B)の1当量に対して0.1当量より少な
いと生成したプリプレグの粘着性が高くなつて作
業性が低下し、0.8当量より多いとプリプレグ段
階で硬化が進みすぎてプリプレグ材としての融着
性が低下し、いずれも好ましくない。 本発明において用いるキナゾロン環含有ジカル
ボン酸化合物は一般式(): (式中、R1は炭素数1〜20個の脂肪族または芳香
族の2価の基、R2は炭素数1〜20個の脂肪族ま
たは芳香族の1価の基を表わす)で示される化合
物があげられる。 本発明において用いるエポキシ樹脂としては、
たとえばビスフエノールAジグリシジルエーテル
タイプのエピコート828、エピコート834(いずれ
もシエル化学社製)、DER331、DER332(いずれ
もダウケミカル社製)、ノボラツクタイプの
DEN431、DEN438(いずれもダウケミカル社
製)、脂肪族タイプのチツソノツクス221、289
(いずれもチツソ(株)製)などがあげられるが、こ
れらのみに限定されるものではない。 また本発明において用いる不飽和一塩基酸とし
ては、たとえばアクリル酸、メタクリル酸、ソル
ビン酸、ケイ皮酸などがあげられる。 さらにキナゾロン変性樹脂と不飽和一塩基酸と
の反応において第4級アンモニウム塩、第3級ア
ミンなどの触媒を用いることにより、反応をより
円滑に行なわせることができる。 また耐熱性樹脂組成物の合成反応中におけるゲ
ル化の防止および合成後の貯蔵安定性の改善を目
的とし、ハイドロキノン、パラベンゾキノン、ハ
イドロキノンモノメチルエーテル、フエノチアジ
ン、チオセミカルバジツト、アセトンチオカルバ
ゾン銅塩などを通常0.001〜1.0%の範囲で添加し
てもよい。 さらに耐熱性樹脂組成物に光増感剤を耐熱性樹
脂組成物100部(重量部、以下同様)に対して0.5
〜5部添加することによつて一層硬化を容易にす
ることができる。光増感剤の添加量が前記範囲を
はずれると硬化促進の適正な効果がえられず、好
ましくない。かかる光増感剤としては、たとえば
ベンゾインやベンゾインのメチルエーテル、ベン
ゾインのエチルエーテル、ベンゾインのイソプロ
ピルエーテルなどのベンゾインの誘導体のような
カルボニル化合物、アントラキノンやナフトキノ
ンなどのキノン系化合物、ジフエニルスルフイド
などの有機イオウ化合物、ベンゾインパーオキサ
イドなどの過酸化物、アゾビスイソブチロニトリ
ルなどのチツ素化合物、メチレンブルー、p―ト
ルエンスルホネートイオンなどの光還元性の染料
などがあげられる。 また本発明の製法においては、キナゾロン変性
エポキシ樹脂の1当量に対し不飽和一塩基酸0.1
〜0.8当量を反応させて一部光硬化可能な組成物
とし、光照射によりプリプレグをつくり、ついで
コイルなどに巻回したのち加熱プレスなどにより
完全硬化させるというものであり、プリプレグ製
造時に加熱の必要がなく短時間の光照射のみでプ
リプレグを与え、そのプリプレグは硬化後、耐熱
性とくに高温域での電気的物性、機械的特性にす
ぐれるものである。その際必要に応じて前記耐熱
性組成物にビニルモノマーを加えてもその効果を
減じないが、その量は20%以下が好適である。ビ
ニルモノマーの配合量が20%を超えるとプリプレ
グの耐熱性が低下し、好ましくない。 さらに本発明においてはエポキシ硬化触媒とし
て、たとえばトリクレジルボレート、コバルトア
セチルアセトネート、ジンクオクチネート、スタ
ニツクオクチネート、トリエタノールアミンチタ
ネートなどの金属塩、金属キレート化合物、
BF3、BCl3、PF5、AsF5、などのルイス酸とアミ
ンとの錯体、フエロセンなどの金属オレフイン化
合物などを必要に応じて混合して使用してもよ
い。 前記のごとく調整された耐熱性樹脂組成物(D)は
必要に応じてジオキサン、メチルエチルケトン、
N,N―ジメチルアセトアミド、N,N―ジメチ
ルホルムアミド、N―メチルピロリドンなどの有
機溶媒に溶解し、基材(A)に塗布または含浸され
る。 本発明の耐熱性プリプレグの基材としてはプリ
プレグの機械的強度が大きいこと、プリプレグ樹
脂となじみがよいこと、硬化後の熱的性質、電気
的性質、機械的性質などの諸特性にすぐれている
といつたすべてを満足しうるものであり、ポリア
ミド繊維を主体とし、それに高分子フイブリツド
を1〜50%混合し、水に分散させて抄紙した不織
布を加熱し乾燥させたものが使用される。 融着剤としての高分子フイブリツドとしては、
たとえば芳香族ポリアミド、ポリアクリロニトリ
ルなどの短繊維があげられる。 高分子フイブリツドの含有率が1%より少ない
ばあいは基材としての機械的強度に欠け、50%よ
り多いばあいは耐熱性樹脂組成物の含浸性がわる
