JPS6351324B2 - - Google Patents

Info

Publication number
JPS6351324B2
JPS6351324B2 JP3180281A JP3180281A JPS6351324B2 JP S6351324 B2 JPS6351324 B2 JP S6351324B2 JP 3180281 A JP3180281 A JP 3180281A JP 3180281 A JP3180281 A JP 3180281A JP S6351324 B2 JPS6351324 B2 JP S6351324B2
Authority
JP
Japan
Prior art keywords
prepreg
equivalent
heat
epoxy resin
imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3180281A
Other languages
Japanese (ja)
Other versions
JPS57145218A (en
Inventor
Hiroyuki Nakajima
Shohei Eto
Norimoto Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3180281A priority Critical patent/JPS57145218A/en
Publication of JPS57145218A publication Critical patent/JPS57145218A/en
Publication of JPS6351324B2 publication Critical patent/JPS6351324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な耐熱性プリプレグの製法に関す
る。さらに詳しくは、電気機器用コイルの層間絶
縁またはスロツト、リードなどの絶縁に際し半硬
化状で可撓性のある、耐熱性にすぐれたプリプレ
グの製法に関する。 従来行なわれている半硬化状のプリプレグ絶縁
シートまたはプリプレグ絶縁テープを用いて電気
機器用コイルなどを絶縁する方法は、絶縁ワニス
の刷け塗りや含浸処理などの操作を必要としない
のでコイル面および製造時間の点からきわめて有
利な方法であり、それらのプリプレグの製造には
プリプレグ樹脂としての硬化物の諸特性にすぐれ
たエポキシ樹脂に三フツ化ホウ素アミン錯塩やジ
シアンジアミドなどの潜在性硬化剤を配合したエ
ポキシ樹脂組成物が広範に使用されている。また
プリプレグの基材としてはガラスクロスなどの無
機質繊維基材、テトロンクロスなどの有機質繊維
基材、熱収縮性フイルム類、紙、マイカシートな
どが使用されている。 しかしながら従来のエポキシ樹脂組成物を用い
てえられるプリプレグにおいては、耐熱性、耐水
性などの点で充分に満足しうるものではなく、と
くに高温域での電気的特性および機械的特性に劣
るという欠点を有し、かつ、プリプレグ製造時に
おいて加熱の必要があり、製造工程が非常に煩雑
になつている。 本発明者らは叙上の欠点を克服するべく鋭意研
究を重ねた結果、ポリアミド繊維に高分子フイブ
リツドを1〜50%(重量%、以下同様)混合し水
に分散させて抄紙した不織布を加熱乾燥させた基
材(A)に、イミド環含有ジカルボン酸化合物1当量
に対してエポキシ樹脂1.2〜10当量を反応させて
イミド変性エポキシ樹脂(B)をえ、(B)の1当量に対
し不飽和一塩基酸(C)を0.1〜0.8当量反応させるこ
とによりえられる樹脂組成物(D)を塗布または含浸
したのち、該基材に光照射することによりBステ
ージ化するときは耐熱性のすぐれたプリプレグが
えられることを見出し、本発明を完成するにいた
つた。 すなわち本発明によれば煩雑な加熱処理工程を
経ることなしに、単に短時間の光照射のみで容易
にプリプレグを製造することができ、かつ成形後
の特性において耐熱性がすぐれ、とくに高温域に
おける電気的特性、機械的特性にすぐれた成形物
がえられるというきわめて顕著な効果が奏され
る。 また本発明における耐熱性プリプレグは貯蔵寿
命が長く、プリプレグとしての性質を充分に具備
しうるものである。 本発明における耐熱性プリプレグに用いる耐熱
性樹脂(すなわちプリプレグ樹脂)はイミド環含
有ジカルボン酸化合物1当量に対しエポキシ樹脂
1.2〜10当量を反応させてイミド変性エポキシ樹
脂(B)をえ、(B)の1当量に対し不飽和一塩基酸(C)を
0.1〜0.8当量反応させることにより容易にうるこ
とができる。 イミド環含有ジカルボン酸化合物1当量に対す
るエポキシ樹脂の量が1.2当量より少ないと分子
量が大きくなりすぎて溶解性の低下による作業性
低下をきたし、10当量より多いと充分な耐熱性が
えられず、いずれも好ましくない。 また不飽和一塩基酸(C)の量がイミド変性エポキ
シ樹脂(B)の1当量に対して0.1当量より少ないと
光照射によるプリプレグ化において硬化が充分で
なく粘着性が残存し、0.8当量より多いと光照射
によるプリプレグ化において硬化が進行しすぎ、
融着性が低下し、いずれも好ましくない。 本発明に用いることのできるイミド環含有ジカ
ルボン酸化合物としては一般式()、()、
()および(): (式中、R1は炭素数1〜24個の脂肪族または芳
香族ジアミノ残基、R2は炭素数1〜20個の脂肪
族または芳香族アミノカルボン酸残基、R3は炭
素数1〜10個の脂肪族または芳香族テトラカルボ
ン酸残基、R4は脂肪族ジカルボン酸残基を表わ
す)で示される化合物があげられる。 本発明において用いるエポキシ樹脂としては、
たとえばビスフエノールAジグリシジルエーテル
タイプのエピコート828、エピコート834(いずれ
もシエル化学社製)、DER331、DER332、(いず
れもダウケミカル社製)、ノボラツクタイプの
DEN431、DEN438(いずれもダウケミカル社
製)、脂肪族タイプのチツソノツクス221、289(い
ずれもチツソ(株)製)などがあげられるが、これら
のみに限定されるものではない。 また本発明において用いる不飽和一塩基酸とし
ては、たとえばアクリル酸、メタクリル酸、ソル
ビン酸、ケイ皮酸などがあげられる。 さらにイミド変性樹脂と不飽和一塩基酸との反
応において第4級アンモニウム塩、第3級アミン
などの触媒を用いることにより、反応をより円滑
に行なわせることができる。 また耐熱性樹脂組成物の合成反応中におけるゲ
ル化の防止および合成後の貯蔵安定性の改善を目
的とし、ハイドロキノン、パラベンゾキノン、ハ
イドロキノンモノメチルエーテル、フエノチアジ
ン、チオセミカルバジツド、アセトンチオカルバ
ゾン銅塩などを通常0.001〜1.0%の範囲で添加し
てもよい。 さらに耐熱性樹脂組成物に光増感剤を耐熱性樹
脂組成物100部(重量部、以下同様)に対して0.5
〜5部添加することによつて一層硬化を容易にす
ることができる。光増感剤の添加量が前記範囲を
はずれると硬化促進の適正な効果がえられず、好
ましくない。かかる光増感剤としては、たとえば
ベンゾインやベンゾインのメチルエーテル、ベン
