JPS6254161B2 - - Google Patents

Info

Publication number
JPS6254161B2
JPS6254161B2 JP54138272A JP13827279A JPS6254161B2 JP S6254161 B2 JPS6254161 B2 JP S6254161B2 JP 54138272 A JP54138272 A JP 54138272A JP 13827279 A JP13827279 A JP 13827279A JP S6254161 B2 JPS6254161 B2 JP S6254161B2
Authority
JP
Japan
Prior art keywords
powder
iron
coated
molybdenum disulfide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54138272A
Other languages
Japanese (ja)
Other versions
JPS5662907A (en
Inventor
Iwao Kyono
Yoshio Kawasumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP13827279A priority Critical patent/JPS5662907A/en
Publication of JPS5662907A publication Critical patent/JPS5662907A/en
Publication of JPS6254161B2 publication Critical patent/JPS6254161B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、鉄を最外層として有する複合粉およ
びその製造方法に関するものである。特には摩擦
材、軸受材等の自己潤滑性鉄系圧粉焼結体におい
て有用に使用されうる鉄被覆複合粉及びその製造
方法に関する。 従来技術とその問題点 従来、自己潤滑性鉄系圧粉焼結体の製造におい
ては、黒鉛、二硫化モリブデン、ボロンナイトラ
イド等に代表される固体潤滑材と鉄粉とを混合
し、それを加圧成形しそして焼結する方法が試み
られたが、固体潤滑材を鉄粉中に均質に分散させ
ることが難しくまた両者の焼結性が悪いため高い
強度の焼結材料が得られなかつた。 そこで、固体潤滑剤と鉄粉とを混合する代り
に、固体潤滑材粉に鉄をめつきした鉄被覆複合粉
の使用が考慮された。しかし、鉄を固体潤滑剤粉
に直接めつきすることはきわめて難しく、鉄ペン
タカーボニルの熱分解による直接被覆法も報告さ
れてはいるが、工程管理が難しくまたコスト高と
なつた。更に、特開昭54−76768号は、金属硫化
物粒子の表面に白金族金属層を被覆してその表面
活性化を行い、その後鉄、銅、ニツケル或いはコ
バルトを被覆する技術を開示する。白金族金属層
の被覆法として、NO、NO2、NO3及びNOClから
選択される一種の根を含む白金族化合物の熱分解
が特に好ましいとされている。この技術によつて
白金族金属被覆上に鉄を被覆することは出来る
が、鉄は銅やニツケルに較べてめつきが難しいだ
けに、充分に密着性のある一様な被覆を得ること
は必ずしも完全には保証されなかつた。貴金属塩
の熱分解法を用いた場合、得られる面は微粉状で
ある。従つて、鉄をめつきすべき下地面としては
理想的とは云えない。めつき困難な鉄を密着性良
くめつきするには、平滑に金属化された面を下地
として形成することが理想的である。 最近、二硫化モリブデン或いはボロンナイトラ
イドを含有する鉄系圧粉焼結体への関心が高まつ
ており、そのためにはそれらに密着性よく鉄を被
覆した複合粉の開発がぜひとも必要である。 発明の目的 本発明は、一般的なめつき技術を使用して二硫
化モリブデン或いはボロンナイトライドを芯体と
する鉄被覆複合粉を製造する技術の確立を目的と
する。 発明の概要 二硫化モリブデン或いはボロンナイトライド粉
体へ一般的めつき技術により鉄を直接めつきする
ことはきわめて困難である。そこで、本発明者等
は中間金属層を介在させ、その上に最外層として
鉄をめつきすることを想到し、検討を重ねた。そ
の結果、 (i) スズ、ニツケル及び銅は貴金属塩により活性
化処理した二硫化モリブデン或いはボロンナイ
トライド芯粉体に密着性よく被覆可能であるこ
と、 (ii) 上記スズ、ニツケル及び銅から選択される中
間層は鉄に対する良好なめつき面を提供し、塩
化鉄を用いてのセメンテーシヨン技術により鉄
が被覆可能であること、 (iii) 芯粉体−中間層及び中間層−最外層間の密着
性はきわめて高く、生成する複合粉を用いて焼
結強度の高い焼結材料が得られることを確認す
るに至つた。 斯うして、本発明は、斯界で初めて、(二硫化
モリブデンまたはボロンナイトライド粉体)−(ス
ズ、ニツケルまたは銅のいずれか一種以上の中間
被覆層)−(鉄最外層)という構造の鉄被覆複合粉
を提供する。この複合粉を好適に製造する方法と
して、本発明はまた、二硫化モリブデン粉体また
はボロンナイトライド粉体の表面を貴金属塩によ
り活性化処理した後、スズ、ニツケルまたは銅の
いずれか一種以上の金属を被覆する第一段階と、
該第一段階で得られた被覆粉体を塩化鉄粉末と鉄
よりイオン化傾向の大きい金属を一種以上含有す
る粉体とを混合後、水又は希塩酸を添加する第二
段階とからなることを特徴とする鉄被覆複合粉の
製造方法を提供する。 発明の具体的説明 本発明において芯となる被めつき粉体は、二硫
化モリブデン及びボロンナイトライド(チツ化ホ
ウ素)を対象とする。 本発明において使用される被めつき粉体の粒度
は、−5メツシユ〜+400メツシユのものが適当で
ある。5メツシユより大きい寸法の粒子を使用す
ると被覆が不均一となり、他方400メツシユより
小さいと得られる鉄被覆複合粉自体の流動度の低
下及び表面酸化の問題が生ずる。 被めつき粉体に、貴金属塩による活性化処理す
る方法は、該粉体を貴金属の塩類水溶液により処
理した後、加熱分解することにより行われる。 ここに貴金属とは、パラジウム、白金、ロジウ
ム、金、銀等をいう。 また塩類水溶液による処理とは、浸漬、混合、
スプレー等により、被めつき粉体に付着せしめる
工程をいう。 この貴金属塩溶液は、通常極めて低濃度でよい
が、貴金属層の所望厚さに応じて濃厚液を調製し
てもよいし或いは重ね被覆処理を行う。 貴金属塩処理後に被めつき粉体を所要温度に加
熱し該金属層を分解形成せしめる。この加熱温度
は、使用金属塩の分解温度以上とし、分解に高温
を要するときは、好ましくは還元性雰囲気下に加
熱する。 貴金属としてパラジウムを用いるときは、該貴
金属層厚は、数Å〜数+Åでよいが、特に一定の
値に制限するものではなく主として経済的理由か
ら最低有効値を用いる。 量的には、被めつき粉体に対しては0.005W/
W%以上好ましくは0.01W/W%以上がよいが、
この比率は表面形状及び被めつき粉体の粒度分布
等に依存する。 この後、中間層が被覆される。中間層として
は、二硫化モリブデン粉体及びボロンナイトライ
ド粉体に対して密着性の良い被膜を形成しうると
同時に鉄に対して良好なめつき面を与えるもので
なければならない。更に、沸点が高いことも必要
である。何故なら、沸点が高くなければ、焼結の
際に揮発し、焼結体の強度を低下させるからであ
る。こうした観点から、本発明は、中間層として
スズ、ニツケル及び銅の一種以上を使用する。 中間層金属は、セメンテーシヨン法、電気メツ
キ法、化学メツキ法等の公知のめつき手法により
めつきされる。めつき厚さは、鉄めつきのために
良好なめつき面ができる範囲でよいため0.8〜0.1
μの厚さで充分である。 中間層形成後、最外層として鉄が塩化鉄粉を用
いてのセメンテーシヨン技術により被覆される。