くなり、その結果えられる硬化物の電気的特性、
機械的特性が低下し、いずれも好ましくない。 本発明において用いるポリアミド繊維として
は、イソフタル酸―m―フエニレンジアミン共重
合体、テレフタル酸―p―フエニレンジアミン共
重合体などがあげられる。 基材としてのポリアミド繊維に高分子フイブリ
ツドを1〜50%混合し、水に分散させて抄紙した
不織布の加熱乾燥条件としては50〜250℃の範囲
が好適であり、50℃よりも低いと乾燥不充分で未
乾燥の残留分が多くなり、250℃よりも高いと水
分の蒸発が激しすぎ不織布の構造が均一でなくな
り、いずれも好ましくない。 さらに前記耐熱性樹脂組成物を塗布または含浸
した基材の光プリプレグ化条件としては、常温で
0.1〜60分間の光照射時間が採用される。これに
より電気的特性、機械的特性および耐熱性のすぐ
れた耐熱性プリプレグがえられる。該耐熱性プリ
プレグはコイルなどの導体に巻回されたのち加熱
加圧することにより硬化物とされる。さらにえら
れる硬化物は耐熱性にすぐれ、とくに高温域での
電気的特性、機械的特性にすぐれ、高温長時間の
使用に耐えうるものである。 つぎに実施例をあげて本発明の耐熱性プリプレ
グの製法を説明する。 ここで、一般式()で示されるキナゾロン環
含有ジカルボン酸化合物のうち実施例で使用する
化合物の略称と構造式をつぎに示す。 実施例 1 m―フエニレンジアミンとテレフタル酸からな
る芳香族ポリアミドポリマー繊維100部に対し、
m―フエニレンジアミンとイソフタル酸からなる
高分子フイブリツド50部(約33重量%)を混合
し、水に分散させて抄紙した不織布を180℃で1
時間加熱乾燥し基材をえた。 キナゾロン環含有ジカルボン酸化合物QC―1
の28.6g(0.1当量)とエポキシ樹脂エピコート
828(シエル化学社製)の95g(0.5当量)とを混
合し、ベンジルトリエチルアンモニウムクロライ
ド0.02gを触媒とし、150℃で1時間反応させてエ
ポキシ当量310のキナゾロン変性エポキシ樹脂を
えた。 このキナゾロン変性エポキシ樹脂620g(0.2当
量)に対し、メタクリル酸86g(1.0当量)を加
え、120℃で2時間反応させた。生成した樹脂
100gに光増感剤としてのベンゾインエチルエー
テル0.8gおよびエポキシ樹脂の硬化剤としての三
フツ化ホウ素モノエチルアミン錯体2.0gを加え、
耐熱性樹脂組成物とした。 えられた耐熱性樹脂組成物を前記基材に塗布
し、2.5KWの水銀灯に約5分間暴露させプリプ
レグとした。えられたプリプレグの機械的特性を
把握するために25mm×25mmに切り出したプリプレ
グシート4枚を150℃で15時間硬化させたものに
関する特性を第1表に示す。 接着強度は温度20℃においてインストロン引張
試験機を用いて初期の値と220℃で20日間熱処理
した劣化後の値とを測定した。 さらにプリプレグシートを2mm×5mm×500mm
のホルマール平角銅線10本を1束としたコイル導
体上にラツパー巻きに4回巻回したのち110℃で
3時間、180℃で10時間硬化し絶縁コイルをえ
て、その電気特性(誘電正接(tanδ)温度特
性、絶縁破壊電圧)を測定した。 なお誘電正接温度特性は、えられた絶縁コイル
を温度20℃および200℃において測定電圧0.5KV
で高圧シエーリングブリツジ法((株)横河電機製作
所製のシエーリングブリツジを使用)にて測定し
た。 絶縁破壊電圧はえられた絶縁コイルを220℃で
20日間熱処理した絶縁コイル(劣化後)を温度25
℃にて1KV/secの一定昇圧速度における油中で
耐電圧試験装置(愛国電機(株)製)を用いて測定し
た。 実施例 2 m―フエニレンジアミンとテレフタル酸からな
る芳香族ポリアミドポリマー繊維100部に対し、
m―フエニレンジアミンとイソフタル酸からなる
高分子フイブリツド10部(約9重量%)を混合
し、水に分散させて抄紙した不織布を150℃で30
分間加熱乾燥し基材をえた。 該基材に実施例1と同様にしてえた耐熱性樹脂
組成物を塗布し、太陽光に20分間露光しプリプレ
グを製造した。えられたプリプレグに関する特性
を第1表に示す。 実施例 3 キナゾロン環含有ジカルボン酸化合物QC―2
の28.6g(0.1当量)とエポキシ樹脂エピコート
828(シエル化学社製)の57.0g(0.3当量)とを
混合し、ベンジルトリエチルアンモニウムブロマ
イド0.05gを触媒とし、150℃で1時間反応させ、
エポキシ当量430のキナゾロン変性エポキシ樹脂
をえた。 このキナゾロン変性エポキシ樹脂860g(2.0当
量)に対し、メタクリル酸43g(0.5当量)を加
え、120℃で2時間反応させた。生成した樹脂
100gに光増感材としてのベンゾインエチルエー