ゾインのエチルエーテル、ベンゾインのイソプロ
ピルエーテルなどのベンゾインの誘導体のような
カルボニル化合物、アントラキノンやナフトキノ
ンなどのキノン系化合物、ジフエニルスルフイド
などの有機イオウ化合物、ベンゾインパーオキサ
イドなどの過酸化物、アゾビスイソブチロニトリ
ルなどのチツ素化合物、メチレンブルー、p−ト
ルエンスルホネートイオンなどの光還元性の染料
などがあげられる。 また本発明の製法においては、イミド変性エポ
キシ樹脂の1当量に対し不飽和一塩基酸0.1〜0.8
当量を反応させて一部光硬化可能な組成物とし、
光照射によりプリプレグをつくり、ついでコイル
などに巻回したのち加熱プレスなどにより完全硬
化させるというものであり、プリプレグ製造時に
加熱の必要がなく短時間の光照射のみでプリプレ
グを与え、そのプリプレグは硬化後、耐熱性とく
に高温域での電気的特性、機械的特性にすぐれる
ものである。その際必要に応じて前記耐熱性組成
物に、ビニルモノマーを加えてもその効果を減じ
ないが、その量は20%以下が好適である。ビニル
モノマーの配合量が20%を超えるとプリプレグの
耐熱性が低下し、好ましくない。 さらに本発明においてはエポキシ硬化触媒とし
て、たとえばトリクレジルボレート、コバルトア
セチルアセトネート、ジンクオクチネート、スタ
ニツクオクチネート、トリエタノールアミンチタ
ネートなどの金属塩、金属キレート化合物、
BF3、BCl3、PF5、AsF5などのルイス酸とアミ
ンとの錯体、フエロセンなどの金属オレフイン化
合物などを必要に応じて混合して使用してもよ
い。 前記のごとく調製された耐熱性樹脂組成物(D)は
必要に応じてジオキサン、メチルエチルケトン、
N,N−ジメチルアセトアミド、N,N−ジメチ
ルホルムアミド、N−メチルピロリドンなどの有
機溶媒に溶解し、基材(A)に塗布または含浸され
る。 本発明の耐熱性プリプレグの基材としてはプリ
プレグの機械的強度が大きいこと、プリプレグ樹
脂となじみがよいこと、硬化後の熱的性質、電気
的性質、機械的性質などの諸特性にすぐれている
といつたすべてを満足しうるものであり、ポリア
ミド繊維を主体とし、それに高分子フイブリツド
を1〜50%混合し、水に分散させて抄紙した不織
布を加熱し乾燥させたものが使用される。 融着剤としての高分子フイブリツドとしては、
たとえば芳香族ポリアミド、ポリアクリロニトリ
ルなどの短繊維があげられる。 高分子フイブリツドの含有率が1%より少ない
ばあいは基材としての機械的強度に欠け、50%よ
り多いばあいは耐熱性樹脂組成物の含浸性がわる
くなり、その結果えられる硬化物の電気的特性、
機械的特性が低下し、いずれも好ましくない。 本発明において用いるポリアミド繊維として
は、イソフタル酸−m−フエニレンジアミン共重
合体、テレフタル酸−p−フエニレンジアミン共
重合体などがあげられる。 基材としてのポリアミド繊維に高分子フイブリ
ツドを1〜50%混合し、水に分散させて抄紙した
不織布の加熱乾燥条件としては50〜250℃の範囲
が好適であり、50℃よりも低いと水分の乾燥が不
充分となり、250℃よりも高いと水分の蒸発速度
が速すぎ不織布の組織の不均一化を招き、いずれ
も好ましくない。 さらに前記耐熱性樹脂組成物を塗布または含浸
した基材の光プリプレグ化条件としては、常温で
0.1〜60分間の光照射時間が採用される。これに
より電気的特性、機械的特性および耐熱性のすぐ
れた耐熱性プリプレグがえられる。該耐熱性プリ
プレグはコイルなどの導体に巻回されたのち加熱
加圧することにより硬化物とされる。さらにえら
れる硬化物は耐熱性にすぐれ、とくに高温域での
電気的特性、機械的特性にすぐれ、高温長時間の
使用に耐えうるものである。 つぎに実施例をあげて本発明の耐熱性プリプレ
グの製法を説明する。 ここで、前記一般式()〜()で示される
イミド環含有ジカルボン酸化合物のうち実施例で
使用する一般式()および()の具体的化合
物の略称と構造式をつぎに示す 実施例 1 m−フエニレンジアミンとテレフタル酸からな
る芳香族ポリアミドポリマー繊維100部に対し、
m−フエニレンジアミンとイソフタル酸からなる
高分子フイブリツド50部(約33重量%)を混合
し、水に分散させて抄紙した不織布を180℃で1
時間加熱乾燥し基材をえた。 イミド環含有ジカルボン酸化合物IC−1の27.3
g(0.1当量)とビスフエノールA型エポキシ樹
脂エピコート828(シエル化学社製)の95g(0.5
当量)とを混合し、ベンジルトリエチルアンモニ
ウムクロライド0.01gを触媒とし、150℃で1時
間反応させてエポキシ当量300のイミド変性エポ
キシ樹脂をえた。 このイミド変性エポキシ樹脂600g(2.0当量)
に対し、メタクリル酸86g(1.0当量)加え、120
℃で2時間反応させた。生成した樹脂100gに光
増感剤としてのベンゾインエチルエーテル0.8g
およびエポキシ樹脂の硬化剤としての三フツ化ホ
ウ素モノエチルアミン錯体2.0gを加え、耐熱性
樹脂組成物とした。 えられた耐熱性樹脂組成物を前記基材に塗布
し、2.5KWの水銀灯に約5分間暴露させプリプ
レグとした。えられたプリプレグの機械的特性を
把握するために25mm×25mmに切り出したプリプレ
グシート4枚を150℃で15時間硬化させたものに
関する特性を第1表に示す。 接着強度は温度20℃においてインストロン引張
試験機を用いて初期の値と220℃で20日間熱処理
した劣化後の値とを測定した。 さらにプリプレグシートを2mm×5mm×500mm
のホルマール平角銅線10本を1束としたコイル導
体上にラツパー巻きに4回巻回したのち110℃で
3時間、180℃で10時間硬化し絶縁コイルをえて、
その電気的特性(誘電正接(tanδ)温度特性、絶
縁破壊電圧)を測定した。 なお誘電正接温度特性は、えられた絶縁コイル
を温度20℃および200℃において測定電圧0.5KV
で高圧シエーリングブリツジ法((株)横河電機製作
所製のシエーリングブリツジを使用)にて測定し
た。 絶縁破壊電圧はえられた絶縁コイルを220℃で
20日間熱処理した絶縁コイル(劣化後)を温度25
℃にて1KV/secの一定昇圧速度における油中で
耐電圧試験装置(愛国電機(株)製)を用いて測定し
た。 実施例 2 m−フエニレンジアミンとテレフタル酸からな
る芳香族ポリアミドポリマー繊維100部に対し、
m−フエニレンジアミンとイソフタル酸からなる
高分子フイブリツド10部(約9重量%)を混合
し、水に分散させて抄紙した不織布を150℃で30
分間加熱乾燥し基材をえた。 ついで該基材を用いたほかは実施例1と同様に
してプリプレグを製造した。えられたプリプレグ
に関する特性を第1表に示す。 実施例 3 イミド環含有ジカルボン酸化合物IC−2の21.9
g(0.1当量)とビスフエノールA型エポキシ樹
脂エピコート828(シエル化学社製)の57.0g
(0.3当量)とを混合し、ベンジルトリエチルアン
モニウムブロマイド0.02gを触媒とし、150℃で
1時間反応させ、エポキシ当量400のイミド変性
エポキシ樹脂をえた。 このイミド変性エポキシ樹脂800g(2.0当量)