本発明において最外層を鉄としたのは、最初に述
べたように鉄系圧粉焼結体において複合粉末を使
用することを意図しているからに他ならない。複
合粉末を圧粉後焼結することによつて最外層の鉄
は鉄マトリツクスを構成する。また、本複合粉末
を鉄粉と共に使用する場合にも、鉄の最外層が存
在する為、分散性が良くなりまたなじみも良くな
つて、焼結体の強度を高くすることが出来る。 鉄被覆においては、中間層被覆粉と塩化鉄粉と
還元媒剤である鉄よりもイオン化傾向大なる金属
粉を混合する。該混合の際、反応は混合後数秒後
に始まるが、反応開始によつて生ずる白色のヒユ
ームが若干発生しはじめた時点ですなわち30秒〜
2分の間に混合後、水又は希塩酸を添加しなけれ
ば反応が止まり、固結してしまう。しかしながら
混合直後に水又は希塩酸を加えれば反応は進行し
ないため注意を要する。またこの際添加する水又
は希塩酸の量は、使用塩化鉄粉末100g当り100ml
以下である。これはそれより多量だと鉄の析出に
影響するためである。 ここで用いられる還元媒剤は、鉄よりイオン化
傾向が大きい金属であれば良いが特には、カルシ
ウム、マグネシウム、アルミニウムが好ましい。
また合金粉であつてもよい。 またここで用いられる鉄の形態は、塩化鉄でな
ければならない。硫酸鉄、硝酸鉄、水酸化鉄等の
鉄化合物では、本発明にかかわる目的の反応がな
されない。 またセメンテーシヨン工程における温度は常温
の溶液から出発して、反応熱による温度の上昇に
委ねることでよいが通常90〜100℃に達する。 発明の効果 以上のごとく、本発明は、鉄を被覆してなる複
合粉を提供するものである。本発明は、従来一般
的めつき技術では不可能であつた二硫化モリブデ
ン及びボロンナイトライド粉体上への密着性の良
好な鉄の被覆を、めつき性の良いスズ、ニツケル
または銅を貴金属塩により活性化した粉体上に先
ず形成し、そうして得られた平滑に金属化した面
に鉄をセメンテーシヨン技術を用いて被覆するこ
とにより可能としたものであり、強度の高い鉄系
焼結材を得ることを可能としたものである。 さらに、二硫化モリブデン上に鉄の被覆を可能
としたことにより、二硫化モリブデン粉と鉄粉と
の混合粉の焼結体に比べ、鉄と二硫化モリブデン
の密着性が非常に改良されるため高性能の自己潤
滑材を得ることを可能とした。 以下本発明の実施例を記載する。 実施例 市販二硫化モリブデン粉末(−150メツシユ〜
+325メツシユ)100gに硝酸アンミンパラジウム
水溶液50ml(パラジウム0.01g含有)を添加混合
し、磁製皿上において大気中で300℃で、60分間
加熱処理してパラジウム薄層を形成した。このパ
ラジウム処理した二硫化モリブデン粉を塩化ニツ
ケル(NiCl24H2O)42g/、NH4Cl70g/、
ロツセル塩13g/、次亜リン酸ソーダ139g/
の無電解ニツケルメツキ液で処理し鍍ニツケル
二硫化モリブデン粉末111.0gを得た。 鍍ニツケル量は約10%であつた。 ついで鍍ニツケル処理を施した二硫化モリブデ
ン粉100gに塩化鉄粉末を740g添加し更に還元用
アルミニウム粉末(−400メツシユ)48gを添加
し混合撹拌を行つた。白色ヒユームが若干認めら
れた時点で約500mlの水を加え、約60秒間撹拌を
継続し、鉄を該ニツケル被覆二硫化モリブデン粉
上にセメンテーシヨンにより均一に析出せしめ
た。生成したスラリーを分離水洗し、更にベンゾ
トリアゾール濃度0.5g/の水溶液で防錆処理
を施し、70〜80℃において減圧乾燥し、複層金属
被覆二硫化モリブデン粉末を得た。 該粉体はパラジウム薄層厚さは6〜10Å、ニツ
ケル層厚さは約0.3μで鉄層の厚さは約4μであ
り、極めて均一の厚さを示した。 なお、該製品の性状は、下記のごとくであつ
た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a composite powder having iron as the outermost layer and a method for producing the same. In particular, the present invention relates to an iron-coated composite powder that can be usefully used in self-lubricating iron-based compacted powder sintered bodies such as friction materials and bearing materials, and a method for producing the same. Conventional technology and its problems Conventionally, in the production of self-lubricating iron-based compacted powder sintered bodies, solid lubricants such as graphite, molybdenum disulfide, boron nitride, etc. are mixed with iron powder; A method of pressure forming and sintering was attempted, but it was difficult to homogeneously disperse the solid lubricant in the iron powder, and the sintering properties of both were poor, making it impossible to obtain a high-strength sintered material. . Therefore, instead of mixing solid lubricant and iron powder, the use of iron-coated composite powder, which is solid lubricant powder coated with iron, was considered. However, it is extremely difficult to directly plate iron on solid lubricant powder, and although a direct coating method using thermal decomposition of iron pentacarbonyl has been reported, process control is difficult and costs are high. Further, JP-A-54-76768 discloses a technique in which the surface of metal sulfide particles is coated with a platinum group metal layer to activate the surface, and then coated with iron, copper, nickel, or cobalt. As a coating method for the platinum group metal layer, thermal decomposition of a platinum group compound containing a type of radical selected from NO, NO 2 , NO 3 and NOCl is said to be particularly preferred. Although it is possible to coat iron on