テル0.5g、エポキシ樹脂の硬化剤としてトリクレ
ジルボレート3.0gおよびトリエタノールアミンチ
タネート3.0gを加え、耐熱性樹脂組成物とした。
該耐熱性樹脂組成物を実施例2と同様にしてえた
基材に塗布し、2.5KWの水銀灯に10分間暴露し
プリプレグとした。えられたプリプレグに関する
特性を第1表に示す。
The present invention relates to a novel method for producing heat-resistant prepreg. More specifically, the present invention relates to a method for producing a prepreg that is semi-hardened, flexible, and has excellent heat resistance for interlayer insulation of coils for electrical equipment or insulation of slots, leads, etc. The conventional method of insulating coils for electrical equipment using semi-cured prepreg insulation sheets or prepreg insulation tapes does not require operations such as brushing or impregnating with insulation varnish, so it is cost-effective. This is an extremely advantageous method in terms of production time, and for producing these prepregs, a latent curing agent such as boron trifluoride amine complex salt or dicyandiamide is blended with an epoxy resin that has excellent properties for the cured product as a prepreg resin. Epoxy resin compositions are widely used. In addition, as base materials for prepreg, inorganic fiber base materials such as glass cloth, organic fiber base materials such as Tetron cloth, heat-shrinkable films, paper, mica sheets, etc. are used. However, prepregs obtained using conventional epoxy resin compositions are not fully satisfactory in terms of heat resistance, water resistance, etc., and have the disadvantage of poor electrical and mechanical properties, especially in high temperature ranges. In addition, heating is required during prepreg production, making the production process extremely complicated. As a result of intensive research to overcome the above-mentioned drawbacks, the inventors of the present invention have found that a nonwoven fabric made by mixing 1 to 50% (by weight) of polymeric fibrils with polyamide fibers and dispersing it in water to make paper is heated. Quinazolone ring-containing dicarboxylic acid compound 1 is added to the dried base material (A).