に対し、メタクリル酸43g(0.5当量)を加え、
120℃で2時間反応させた。生成した樹脂100gに
光増感材としてのベンゾインエチルエーテル0.5
g、エポキシ樹脂の硬化剤としてトリクレジルボ
レート3.0gおよびトリエタノールアミンチタネ
ート3.0gを加え、耐熱性樹脂組成物とした。該
耐熱性樹脂組成物を実施例2と同様にしてえた基
材に塗布し、2.5KWの水銀灯に10分間暴露しプ
リプレグとした。えられたプリプレグに関する特
性を第1表に示す。
The present invention relates to a novel method for producing heat-resistant prepreg. More specifically, the present invention relates to a method for producing a prepreg that is semi-hardened, flexible, and has excellent heat resistance for interlayer insulation of coils for electrical equipment or insulation of slots, leads, etc. The conventional method of insulating coils for electrical equipment using semi-cured prepreg insulation sheets or prepreg insulation tapes does not require operations such as brushing or impregnating with insulation varnish, so the coil surface and This is an extremely advantageous method in terms of production time, and for producing these prepregs, a latent curing agent such as boron trifluoride amine complex salt or dicyandiamide is blended with an epoxy resin that has excellent properties for the cured product as a prepreg resin. Epoxy resin compositions are widely used. In addition, as base materials for prepreg, inorganic fiber base materials such as glass cloth, organic fiber base materials such as Tetron cloth, heat-shrinkable films, paper, mica sheets, etc. are used. However, prepregs obtained using conventional epoxy resin compositions are not fully satisfactory in terms of heat resistance, water resistance, etc., and have the disadvantage of poor electrical and mechanical properties, especially in high temperature ranges. Moreover, heating is required during prepreg production, making the production process extremely complicated. As a result of intensive research to overcome the above-mentioned drawbacks, the inventors of the present invention have found that a nonwoven fabric made by mixing 1 to 50% (by weight) of polymeric fibrils with polyamide fibers and dispersing it in water to make paper is heated. The dried base material (A) is reacted with 1.2 to 10 equivalents of an epoxy resin per equivalent of the imide ring-containing dicarboxylic acid compound to obtain an imide-modified epoxy resin (B). After coating or impregnating the resin composition (D) obtained by reacting 0.1 to 0.8 equivalents of a saturated monobasic acid (C), the base material is B-staged by irradiation with light, which has excellent heat resistance. The inventors discovered that it is possible to obtain a prepreg with a similar shape, and completed the present invention. In other words, according to the present invention, prepregs can be easily produced by simply irradiating light for a short time without going through a complicated heat treatment process, and the properties after molding are excellent in heat resistance, especially in the high temperature range. A very remarkable effect is achieved in that a molded product with excellent electrical and mechanical properties can be obtained. Furthermore, the heat-resistant prepreg according to the present invention has a long shelf life and can sufficiently possess the properties of a prepreg. The heat-resistant resin (i.e. prepreg resin) used for the heat-resistant prepreg in the present invention is epoxy resin per equivalent of the imide ring-containing dicarboxylic acid compound.