platinum group metal coatings using this technique, it is not always possible to obtain a uniform coating with sufficient adhesion, as iron is more difficult to plate than copper or nickel. It was not completely guaranteed. When using the thermal decomposition method of noble metal salts, the surface obtained is in the form of fine powder. Therefore, it cannot be said to be ideal as a base surface to be plated with iron. In order to plate iron, which is difficult to plate, with good adhesion, it is ideal to use a smooth metallized surface as the base. Recently, there has been increasing interest in iron-based compacted powder sintered bodies containing molybdenum disulfide or boron nitride, and for this purpose, it is absolutely necessary to develop a composite powder in which they are coated with iron with good adhesion. OBJECTS OF THE INVENTION The purpose of the present invention is to establish a technology for producing iron-coated composite powder having a core of molybdenum disulfide or boron nitride using a general plating technique. Summary of the Invention It is extremely difficult to directly plate iron on molybdenum disulfide or boron nitride powder using common plating techniques. Therefore, the present inventors came up with the idea of interposing an intermediate metal layer and plating iron as the outermost layer thereon, and conducted repeated studies. As a result, (i) tin, nickel, and copper can be coated with good adhesion on molybdenum disulfide or boron nitride core powder activated with noble metal salts, and (ii) tin, nickel, and copper can be selected from the above. (iii) between the core powder and the intermediate layer and between the intermediate layer and the outermost layer; The adhesion was extremely high, and it was confirmed that a sintered material with high sintering strength could be obtained using the resulting composite powder. In this way, the present invention is the first in the world to produce iron having a structure of (molybdenum disulfide or boron nitride powder) - (intermediate coating layer of one or more of tin, nickel or copper) - (outermost iron layer). A coated composite powder is provided. As a method for suitably producing this composite powder, the present invention also includes activating the surface of molybdenum disulfide powder or boron nitride powder with a noble metal salt, and then adding at least one of tin, nickel, or copper to the surface of the molybdenum disulfide powder or boron nitride powder. a first step of coating the metal;
It is characterized by a second step of mixing the coated powder obtained in the first step with iron chloride powder and a powder containing one or more metals having a greater ionization tendency than iron, and then adding water or dilute hydrochloric acid. Provided is a method for producing iron-coated composite powder. DETAILED DESCRIPTION OF THE INVENTION In the present invention, molybdenum disulfide and boron nitride are used as the core coating powder. The particle size of the coating powder used in the present invention is suitably between -5 mesh and +400 mesh. If particles with a size larger than 5 meshes are used, the coating will be non-uniform, while if the particle size is smaller than 400 meshes, the problem of reduced fluidity and surface oxidation of the resulting iron-coated composite powder itself will occur. The method of activating the coated powder with a noble metal salt is carried out by treating the powder with an aqueous noble metal salt solution and then thermally decomposing the powder. Here, the precious metals include palladium, platinum, rhodium, gold, silver, and the like. Treatment with aqueous salt solutions includes immersion, mixing,