A quinazolone-modified epoxy resin (B) is obtained by reacting 1.2 to 10 equivalents of epoxy resin with respect to the equivalent amount, and 1 of (B) is obtained.
When applying or impregnating a resin composition (D) obtained by reacting 0.1 to 0.8 equivalents of unsaturated monobasic acid (C) with respect to the equivalent amount, the base material is B-staged by irradiation with light. We have discovered that a prepreg with excellent heat resistance can be obtained, and have completed the present invention. In other words, according to the present invention, prepregs can be easily produced by simply irradiating light for a short time without going through a complicated heat treatment process, and the properties after molding are excellent in heat resistance, especially in the high temperature range. A very remarkable effect is achieved in that a molded product with excellent electrical and mechanical properties can be obtained. Furthermore, the heat-resistant prepreg according to the present invention has a long shelf life and can sufficiently possess the properties of a prepreg. The heat-resistant resin (i.e., prepreg resin) used in the heat-resistant prepreg in the present invention is prepared by reacting 1.2 to 10 equivalents of an epoxy resin with 1 equivalent of a quinazolone ring-containing dicarboxylic acid compound to obtain a quinazolone-modified epoxy resin (B). It can be easily obtained by reacting 1 equivalent of unsaturated monobasic acid (C) with 0.1 to 0.8 equivalents of unsaturated monobasic acid (C). If the amount of epoxy resin per equivalent of the quinazolone ring-containing dicarboxylic acid compound is less than 1.2 equivalents, the molecular weight of the resin produced will increase, the softening temperature will rise, and the solubility will decrease, resulting in decreased workability. If the amount is too large, the heat resistance will be insufficient, which is not preferable. Furthermore, if the amount of unsaturated monobasic acid (C) is less than 0.1 equivalent per equivalent of quinazolone-modified epoxy resin (B), the adhesiveness of the produced prepreg will increase and workability will decrease; Curing progresses too much in the prepreg stage and the fusion properties of the prepreg material decrease, both of which are undesirable. The quinazolone ring-containing dicarboxylic acid compound used in the present invention has the general formula (): (In the formula, R 1 represents an aliphatic or aromatic divalent group having 1 to 20 carbon atoms, and R 2 represents an aliphatic or aromatic monovalent group having 1 to 20 carbon atoms.) Examples include compounds that The epoxy resin used in the present invention includes:
For example, bisphenol A diglycidyl ether type Epicote 828, Epicote 834 (all manufactured by Schiel Chemical Co., Ltd.), DER331, DER332 (all manufactured by Dow Chemical Company), and Novolac type.
DEN431, DEN438 (both manufactured by Dow Chemical Company), aliphatic type Chitsonox 221, 289
(all manufactured by Chitsuso Co., Ltd.), but are not limited to these. Examples of the unsaturated monobasic acids used in the present invention include acrylic acid, methacrylic acid, sorbic acid, and cinnamic acid. Furthermore, by using a catalyst such as a quaternary ammonium salt or a tertiary amine in the reaction between the quinazolone-modified resin and the unsaturated monobasic acid, the reaction can be carried out more smoothly. In addition, for the purpose of preventing gelation during the synthesis reaction of heat-resistant resin compositions and improving the storage stability after synthesis, hydroquinone, parabenzoquinone, hydroquinone monomethyl ether, phenothiazine, thiosemicarbazate, acetone thiocarbazone copper Salt or the like may be added, usually in a range of 0.001 to 1.0%. Furthermore, a photosensitizer is added to the heat-resistant resin composition at a rate of 0.5 parts (parts by weight, the same applies hereinafter) per 100 parts (parts by weight, the same applies hereinafter) of the heat-resistant resin composition.