1.2 to 10 equivalents were reacted to obtain imide-modified epoxy resin (B), and unsaturated monobasic acid (C) was added to 1 equivalent of (B).
It can be easily obtained by reacting 0.1 to 0.8 equivalents. If the amount of epoxy resin is less than 1.2 equivalents per equivalent of the imide ring-containing dicarboxylic acid compound, the molecular weight will become too large and the workability will decrease due to a decrease in solubility, and if it is more than 10 equivalents, sufficient heat resistance will not be obtained. Neither is preferable. In addition, if the amount of unsaturated monobasic acid (C) is less than 0.1 equivalent per equivalent of imide-modified epoxy resin (B), curing will not be sufficient during prepreg formation by light irradiation, and stickiness will remain; If there is too much, curing will progress too much during prepreg formation by light irradiation,
Both are unfavorable since the fusion properties are reduced. Imide ring-containing dicarboxylic acid compounds that can be used in the present invention include general formulas (), (),
()and(): (In the formula, R 1 is an aliphatic or aromatic diamino residue having 1 to 24 carbon atoms, R 2 is an aliphatic or aromatic aminocarboxylic acid residue having 1 to 20 carbon atoms, and R 3 is an aliphatic or aromatic aminocarboxylic acid residue having 1 to 24 carbon atoms. -10 aliphatic or aromatic tetracarboxylic acid residues, R 4 represents an aliphatic dicarboxylic acid residue). The epoxy resin used in the present invention includes:
For example, bisphenol A diglycidyl ether type Epicote 828, Epicote 834 (all manufactured by Schiel Chemical Co., Ltd.), DER331, DER332 (all manufactured by Dow Chemical Company), Novolac type
Examples include DEN431, DEN438 (both manufactured by Dow Chemical Company), aliphatic type Chitsonox 221 and 289 (both manufactured by Chitso Corporation), but are not limited to these. Examples of the unsaturated monobasic acids used in the present invention include acrylic acid, methacrylic acid, sorbic acid, and cinnamic acid. Furthermore, by using a catalyst such as a quaternary ammonium salt or a tertiary amine in the reaction between the imide-modified resin and the unsaturated monobasic acid, the reaction can be carried out more smoothly. In addition, for the purpose of preventing gelation during the synthesis reaction of heat-resistant resin compositions and improving the storage stability after synthesis, hydroquinone, parabenzoquinone, hydroquinone monomethyl ether, phenothiazine, thiosemicarbazide, acetone thiocarbazone copper Salt or the like may be added, usually in a range of 0.001 to 1.0%. Furthermore, a photosensitizer is added to the heat-resistant resin composition at a rate of 0.5 parts (parts by weight, the same applies hereinafter) per 100 parts (parts by weight, the same applies hereinafter) of the heat-resistant resin composition.
