JPS6254165B2 - - Google Patents

Info

Publication number
JPS6254165B2
JPS6254165B2 JP56201660A JP20166081A JPS6254165B2 JP S6254165 B2 JPS6254165 B2 JP S6254165B2 JP 56201660 A JP56201660 A JP 56201660A JP 20166081 A JP20166081 A JP 20166081A JP S6254165 B2 JPS6254165 B2 JP S6254165B2
Authority
JP
Japan
Prior art keywords
dephosphorization
molten steel
molten metal
deoxidation
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201660A
Other languages
Japanese (ja)
Other versions
JPS58104131A (en
Inventor
Tetsuo Uchida
Kimihiko Akahori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20166081A priority Critical patent/JPS58104131A/en
Publication of JPS58104131A publication Critical patent/JPS58104131A/en
Publication of JPS6254165B2 publication Critical patent/JPS6254165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶湯の還元脱りん法に係り、特に酸
素、硫黄及びりんを含む溶鋼中のりんを容易にし
かも効率よく還元脱りんする溶湯の脱りん法に関
する。現在は、VOD法やAOD法等の特殊精錬技
術の開発により鋼溶湯の極低炭素化は容易とな
り、それにともない、低窒素化及び低硫黄化の見
通しが得られてきた。しかしながら、鉄鋼材料に
おいて、特殊な用途を除いては最も有害な元素の
一つであるりんの除去方法については、塩基性ス
ラグを使用した酸化精錬で除去する方法以外あま
りなされていなかつた。この酸化精錬では、溶湯
中のPの一部が酸化され、P2O5となり、これが
酸化鉄と結合してFe2O3・P2O5となり除去され
る。一方、Pの大部分はスラグ成分である石灰と
結合して安定な3CaO・P2O5か或は4CaO・P2O5
となり除去する方法である。 しかし、たとえばCrなどのようにFeよりも酸
化されやすい成分を含有する鋼溶湯は上記のよう
な酸化精錬法によつて脱りんすることは困難であ
る上、脆性に対する材質的な問題と製造コストの
低減化のためにもCrの損失がなく容易に直接脱
りんが出来ることが望まれている。そして現在で
はCa系融体を用い、融体中のCaと溶湯中のPと
の間に3Ca+2P→Ca3P2の反応を直接生じさせる
次のような還元脱りん法がある。 (1) Ca−CaF2系フラツクスを用いる方法。(中
村外:鉄鋼(1975)S137) (2) CaC2−CaF2系フラツクスを用いる方法。
(中村外:鉄と鋼:61、4(1975)) 上記の方法は公知であるCaの脱りん能を製鋼
温度でも発揮させようとしたものである。すなわ
ち、金属CaやCa合金を直接溶湯中に添加するこ
とが出来れば溶湯中のPを除去する能力を有して
いることはすでに知られていることであるが、製
鋼温度ではCaの蒸気圧が高くなり、蒸発速度が
大きくなるため、Caのほとんどは蒸発してしま
い、脱りん効果を発揮することが出来ない。そこ
で、上記のようなCa系のフラツクス融体を用い
ることにより、効果を発揮させようとしたもので
ある。 しかしながら(1)のCa−CaF2系のフラツクスを
用いる方法ではフラツクスが反応性に富むため反
応容器として耐火物を用いることが出来ないとい
う現在の工業ベースとしては致命的な欠点があ
る。又(2)の方法を用いた場合は、CaC2をCaとC
に効率よく分離させるためふつ化物の最適量を選
定しなければならないが、高温では不安定なため
必要量を得にくい上、耐火物を損傷するという欠
点がある。又、反応容器内に残存するスラグが混
入するためCaC2の反応効率が悪化するという欠
点がある。 本発明の目的は、Caの脱りん作用を効果的に
発揮させることにより、良好な溶湯を得る還元脱
りん法を提供するにある。 本発明の要点は、酸素、硫黄及びりんを含む鋼
溶湯をCa又はCa合金を用いて直接還元脱りんす
る方法において、脱りん前の溶湯中に存在する酸
素及び硫黄が、りんとCaとの反応よりも先にCa
と反応して脱りん効果を阻害することを実験によ
り確認し、Ca又はCa合金による直接脱りんを効
果的に行い得るようにしたものである。具体的に
は、還元脱りん処理の前に溶鋼を脱酸脱硫処理す
ることにある。又、Ca又はCa合金による脱りん
効果を発揮させるために鉄パイプ中にCa又はCa
合金粉末をつめて溶鋼に添加しCaの蒸発を防止
するとともに脱りんの間中、溶鋼中のCa量を
0.004重量%以上に保つことにある。 以下、本発明を18−8ステンレス鋼のCaによ
る直接脱りんの一実施例に基づいて説明する。
The present invention relates to a reductive dephosphorization method for molten metal, and more particularly to a molten metal dephosphorization method for easily and efficiently reductively dephosphorizing phosphorus in molten steel containing oxygen, sulfur, and phosphorus. Currently, with the development of special refining technologies such as the VOD method and the AOD method, it has become easier to reduce the carbon content of molten steel to an extremely low level, and along with this, the prospect of reducing nitrogen and sulfur content has been obtained. However, except for special uses, there have been few methods for removing phosphorus, one of the most harmful elements, other than oxidative refining using basic slag. In this oxidation refining, a part of P in the molten metal is oxidized to become P 2 O 5 , which combines with iron oxide to become Fe 2 O 3.P 2 O 5 and is removed. On the other hand, most of the P is either 3CaO・P 2 O 5 or 4CaO・P 2 O 5 , which is stable by combining with lime, which is a slag component.
This is the method to remove it. However, it is difficult to dephosphorize molten steel containing components that are more easily oxidized than Fe, such as Cr, by the oxidation refining method described above, and there are problems with the material's brittleness and manufacturing costs. In order to reduce the amount of Cr, it is desired that dephosphorization can be performed easily and directly without loss of Cr. Currently, there is the following reductive dephosphorization method that uses a Ca-based melt to directly cause the reaction 3Ca+2P→Ca 3 P 2 between Ca in the melt and P in the molten metal. (1) Method using Ca-CaF 2- based flux. (Nakamura Soto: Tekko (1975) S137) (2) Method using CaC 2 −CaF 2 system flux.
(Nakamura Soto: Tetsu to Hagane: 61, 4 (1975)) The above method is an attempt to bring out the known dephosphorizing ability of Ca even at steel-making temperatures. In other words, it is already known that if metallic Ca or Ca alloy can be directly added to the molten metal, it has the ability to remove P from the molten metal, but at steelmaking temperatures, the vapor pressure of Ca As the evaporation rate increases, most of the Ca evaporates and the dephosphorization effect cannot be exerted. Therefore, an attempt was made to achieve this effect by using a Ca-based flux melt as described above. However, the method (1) using a Ca-CaF 2 -based flux has a fatal drawback on the current industrial basis in that the flux is highly reactive and refractories cannot be used as the reaction vessel. Also, if method (2) is used, CaC 2 is replaced by Ca and C
The optimum amount of fluoride must be selected for efficient separation, but it is unstable at high temperatures, making it difficult to obtain the required amount, and it also has the disadvantage of damaging refractories. Furthermore, there is a drawback that the reaction efficiency of CaC 2 is deteriorated due to the contamination of slag remaining in the reaction vessel. An object of the present invention is to provide a reductive dephosphorization method for obtaining a good molten metal by effectively exerting the dephosphorizing action of Ca. The main point of the present invention is that in a method of directly reducing and dephosphorizing molten steel containing oxygen, sulfur, and phosphorus using Ca or Ca alloy, the oxygen and sulfur present in the molten metal before dephosphorization react with phosphorus and Ca. Ca before
It has been confirmed through experiments that the dephosphorization effect is inhibited by reacting with Ca or Ca alloy, and it has become possible to effectively perform direct dephosphorization using Ca or Ca alloy. Specifically, molten steel is subjected to deoxidation and desulfurization treatment before reduction dephosphorization treatment. In addition, in order to exhibit the dephosphorizing effect of Ca or Ca alloy, Ca or Ca is added to the iron pipe.
Alloy powder is packed and added to molten steel to prevent Ca evaporation and to reduce the amount of Ca in molten steel during dephosphorization.
The purpose is to maintain it at 0.004% by weight or more. The present invention will be explained below based on an example of direct dephosphorization of 18-8 stainless steel using Ca.