By adding ~5 parts, curing can be further facilitated. If the amount of photosensitizer added is outside the above range, an appropriate effect of accelerating curing cannot be obtained, which is not preferable. Examples of such photosensitizers include carbonyl compounds such as benzoin and benzoin derivatives such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, quinone compounds such as anthraquinone and naphthoquinone, and diphenyl sulfide. Examples include organic sulfur compounds such as, peroxides such as benzoin peroxide, nitrogen compounds such as azobisisobutyronitrile, and photoreducible dyes such as methylene blue and p-toluenesulfonate ion. In addition, in the production method of the present invention, 0.1 unsaturated monobasic acid is used per equivalent of quinazolone-modified epoxy resin.
~0.8 equivalents are reacted to form a partially photocurable composition, which is then irradiated with light to create a prepreg, which is then wound into a coil or the like and then completely cured using a heated press, etc., which eliminates the need for heating during prepreg production. After curing, the prepreg has excellent heat resistance, especially electrical properties and mechanical properties at high temperatures. At that time, if necessary, a vinyl monomer may be added to the heat-resistant composition without reducing its effect, but the amount thereof is preferably 20% or less. If the blending amount of the vinyl monomer exceeds 20%, the heat resistance of the prepreg will decrease, which is not preferable. Furthermore, in the present invention, as an epoxy curing catalyst, for example, metal salts such as tricresyl borate, cobalt acetylacetonate, zinc octinate, stannic octinate, triethanolamine titanate, metal chelate compounds,
Complexes of Lewis acids and amines such as BF 3 , BCl 3 , PF 5 , AsF 5 , metal olefin compounds such as ferrocene, etc. may be mixed and used as necessary. The heat-resistant resin composition (D) prepared as described above may be mixed with dioxane, methyl ethyl ketone,
It is dissolved in an organic solvent such as N,N-dimethylacetamide, N,N-dimethylformamide, or N-methylpyrrolidone, and applied or impregnated onto the substrate (A). As a base material for the heat-resistant prepreg of the present invention, the prepreg has high mechanical strength, good compatibility with the prepreg resin, and excellent properties such as thermal properties, electrical properties, and mechanical properties after curing. It satisfies all of the above requirements, and uses a nonwoven fabric that is mainly made of polyamide fibers, mixed with 1 to 50% of polymer fibrils, dispersed in water, made into paper, heated and dried. As a polymer fibrid as a fusion agent,
Examples include short fibers such as aromatic polyamide and polyacrylonitrile. If the content of polymer fibrils is less than 1%, it will lack mechanical strength as a base material, and if it is more than 50%, the impregnating properties of the heat-resistant resin composition will deteriorate, resulting in a cured product. electrical characteristics,
Mechanical properties deteriorate, both of which are unfavorable. Examples of the polyamide fibers used in the present invention include isophthalic acid-m-phenylenediamine copolymer and terephthalic acid-p-phenylenediamine copolymer. A temperature range of 50 to 250°C is suitable for heating and drying the nonwoven fabric, which is made by mixing 1 to 50% of polymeric fibrils with polyamide fiber as a base material and dispersing it in water to make paper. If the drying temperature is insufficient, there will be a large amount of undried residue, and if the temperature is higher than 250°C, water evaporation will be too rapid and the structure of the nonwoven fabric will not be uniform, both of which are undesirable. Furthermore, the conditions for optical prepreg formation of the base material coated or impregnated with the heat-resistant resin composition include room temperature.
Light irradiation times of 0.1 to 60 minutes are employed. As a result, a heat-resistant prepreg with excellent electrical properties, mechanical properties, and heat resistance can be obtained. The heat-resistant prepreg is wound around a conductor such as a coil and then heated and pressurized to form a cured product. Furthermore, the obtained cured product has excellent heat resistance, particularly excellent electrical and mechanical properties in a high temperature range, and can withstand long-term use at high temperatures. Next, the method for producing the heat-resistant prepreg of the present invention will be explained with reference to Examples. Here, among the quinazolone ring-containing dicarboxylic acid compounds represented by the general formula (), the abbreviations and structural formulas of the compounds used in the examples are shown below. Example 1 For 100 parts of aromatic polyamide polymer fiber consisting of m-phenylenediamine and terephthalic acid,
A nonwoven fabric made by mixing 50 parts (approximately 33% by weight) of a polymeric fibril consisting of m-phenylenediamine and isophthalic acid and dispersing it in water was heated to 180°C.