By adding ~5 parts, curing can be further facilitated. If the amount of photosensitizer added is outside the above range, an appropriate effect of accelerating curing cannot be obtained, which is not preferable. Examples of such photosensitizers include carbonyl compounds such as benzoin and benzoin derivatives such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, quinone compounds such as anthraquinone and naphthoquinone, and diphenyl sulfide. Examples include organic sulfur compounds such as, peroxides such as benzoin peroxide, nitrogen compounds such as azobisisobutyronitrile, and photoreducible dyes such as methylene blue and p-toluenesulfonate ion. In addition, in the production method of the present invention, 0.1 to 0.8 of an unsaturated monobasic acid is used per equivalent of imide-modified epoxy resin.
reacting equivalent amounts to form a partially photocurable composition;
Prepreg is created by light irradiation, then wound around a coil, etc., and then completely cured using a heating press, etc. There is no need for heating during prepreg production, and prepreg is produced by only short light irradiation, and the prepreg is cured. Furthermore, it has excellent heat resistance, especially electrical and mechanical properties in a high temperature range. At that time, if necessary, a vinyl monomer may be added to the heat-resistant composition without reducing its effect, but the amount thereof is preferably 20% or less. If the blending amount of the vinyl monomer exceeds 20%, the heat resistance of the prepreg will decrease, which is not preferable. Furthermore, in the present invention, as an epoxy curing catalyst, for example, metal salts such as tricresyl borate, cobalt acetylacetonate, zinc octinate, stannic octinate, triethanolamine titanate, metal chelate compounds,
Complexes of Lewis acids and amines such as BF 3 , BCl 3 , PF 5 , AsF 5 , metal olefin compounds such as ferrocene, etc. may be mixed and used as required. The heat-resistant resin composition (D) prepared as described above may be mixed with dioxane, methyl ethyl ketone,
It is dissolved in an organic solvent such as N,N-dimethylacetamide, N,N-dimethylformamide, or N-methylpyrrolidone, and applied or impregnated onto the substrate (A). As a base material for the heat-resistant prepreg of the present invention, the prepreg has high mechanical strength, good compatibility with the prepreg resin, and excellent properties such as thermal properties, electrical properties, and mechanical properties after curing. It satisfies all of the above requirements, and uses a nonwoven fabric that is mainly made of polyamide fibers, mixed with 1 to 50% of polymer fibrils, dispersed in water, made into paper, heated and dried. As a polymer fibrid as a fusion agent,
Examples include short fibers such as aromatic polyamide and polyacrylonitrile. If the content of polymer fibrils is less than 1%, it will lack mechanical strength as a base material, and if it is more than 50%, the impregnating properties of the heat-resistant resin composition will deteriorate, resulting in a cured product. electrical characteristics,
Mechanical properties deteriorate, both of which are unfavorable. Examples of the polyamide fibers used in the present invention include isophthalic acid-m-phenylenediamine copolymer and terephthalic acid-p-phenylenediamine copolymer. A temperature range of 50 to 250°C is suitable for heating and drying a nonwoven fabric made by mixing 1 to 50% of polymeric fibrils with polyamide fiber as a base material and dispersing it in water. If the temperature is higher than 250°C, the rate of water evaporation is too fast, leading to non-uniformity in the texture of the nonwoven fabric, both of which are unfavorable. Furthermore, the conditions for optical prepreg formation of the base material coated or impregnated with the heat-resistant resin composition include room temperature.
Light irradiation times of 0.1 to 60 minutes are employed. As a result, a heat-resistant prepreg with excellent electrical properties, mechanical properties, and heat resistance can be obtained. The heat-resistant prepreg is wound around a conductor such as a coil and then heated and pressurized to form a cured product. Furthermore, the obtained cured product has excellent heat resistance, particularly excellent electrical and mechanical properties in a high temperature range, and can withstand long-term use at high temperatures. Next, the method for producing the heat-resistant prepreg of the present invention will be explained with reference to Examples. Here, among the imide ring-containing dicarboxylic acid compounds represented by the general formulas () to () above, the abbreviations and structural formulas of specific compounds of the general formulas () and () used in the examples are shown below. Example 1 For 100 parts of aromatic polyamide polymer fiber consisting of m-phenylenediamine and terephthalic acid,
A nonwoven fabric made by mixing 50 parts (approximately 33% by weight) of polymeric fibrils consisting of m-phenylenediamine and isophthalic acid and dispersing it in water was heated at 180°C.
A base material was obtained by heating and drying for a period of time. 27.3 of imide ring-containing dicarboxylic acid compound IC-1
g (0.1 equivalent) and 95 g (0.5
0.01 g of benzyltriethylammonium chloride as a catalyst and reacted at 150° C. for 1 hour to obtain an imide-modified epoxy resin with an epoxy equivalent of 300. 600g (2.0 equivalent) of this imide-modified epoxy resin
Add 86g (1.0 equivalent) of methacrylic acid to 120
The reaction was carried out at ℃ for 2 hours. 0.8 g of benzoin ethyl ether as a photosensitizer to 100 g of the resin produced
Then, 2.0 g of boron trifluoride monoethylamine complex as a curing agent for epoxy resin was added to prepare a heat-resistant resin composition. The obtained heat-resistant resin composition was applied to the base material and exposed to a 2.5 KW mercury lamp for about 5 minutes to obtain a prepreg. In order to understand the mechanical properties of the obtained prepreg, Table 1 shows the properties of four prepreg sheets cut out to 25 mm x 25 mm and cured at 150°C for 15 hours. The adhesive strength was measured using an Instron tensile tester at a temperature of 20°C, using an initial value and a value after deterioration after heat treatment at 220°C for 20 days. Furthermore, prepare a prepreg sheet of 2mm x 5mm x 500mm.