This refers to the process of adhering to coated powder by spraying, etc. This noble metal salt solution usually has a very low concentration, but depending on the desired thickness of the noble metal layer, a concentrated solution may be prepared or a layer coating process may be performed. After the noble metal salt treatment, the coated powder is heated to a required temperature to decompose and form the metal layer. The heating temperature is set to be higher than the decomposition temperature of the metal salt used, and when a high temperature is required for decomposition, heating is preferably carried out under a reducing atmosphere. When palladium is used as the noble metal, the thickness of the noble metal layer may be from several angstroms to several + angstroms, but it is not particularly limited to a certain value, and the lowest effective value is used mainly for economic reasons. In terms of quantity, it is 0.005W/ for coated powder.
W% or more, preferably 0.01W/W% or more,
This ratio depends on the surface shape and particle size distribution of the coated powder. After this, the intermediate layer is applied. The intermediate layer must be capable of forming a film with good adhesion to molybdenum disulfide powder and boron nitride powder, and at the same time provide a good plating surface to iron. Furthermore, it is also necessary that the boiling point be high. This is because if the boiling point is not high, it will volatilize during sintering, reducing the strength of the sintered body. From this point of view, the present invention uses one or more of tin, nickel and copper as the intermediate layer. The intermediate layer metal is plated by a known plating method such as a cementation method, an electroplating method, or a chemical plating method. The plating thickness should be 0.8 to 0.1 as long as it can provide a good plating surface for iron plating.
A thickness of μ is sufficient. After forming the intermediate layer, iron is applied as the outermost layer using cementation techniques using iron chloride powder.
The reason why the outermost layer is made of iron in the present invention is because, as stated at the beginning, the composite powder is intended to be used in an iron-based compacted powder sintered body. By sintering the composite powder after compacting, the outermost iron layer forms an iron matrix. Furthermore, when this composite powder is used together with iron powder, the presence of the outermost layer of iron improves dispersibility and familiarity, making it possible to increase the strength of the sintered body. In iron coating, the intermediate layer coating powder, iron chloride powder, and metal powder having a higher ionization tendency than iron, which is a reducing medium, are mixed. During this mixing, the reaction starts several seconds after mixing, but the reaction starts at the point when some white fume is generated due to the start of the reaction, that is, from 30 seconds to