A base material was obtained by heating and drying for a period of time. Quinazolone ring-containing dicarboxylic acid compound QC-1
28.6g (0.1 equivalent) of epoxy resin Epicoat
828 (manufactured by Ciel Chemical Co., Ltd.) and reacted with 0.02 g of benzyltriethylammonium chloride as a catalyst at 150° C. for 1 hour to obtain a quinazolone-modified epoxy resin with an epoxy equivalent of 310. 86 g (1.0 equivalent) of methacrylic acid was added to 620 g (0.2 equivalent) of this quinazolone-modified epoxy resin, and the mixture was reacted at 120° C. for 2 hours. Resin produced
Add 0.8 g of benzoin ethyl ether as a photosensitizer and 2.0 g of boron trifluoride monoethylamine complex as a curing agent for epoxy resin to 100 g,
A heat-resistant resin composition was prepared. The obtained heat-resistant resin composition was applied to the base material and exposed to a 2.5 KW mercury lamp for about 5 minutes to obtain a prepreg. In order to understand the mechanical properties of the obtained prepreg, Table 1 shows the properties of four prepreg sheets cut out to 25 mm x 25 mm and cured at 150°C for 15 hours. The adhesive strength was measured using an Instron tensile tester at a temperature of 20°C, using an initial value and a value after deterioration after heat treatment at 220°C for 20 days. Furthermore, prepare a prepreg sheet of 2mm x 5mm x 500mm.
A bundle of 10 formal rectangular copper wires was wrapped four times in a wrapper around a coil conductor, and then cured at 110℃ for 3 hours and 180℃ for 10 hours to obtain an insulated coil. The temperature characteristics (tanδ) and dielectric breakdown voltage) were measured. The dielectric loss tangent temperature characteristics are measured at a voltage of 0.5KV at temperatures of 20℃ and 200℃ for the obtained insulated coil.
It was measured by the high-pressure Schering bridge method (using a Schering bridge manufactured by Yokogawa Electric Corporation). The breakdown voltage of the insulated coil is 220℃.
An insulated coil (after deterioration) that has been heat treated for 20 days is heated to a temperature of 25
It was measured in oil at a constant pressure increase rate of 1 KV/sec at ℃ using a withstand voltage tester (manufactured by Aikoku Denki Co., Ltd.). Example 2 For 100 parts of aromatic polyamide polymer fiber consisting of m-phenylenediamine and terephthalic acid,
A nonwoven fabric made by mixing 10 parts (approximately 9% by weight) of a polymeric fibril consisting of m-phenylenediamine and isophthalic acid and dispersing it in water was heated at 150℃ for 30 minutes.
The substrate was dried by heating for a minute. A heat-resistant resin composition obtained in the same manner as in Example 1 was applied to the base material and exposed to sunlight for 20 minutes to produce a prepreg. Table 1 shows the properties of the obtained prepreg. Example 3 Quinazolone ring-containing dicarboxylic acid compound QC-2
28.6g (0.1 equivalent) of epoxy resin Epicoat
828 (manufactured by Ciel Chemical Co., Ltd.) and 57.0 g (0.3 equivalents) of the mixture were mixed, and reacted at 150°C for 1 hour using 0.05 g of benzyltriethylammonium bromide as a catalyst.
A quinazolone-modified epoxy resin with an epoxy equivalent of 430 was obtained. 43 g (0.5 equivalent) of methacrylic acid was added to 860 g (2.0 equivalent) of this quinazolone-modified epoxy resin, and the mixture was reacted at 120° C. for 2 hours. Resin produced
0.5 g of benzoin ethyl ether as a photosensitizer, 3.0 g of tricresyl borate and 3.0 g of triethanolamine titanate as curing agents for epoxy resin were added to 100 g to prepare a heat-resistant resin composition.