A bundle of 10 formal rectangular copper wires was wrapped four times in a wrap around a coil conductor, and then cured at 110℃ for 3 hours and 180℃ for 10 hours to obtain an insulated coil.
Its electrical characteristics (dielectric loss tangent (tan δ) temperature characteristics, dielectric breakdown voltage) were measured. The dielectric loss tangent temperature characteristics are measured at a voltage of 0.5KV at temperatures of 20℃ and 200℃ for the obtained insulated coil.
It was measured by the high-pressure Schering bridge method (using a Schering bridge manufactured by Yokogawa Electric Corporation). The breakdown voltage of the insulated coil is 220℃.
An insulated coil (after deterioration) that has been heat treated for 20 days is heated to a temperature of 25
It was measured in oil at a constant pressure increase rate of 1 KV/sec at ℃ using a withstand voltage tester (manufactured by Aikoku Denki Co., Ltd.). Example 2 For 100 parts of aromatic polyamide polymer fiber consisting of m-phenylenediamine and terephthalic acid,
A nonwoven fabric made by mixing 10 parts (approximately 9% by weight) of a polymeric fibril consisting of m-phenylenediamine and isophthalic acid and dispersing it in water was heated at 150℃ for 30 minutes.
The substrate was dried by heating for a minute. Next, a prepreg was produced in the same manner as in Example 1 except that the base material was used. Table 1 shows the properties of the obtained prepreg. Example 3 21.9 of imide ring-containing dicarboxylic acid compound IC-2
g (0.1 equivalent) and 57.0 g of bisphenol A type epoxy resin Epicote 828 (manufactured by Ciel Chemical Co., Ltd.)
(0.3 equivalent) and reacted at 150° C. for 1 hour using 0.02 g of benzyltriethylammonium bromide as a catalyst to obtain an imide-modified epoxy resin with an epoxy equivalent of 400. 800g (2.0 equivalent) of this imide-modified epoxy resin
To this, add 43g (0.5 equivalent) of methacrylic acid,
The reaction was carried out at 120°C for 2 hours. 0.5 benzoin ethyl ether as a photosensitizer to 100g of the resin produced
g, 3.0 g of tricresyl borate and 3.0 g of triethanolamine titanate were added as curing agents for the epoxy resin to prepare a heat-resistant resin composition. The heat-resistant resin composition was applied to a base material obtained in the same manner as in Example 2, and exposed to a 2.5 KW mercury lamp for 10 minutes to obtain a prepreg. Table 1 shows the properties of the obtained prepreg.

【表】 比較例 1 エピコート1001(シエル化学社製)800g、
ECN1273(チバガイギー社製)100g、ジシアン
ジアミド30gおよび2−エチル−4−メチルイミ
ダゾール2.0gを配合し、さらに溶剤としてメチ
ルセロソルブ400gを加えたものを基材であるテ
トロンクロスに室温で含浸させたのち、120℃で
10分間乾燥させてプリプレグシートをえた。 えられたプリプレグシートを用い、実施例1と
同様の試験を行なつた。結果を第2表に示す。 比較例 2 基材としてガラステープを用い、比較例1で用
いたのと同じ樹脂組成物を用いてプリプレグシー
トをえた。 えられたプリプレグシートを用い、実施例1と
同様の試験を行なつた。結果を第2表に示す。 比較例 3 実施例1で使用したのと同じ高分子フイブリツ
ドを芳香族ポリアミドポリマー繊維100部に対し
て150部(60重量%)用いてえられた不織布を使
用した他は実施例1と同様にして、プリプレグを
製造した。 えられたプリプレグシートを用い、実施例1と
同様の試験を行なつた。結果を第2表に示す。 比較例 4 実施例1で使用したのと同じ高分子フイブリツ
ドを芳香族ポリアミドポリマー繊維100部に対し
て0.5部(約0.5重量%)用いてえられた不織布を
使用した他は実施例1と同様にしてプリプレグシ
ートをえようとしが、不織布の強度が低く、充分
な性能を有するシートがえられなかつた。 比較例 5 イミド環含有ジカルボン酸化合物IC−1の27.3
g(0.1当量)とエピコート828の228g(1.2当
量)とを混合し、ベンジルトリエチルアンモニウ
ムクロライド0.02gを触媒として、150℃で1時
間反応させてエポキシ当量240のイミド変性エポ
キシ樹脂をえた。 このイミド変性エポキシ樹脂480g(2.0当量)
に対し、メタクリル酸86g(1.0当量)を加え、
120℃で2時間反応させた。生成した樹脂100gに
光増感剤としてベンゾインエチルエーテル0.8g
およびエポキシ樹脂の硬化剤として三フツ化ホウ
素モノエチルアミン錯体2.0gを加え、耐熱性樹
脂組成物をえた。 実施例1で用いたのと同じ不織布に上記耐熱性
樹脂組成物を塗布し、実施例1と同じ条件でプリ
プレグシートを製造した。 えられたプリプレグシートを用い、実施例1と
同様の試験を行なつた。結果を第2表に示す。 比較例 6 イミド環含有ジカルボン酸化合物IC−1の273
g(1当量)とエピコート828の209g(1.1当量)
とを混合し、ベンジルトリエチルアンモニウムク
ロライド0.02gを触媒として用い、150℃で1時
間反応させてエポキシ当量4500のイミド変性エポ
キシ樹脂をえた。 えられたイミド変性エポキシ樹脂は分子量が大
きいため粘度が高く、メタクリル酸と反応させて
も基材へ含浸させるのに充分な粘度にはならなか
つた。 比較例 7 実施例1でえられたイミド変性エポキシ樹脂
600g(2.0当量)に対してメタクリル酸8.6g
(0.1当量)を加え、120℃で1時間反応させた。
生成した樹脂100gに光増感剤としてベンゾイン
エチルエーテル0.8gおよびエポキシ樹脂の硬化
剤として三フツ化ホウ素モノエチルアミン錯体