After mixing for 2 minutes, unless water or dilute hydrochloric acid is added, the reaction will stop and solidification will occur. However, if water or dilute hydrochloric acid is added immediately after mixing, the reaction will not proceed, so care must be taken. The amount of water or dilute hydrochloric acid added at this time is 100ml per 100g of iron chloride powder used.
It is as follows. This is because if the amount is larger than that, it will affect the precipitation of iron. The reducing medium used here may be any metal that has a greater ionization tendency than iron, but calcium, magnesium, and aluminum are particularly preferred.
It may also be an alloy powder. Also, the form of iron used here must be iron chloride. Iron compounds such as iron sulfate, iron nitrate, and iron hydroxide do not cause the desired reaction related to the present invention. The temperature in the cementation process may be started from a solution at room temperature and allowed to rise due to the heat of reaction, but usually reaches 90 to 100°C. Effects of the Invention As described above, the present invention provides a composite powder coated with iron. The present invention enables the coating of iron with good adhesion on molybdenum disulfide and boron nitride powders, which has not been possible using conventional plating techniques, and the coating of tin, nickel or copper with good plating properties on precious metals. It is made possible by first forming it on powder activated by salt, and then coating the resulting smooth metallized surface with iron using cementation technology. This made it possible to obtain a sintered material based on this method. Furthermore, by making it possible to coat molybdenum disulfide with iron, the adhesion between iron and molybdenum disulfide is greatly improved compared to a sintered body of a mixed powder of molybdenum disulfide powder and iron powder. This made it possible to obtain a high-performance self-lubricating material. Examples of the present invention will be described below. Example Commercially available molybdenum disulfide powder (-150 mesh ~
50 ml of ammine palladium nitrate aqueous solution (containing 0.01 g of palladium) was added and mixed to 100 g of +325 mesh, and heated on a porcelain plate in the air at 300° C. for 60 minutes to form a thin palladium layer. This palladium-treated molybdenum disulfide powder was mixed with nickel chloride (NiCl 2 4H 2 O) 42 g/, NH 4 Cl 70 g/,
Lotusel salt 13g/, sodium hypophosphite 139g/
111.0 g of coated molybdenum disulfide powder was obtained. The amount of nickel plated was about 10%. Next, 740 g of iron chloride powder was added to 100 g of molybdenum disulfide powder treated with nickel, followed by 48 g of reducing aluminum powder (-400 mesh), followed by mixing and stirring. When some white fume was observed, about 500 ml of water was added and stirring was continued for about 60 seconds to uniformly precipitate iron onto the nickel-coated molybdenum disulfide powder by cementation. The resulting slurry was separated and washed with water, further subjected to anti-corrosion treatment with an aqueous solution having a benzotriazole concentration of 0.5 g/min, and dried under reduced pressure at 70 to 80°C to obtain a multilayer metal-coated molybdenum disulfide powder. The powder had a palladium thin layer thickness of 6 to 10 Å, a nickel layer thickness of about 0.3 μm, and an iron layer thickness of about 4 μm, showing extremely uniform thickness. The properties of the product were as follows.