【表】 表1に示す成分の母材をAr雰囲気とした高周
波誘導溶解炉で40Kgを溶解し、脱酸及び脱硫処理
を施して成分調整後、鉄パイプ中にCa及びAlの
粉末をつめたものを溶鋼中に添加し、添加後の溶
鋼中の各種元素の経時変化を調査した。その結果
を脱酸及び脱硫処理を施こさないものと比較して
第1図と第2図に示す。なお鉄パイプ中にAl粉
末をつめたのは、溶鋼中に残存する酸素を脱酸
し、Caが酸素との反応に消費されてしまうのを
防止するためである。 この結果より、溶鋼中のPを0.02%以下に効率
よく還元するには、脱りん前にあらかじめ脱酸、
脱硫処理を施こし、脱りん中の溶湯中にCaが
0.004%以上に含まれていることが必要であるこ
とが分つた。又、鉄パイプ中にCa粉末をつめて
溶鋼に添加することにより、金属Caを用いて脱
りん処理を行う方法が実現した。 以上、実施例で示した如く、本発明の方法は直
接脱りんを効率よく行うのに非常にすぐれてい
る。
[Table] 40 kg of base material with the components shown in Table 1 was melted in a high-frequency induction melting furnace in an Ar atmosphere, and after deoxidation and desulfurization treatment to adjust the components, Ca and Al powder was packed in an iron pipe. were added to molten steel, and the changes over time of various elements in molten steel after addition were investigated. The results are shown in Figures 1 and 2 in comparison with those without deoxidation and desulfurization treatment. The purpose of filling the iron pipe with Al powder is to deoxidize the oxygen remaining in the molten steel and prevent Ca from being consumed by reaction with oxygen. From this result, in order to efficiently reduce P in molten steel to 0.02% or less, it is necessary to deoxidize and
Desulfurization treatment is performed, and Ca is present in the molten metal during dephosphorization.
It was found that it is necessary for the content to be 0.004% or more. In addition, a method of dephosphorizing using metallic Ca was realized by packing Ca powder into an iron pipe and adding it to molten steel. As shown in the examples above, the method of the present invention is extremely excellent in directly performing dephosphorization efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未脱酸及び未脱硫処理の脱りん実験の
結果を示す特性図、第2図は予じめ脱酸及び脱硫
処理を施こした後の脱りん効果の一例を示した特
性図である。
Figure 1 is a characteristic diagram showing the results of dephosphorization experiments without deoxidation and non-desulfurization treatment, and Figure 2 is a characteristic diagram showing an example of the dephosphorization effect after previously performing deoxidation and desulfurization treatment. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素、硫黄及びりんを含むクロム含有溶鋼を
環元脱りんする方法において、前記還元脱りんの
前に脱酸及び脱硫処理を行い、その後、Ca又は
Ca合金の粉末を鉄パイプにつめて溶鋼中に添加
し且つ溶鋼中のCa量を0.004重量%以上に保つて
環元脱りんを行うことを特徴とする溶湯の脱りん
法。
1 In a method for ring-based dephosphorization of chromium-containing molten steel containing oxygen, sulfur, and phosphorus, deoxidation and desulfurization are performed before the reductive dephosphorization, and then Ca or
A molten metal dephosphorization method characterized by adding Ca alloy powder to an iron pipe and adding it to molten steel, and performing ring element dephosphorization by maintaining the amount of Ca in the molten steel at 0.004% by weight or more.
JP20166081A 1981-12-16 1981-12-16 Dephosphorizing method for molten metal Granted JPS58104131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20166081A JPS58104131A (en) 1981-12-16 1981-12-16 Dephosphorizing method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20166081A JPS58104131A (en) 1981-12-16 1981-12-16 Dephosphorizing method for molten metal