2.0gを加え、耐熱性樹脂組成物をえた。 えられた耐熱性樹脂組成物を実施例1で用いた
のと同じ不織布に塗布し、2.5KWの水銀灯に約
5分間暴露したが、樹脂のべとつきが残り、プリ
プレグとしては作業性のわるいものしかえられな
かつた。 比較例 8 実施例1でえられたイミド変性エポキシ樹脂
600g(2.0当量)に対してメタクリル酸154.8g
(1.8当量)を加え、120℃で1時間反応させた。
生成した樹脂100gに光増感剤としてベンゾイン
エチルエーテル0.8gおよびエポキシ樹脂の硬化
剤として三フツ化ホウ素モノエチルアミン錯体
2.0gを加え、耐熱性樹脂組成物をえた。 えられた耐熱性樹脂組成物を実施例1で用いた
のと同じ不織布に塗布し、2.5KWの水銀灯に約
5分間暴露して製造したプリプレグを4枚重ね
て、150℃で15時間硬化させたが充分融着せず、
層間で剥離がを起つた。水銀灯への暴露時間を短
くしたが反応のコントロールが困難で、作業性の
わるいプリプレグしかえられなかつた。
[Table] Comparative example 1 Epicote 1001 (manufactured by Ciel Chemical Co., Ltd.) 800g,
A mixture of 100 g of ECN1273 (manufactured by Ciba Geigy), 30 g of dicyandiamide, and 2.0 g of 2-ethyl-4-methylimidazole, and 400 g of methyl cellosolve as a solvent was impregnated into Tetron cloth as a base material at room temperature. at 120℃
A prepreg sheet was obtained by drying for 10 minutes. The same test as in Example 1 was conducted using the obtained prepreg sheet. The results are shown in Table 2. Comparative Example 2 A prepreg sheet was obtained using the same resin composition as that used in Comparative Example 1, using a glass tape as a base material. The same test as in Example 1 was conducted using the obtained prepreg sheet. The results are shown in Table 2. Comparative Example 3 The same procedure as in Example 1 was used except that a nonwoven fabric obtained by using the same polymeric fibrils used in Example 1 at 150 parts (60% by weight) per 100 parts of aromatic polyamide polymer fibers was used. A prepreg was produced. The same test as in Example 1 was conducted using the obtained prepreg sheet. The results are shown in Table 2. Comparative Example 4 Same as Example 1 except that a nonwoven fabric obtained by using the same polymeric fibrils used in Example 1 at 0.5 parts (approximately 0.5% by weight) per 100 parts of aromatic polyamide polymer fibers was used. However, due to the low strength of the nonwoven fabric, it was not possible to obtain a sheet with sufficient performance. Comparative Example 5 27.3 of imide ring-containing dicarboxylic acid compound IC-1
(0.1 equivalent) and 228 g (1.2 equivalent) of Epicote 828 were mixed and reacted at 150° C. for 1 hour using 0.02 g of benzyltriethylammonium chloride as a catalyst to obtain an imide-modified epoxy resin with an epoxy equivalent of 240. 480g (2.0 equivalent) of this imide-modified epoxy resin
To this, add 86 g (1.0 equivalent) of methacrylic acid,
The reaction was carried out at 120°C for 2 hours. Add 0.8g of benzoin ethyl ether as a photosensitizer to 100g of the resin produced.
Then, 2.0 g of boron trifluoride monoethylamine complex was added as a curing agent for the epoxy resin to obtain a heat-resistant resin composition. The heat-resistant resin composition was applied to the same nonwoven fabric as used in Example 1, and a prepreg sheet was manufactured under the same conditions as in Example 1. The same test as in Example 1 was conducted using the obtained prepreg sheet. The results are shown in Table 2. Comparative Example 6 273 of imide ring-containing dicarboxylic acid compound IC-1
g (1 equivalent) and 209 g (1.1 equivalent) of Epicote 828
Using 0.02 g of benzyltriethylammonium chloride as a catalyst, the mixture was reacted at 150°C for 1 hour to obtain an imide-modified epoxy resin with an epoxy equivalent of 4500. The obtained imide-modified epoxy resin had a high viscosity due to its large molecular weight, and even when reacted with methacrylic acid, the viscosity did not become sufficient to impregnate the base material. Comparative Example 7 Imide-modified epoxy resin obtained in Example 1
8.6g methacrylic acid per 600g (2.0 equivalents)
(0.1 equivalent) was added and reacted at 120°C for 1 hour.
0.8 g of benzoin ethyl ether as a photosensitizer and boron trifluoride monoethylamine complex as a curing agent for epoxy resin to 100 g of the resin produced.