【表】 比較例 パラジウム薄層上にニツケルめつき層を介在さ
せないことを除いて実施例と同様にしてセメンテ
ーシヨン技術により鉄を被覆せしめた。一応の鉄
被覆は得られたが、密着性は必ずしも充分でな
く、つきまわりも充分に一様とは云えなかつた。
この鉄被覆粉を用いて作製した焼結体は、実施例
の粉末を用いたものに較べ低い水準の強度しか得
られなかつた。
[Table] Comparative Example Iron was coated using the cementation technique in the same manner as in the example except that the nickel plating layer was not interposed on the palladium thin layer. Although a certain degree of iron coating was obtained, the adhesion was not necessarily sufficient and the coverage was not uniform enough.
The sintered body produced using this iron-coated powder had a lower level of strength than the one using the powder of the example.

Claims (1)

【特許請求の範囲】 1 二硫化モリブデン粉体またはボロンナイトラ
イド粉体の外面に被覆されるスズ、ニツケルまた
は銅のいずれか一種以上の金属の中間層及び該中
間層上に被覆される最外層としての鉄層を具備す
る鉄被覆複合粉。 2 二硫化モリブデン粉体またはボロンナイトラ
イド粉体の表面を貴金属塩により活性化処理した
後、スズ、ニツケルまたは銅のいずれか一種以上
の金属を被覆する第一段階と、該第一段階で得ら
れた被覆粉体を塩化鉄粉末及び鉄よりイオン化傾
向の大きい金属を一種以上含有する粉体と混合
後、水又は希塩酸を添加する第二段階とからなる
ことを特徴とする鉄被覆複合粉の製造方法。
[Scope of Claims] 1. An intermediate layer of one or more metals such as tin, nickel, or copper coated on the outer surface of molybdenum disulfide powder or boron nitride powder, and an outermost layer coated on the intermediate layer. Iron-coated composite powder with iron layer as 2. A first step of activating the surface of molybdenum disulfide powder or boron nitride powder with a noble metal salt, and then coating the surface with one or more of tin, nickel, or copper; and A second step of mixing the coated powder with iron chloride powder and a powder containing one or more metals having a higher ionization tendency than iron, and then adding water or dilute hydrochloric acid. Production method.
JP13827279A 1979-10-27 1979-10-27 Iron coated composite powder and its production Granted JPS5662907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13827279A JPS5662907A (en) 1979-10-27 1979-10-27 Iron coated composite powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13827279A JPS5662907A (en) 1979-10-27 1979-10-27 Iron coated composite powder and its production