The heat-resistant resin composition was applied to a base material obtained in the same manner as in Example 2, and exposed to a 2.5 KW mercury lamp for 10 minutes to obtain a prepreg. Table 1 shows the properties of the obtained prepreg.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアミド繊維に高分子フイブリツドを1〜
50重量%混合し水に分散させて抄紙した不織布を
加熱乾燥させた基材(A)に、キナゾロン環含有ジカ
ルボン酸化合物1当量に対してエポキシ樹脂1.2
〜10当量を反応させてキナゾロン変性エポキシ樹
脂(B)をえ、(B)の1当量に対し不飽和一塩基酸(C)を
0.1〜0.8当量反応させることによりえられる樹脂
組成物(D)を塗布または含浸したのち、該基材に光
照射することによりBステージ化することを特徴
とする耐熱性プリプレグの製法。
1 Polymer fibrid to polyamide fiber 1~
The base material (A) is made by heating and drying a nonwoven fabric made by mixing 50% by weight of the mixture and dispersing it in water, and then adding 1.2% of the epoxy resin to 1 equivalent of the quinazolone ring-containing dicarboxylic acid compound.
~10 equivalents were reacted to obtain quinazolone-modified epoxy resin (B), and unsaturated monobasic acid (C) was added to 1 equivalent of (B).
A method for producing a heat-resistant prepreg, which comprises coating or impregnating a resin composition (D) obtained by reacting 0.1 to 0.8 equivalents, and then B-staged by irradiating the base material with light.
JP2116381A 1981-02-13 1981-02-13 Production of heat-resistant prepreg Granted JPS57135833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116381A JPS57135833A (en) 1981-02-13 1981-02-13 Production of heat-resistant prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116381A JPS57135833A (en) 1981-02-13 1981-02-13 Production of heat-resistant prepreg

Publications (2)

Publication Number Publication Date
JPS57135833A JPS57135833A (en) 1982-08-21
JPS625450B2 true JPS625450B2 (en) 1987-02-05

Family

ID=12047239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116381A Granted JPS57135833A (en) 1981-02-13 1981-02-13 Production of heat-resistant prepreg

Country Status (1)

Country Link
JP (1) JPS57135833A (en)

Also Published As

Publication number Publication date
JPS57135833A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
US3983289A (en) Electrically insulating prepreg
US4085250A (en) Resin rich epoxide-mica flexible high voltage insulation
EP0009645B1 (en) 5-(2,5-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylicanhydride, its use as curing agent for epoxy resins and as raw material for the production of polyimides, epoxy resins containing it, and their use in the preparation of various articles, and powder coating compositions
US4127553A (en) Electrical insulating resin composition comprising a polyester resin or ester-imide resin
US4144210A (en) Water-solubilized resin composition
TW319719B (en)
US3924022A (en) Method of applying an organic coating onto an inorganic coated steel sheet for a magnetic laminate application
JPS625450B2 (en)
JPS5936651B2 (en) thermosetting resin composition
JPS6351324B2 (en)
JPS6234252B2 (en)
JP2874501B2 (en) Electrically insulated wire loop, method for manufacturing electrically insulated wire loop, rotating electric machine, and insulating sheet
JPH06233486A (en) Insulated electric coil, rotating electric machine and their manufacture
US4026872A (en) Epoxy resin compositions
JP2907351B2 (en) Resin composition and coil of turbine generator insulated by the composition
US2909495A (en) Carboxyl rich alkyd resin-ethoxyline resin compositions and process for their preparation
JPS592445B2 (en) Manufacturing method of heat-resistant resin
JPS625453B2 (en)
JPS61258654A (en) Manufacture of insulating coil
JPS625451B2 (en)
JPS6331501B2 (en)
JPH0696634B2 (en) Process for producing unsaturated copolymerizable linear polyesters.
JPS6030336B2 (en) Manufacturing method of curable, heat-resistant polyester resin
JPS5841290B2 (en) Curable resin composition
JPS6192141A (en) Preparation of prepreg electric machine winding and electric machine winding utilizing the same