2.0g was added to obtain a heat-resistant resin composition. The obtained heat-resistant resin composition was applied to the same nonwoven fabric as used in Example 1 and exposed to a 2.5KW mercury lamp for about 5 minutes, but the resin remained sticky and had poor workability as a prepreg. I couldn't go back. Comparative Example 8 Imide-modified epoxy resin obtained in Example 1
154.8g of methacrylic acid per 600g (2.0 equivalent)
(1.8 equivalents) was added and reacted at 120°C for 1 hour.
0.8 g of benzoin ethyl ether as a photosensitizer and boron trifluoride monoethylamine complex as a curing agent for epoxy resin to 100 g of the resin produced.
2.0g was added to obtain a heat-resistant resin composition. The obtained heat-resistant resin composition was applied to the same nonwoven fabric as used in Example 1, and four sheets of prepreg produced by exposing it to a 2.5 KW mercury lamp for about 5 minutes were stacked and cured at 150 ° C. for 15 hours. However, it did not fuse sufficiently,
Peeling occurred between the layers. Although the exposure time to the mercury lamp was shortened, it was difficult to control the reaction, and only prepregs with poor workability could be obtained.

【表】 第2表の結果から、比較例3のばあいには基材
への樹脂の含浸性が低下したことが原因と思われ
る特性の低下が認められている。また比較例5で
は耐熱性に劣ることがわかる。
[Table] From the results in Table 2, in the case of Comparative Example 3, a decrease in properties was observed, which is believed to be due to a decrease in the impregnation of the resin into the base material. Furthermore, it can be seen that Comparative Example 5 has poor heat resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアミド繊維に高分子フイブリツドを1〜
50重量%混合し水に水散させて抄紙した不織布を
加熱乾燥させた基材(A)に、イミド環含有ジカルボ
ン酸化合物1当量に対してエポキシ樹脂1.2〜10
当量を反応させてイミド変性エポキシ樹脂(B)を
え、(B)の1当量に対して不飽和一塩基酸(C)を0.1
〜0.8当量反応させることによりえられる樹脂組
成物(D)を塗布または含浸したのち、該基材に光照
射することによりBステージ化することを特徴と
する耐熱性プリプレグの製法。
1 Polymer fibrid to polyamide fiber 1~
1.2 to 10% of epoxy resin per equivalent of imide ring-containing dicarboxylic acid compound is added to the base material (A), which is made by heating and drying a nonwoven fabric made by mixing 50% by weight and sprinkling it in water to make paper.
React equivalent amounts to obtain imide-modified epoxy resin (B), and add 0.1 unsaturated monobasic acid (C) to 1 equivalent of (B).
A method for producing a heat-resistant prepreg, which comprises applying or impregnating a resin composition (D) obtained by reacting an amount of ~0.8 equivalent, and then B-staged by irradiating the base material with light.
JP3180281A 1981-03-04 1981-03-04 Method of producing heat resistant prepreg Granted JPS57145218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180281A JPS57145218A (en) 1981-03-04 1981-03-04 Method of producing heat resistant prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180281A JPS57145218A (en) 1981-03-04 1981-03-04 Method of producing heat resistant prepreg

Publications (2)

Publication Number Publication Date
JPS57145218A JPS57145218A (en) 1982-09-08
JPS6351324B2 true JPS6351324B2 (en) 1988-10-13

Family

ID=12341204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180281A Granted JPS57145218A (en) 1981-03-04 1981-03-04 Method of producing heat resistant prepreg

Country Status (1)

Country Link
JP (1) JPS57145218A (en)

Also Published As

Publication number Publication date
JPS57145218A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
US4085250A (en) Resin rich epoxide-mica flexible high voltage insulation
US4163826A (en) Self-bonding magnet wires and coils made therefrom
SI9400350A (en) Process for fixing coils with polymerising radicals of compounds
BR0008834B1 (en) metal conductor coating composition, coating process involving use thereof, use of said composition as well as coated electrical conductor.
US4127553A (en) Electrical insulating resin composition comprising a polyester resin or ester-imide resin
KR920007042B1 (en) Thermosetting resin composition and prepolymer obtained therefrom
US4144210A (en) Water-solubilized resin composition
TW319719B (en)
KR100370483B1 (en) Manufacturing method of electric insulated wire wheel
JPH0670126B2 (en) Unsaturated homopolymerizable and / or copolymerizable polyester and process for producing the same
JPS6351324B2 (en)
JPH06233486A (en) Insulated electric coil, rotating electric machine and their manufacture
JPS6234252B2 (en)
JP2874501B2 (en) Electrically insulated wire loop, method for manufacturing electrically insulated wire loop, rotating electric machine, and insulating sheet
JPS625450B2 (en)
JPS6363567B2 (en)
US4026872A (en) Epoxy resin compositions
JPS5936651B2 (en) thermosetting resin composition
US2909495A (en) Carboxyl rich alkyd resin-ethoxyline resin compositions and process for their preparation
JPS592445B2 (en) Manufacturing method of heat-resistant resin
JPS6235410B2 (en)
JPS625453B2 (en)
JPS6192141A (en) Preparation of prepreg electric machine winding and electric machine winding utilizing the same
JPS625452B2 (en)
JPS61258654A (en) Manufacture of insulating coil