Publications (2)

Publication Number Publication Date
JPS5662907A JPS5662907A (en) 1981-05-29
JPS6254161B2 true JPS6254161B2 (en) 1987-11-13

Family

ID=15218036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13827279A Granted JPS5662907A (en) 1979-10-27 1979-10-27 Iron coated composite powder and its production

Country Status (1)

Country Link
JP (1) JPS5662907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306176A (en) * 2019-06-26 2019-10-08 中南大学 A kind of Cu-B/C composite material and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216657B (en) * 2016-07-27 2018-05-22 合肥波林新材料股份有限公司 A kind of plunger pump backhaul disc manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343953A (en) * 1963-08-24 1967-09-26 Schladitz Hermann Self-lubricating structure
US3708282A (en) * 1969-09-03 1973-01-02 Int Nickel Co Production of sintered metal products
JPS5476768A (en) * 1977-12-01 1979-06-19 Nippon Mining Co Powdered metallic sulfide for coating on double metal layer and method of producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343953A (en) * 1963-08-24 1967-09-26 Schladitz Hermann Self-lubricating structure
US3708282A (en) * 1969-09-03 1973-01-02 Int Nickel Co Production of sintered metal products
JPS5476768A (en) * 1977-12-01 1979-06-19 Nippon Mining Co Powdered metallic sulfide for coating on double metal layer and method of producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306176A (en) * 2019-06-26 2019-10-08 中南大学 A kind of Cu-B/C composite material and preparation method

Also Published As

Publication number Publication date
JPS5662907A (en) 1981-05-29

Similar Documents

Publication Publication Date Title
US4833040A (en) Oxidation resistant fine metal powder
US3562000A (en) Process of electrolessly depositing metal coatings having metallic particles dispersed therethrough
US3723078A (en) Electroless alloy coatings having metallic particles dispersed therethrough
JP2004162164A (en) Copper powder for conductive paste and its production method
EP0101936B1 (en) Boride-dispersed alloy material and process for manufacturing same
JPS6320486A (en) Production of silver or copper coated mica
JPS6254161B2 (en)
JPH067679A (en) Production of platinum alloy catalyst for phosphoric acid type fuel cell
DE19636493C1 (en) Substrates or powders germinated with precious metal salts and process for their production
US4820547A (en) Activators for colloidal catalysts in electroless plating processes
JP3389959B2 (en) Manufacturing method of metal coated powder
KR20090051452A (en) Method for coating whisker powder with silver and siver-coated whisker powder thereby
JPS6044277B2 (en) Multilayer metal-coated carbon powder and its sintered body
JPH06299363A (en) Plating method with tin
JPS6146553B2 (en)
JPS5921948B2 (en) Indium plating method
JPS6313303A (en) Conductive film magnetic powder
JPS6241314B2 (en)
JP3180116B2 (en) Method for producing composite powder
JP2018059151A (en) Nickel copper coated powder, and production method of nickel copper coated powder
JPS6393872A (en) Method for plating powder
JP2018060673A (en) Tin copper coated powder and manufacturing method of tin copper coated powder
JPS5818993B2 (en) Tin plating method
JPH03191070A (en) Electroless plating bath
JPH03146602A (en) Metal coating powder and manufacture thereof