Publications (2)

Publication Number Publication Date
JPS58104131A JPS58104131A (en) 1983-06-21
JPS6254165B2 true JPS6254165B2 (en) 1987-11-13

Family

ID=16444777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20166081A Granted JPS58104131A (en) 1981-12-16 1981-12-16 Dephosphorizing method for molten metal

Country Status (1)

Country Link
JP (1) JPS58104131A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357459C (en) * 2005-10-26 2007-12-26 本溪冶炼集团有限公司 Al-Ca-Fe alloy contg. trace carbon, low slilicon, low phosphorus, low sulphur used for steelmaking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143715A (en) * 1974-04-20 1975-11-19
JPS532323A (en) * 1976-06-29 1978-01-11 Nippon Steel Corp Dephosphorization of melting high chromium metal
JPS546004A (en) * 1977-06-15 1979-01-17 Fujitsu Ltd Light transmitting glass and method of making same
JPS5822320A (en) * 1981-08-03 1983-02-09 Nippon Steel Corp Process for refining in ladle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143715A (en) * 1974-04-20 1975-11-19
JPS532323A (en) * 1976-06-29 1978-01-11 Nippon Steel Corp Dephosphorization of melting high chromium metal
JPS546004A (en) * 1977-06-15 1979-01-17 Fujitsu Ltd Light transmitting glass and method of making same
JPS5822320A (en) * 1981-08-03 1983-02-09 Nippon Steel Corp Process for refining in ladle

Also Published As

Publication number Publication date
JPS58104131A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JPS6254165B2 (en)
JP3460595B2 (en) Melting method for extremely low sulfur steel
JPS6164811A (en) Desulfurizing method of molten steel
JPH01222014A (en) Method for dephosphorizing molten chromium-containing iron
JPS6012408B2 (en) Method for dephosphorizing metals or alloys
JPS627807A (en) Dephosphorizing method for molten iron
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JP3198250B2 (en) Vacuum refining method for molten steel containing chromium
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS56127725A (en) Preparation of low phosphorus high chromium steel
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel
RU2064509C1 (en) Method of deoxidizing and alloying vanadium-containing steel
RU2091494C1 (en) Method of smelting steel alloyed with chromium and nickel
JPS6014813B2 (en) Method for smelting molten steel using sodium fluoride flux
JPH059486B2 (en)
JPS6212301B2 (en)
JP3147740B2 (en) Demanganese method for high chromium molten iron alloy
JPS61149414A (en) Method for removing copper and tin from molten iron
SU998517A1 (en) Method for producing low-carbon steel
JPH0987721A (en) Method for desulfurizing chromium-containing molten steel in decarburize-refining
JPS586944A (en) Dephosphorizing method
JPS58141362A (en) Method for dephosphorizing silicon alloy
JPS5934768B2 (en) Method for refining molten metal or alloy
JPS6024164B2 (en) Dephosphorization method for high chromium molten metal