JPS6254006A - Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top - Google Patents

Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top

Info

Publication number
JPS6254006A
JPS6254006A JP19457385A JP19457385A JPS6254006A JP S6254006 A JPS6254006 A JP S6254006A JP 19457385 A JP19457385 A JP 19457385A JP 19457385 A JP19457385 A JP 19457385A JP S6254006 A JPS6254006 A JP S6254006A
Authority
JP
Japan
Prior art keywords
furnace
utilization rate
hydrogen gas
gas utilization
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19457385A
Other languages
Japanese (ja)
Other versions
JPS6361366B2 (en
Inventor
Masaaki Tokunaga
正昭 徳永
Koji Kawaoka
浩二 川岡
Shinji Imamura
伸二 今村
Susumu Kubo
進 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19457385A priority Critical patent/JPS6254006A/en
Publication of JPS6254006A publication Critical patent/JPS6254006A/en
Publication of JPS6361366B2 publication Critical patent/JPS6361366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To simply detect and grasp the temp. conditions in a blast furnace in a proper and accurate manner by applying a method for controlling the distribution of temp. in a blast furnace according to the rate of utilization of gaseous hydrogen in the furnace top. CONSTITUTION:The amount of H2 in gas discharged from the top of a blast furnace is measured and the rate of utilization of gaseous hydrogen in the furnace is calculated by the formula. When the rate of utilization of gaseous hydrogen lowers to <=50%, the distribution of temp. in the furnace is controlled by changing the distribution of charge and/or the level of heat.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高炉炉頂ガスの水素ガス利用率を用いた炉内
温度分布制御法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for controlling temperature distribution in a blast furnace using the hydrogen gas utilization rate of top gas.

(従来の技術) 従来、高炉炉内の熱レベルの評価は、炉頂ガスのCOガ
ス利用率を用いた方法によって行なって来たが、このC
Oガス利用率による方法ではSCOガス測定C:加えて
各種検出端(炉頂ゾンデ、シャフトゾンデ、垂直ゾンデ
等ンにより炉内の牛径方向と炉高方向の温度分布も測定
しなければならなかった。
(Prior art) Conventionally, the heat level inside the blast furnace has been evaluated by a method using the CO gas utilization rate of the furnace top gas.
In the method based on O gas utilization rate, SCO gas measurement C: In addition, the temperature distribution in the cow radial direction and furnace height direction within the furnace must be measured using various detection ends (furnace top sonde, shaft sonde, vertical sonde, etc.) Ta.

この方法の改善策として1例えば、特開昭59−226
109 (特願昭58−101284 )号公報に、高
炉シャフト部における炉径方向の複数点で炉内ガスを分
析し、水素ガス利用率または水素ガス利用率/COガス
利用率を測定することによp%上記測定点における炉高
方向の温度分布を測定する方法が開示さnている。
As an improvement measure for this method, for example, JP-A-59-226
109 (Japanese Patent Application No. 58-101284) discloses that the furnace gas is analyzed at multiple points in the radial direction of the blast furnace shaft to measure the hydrogen gas utilization rate or the hydrogen gas utilization rate/CO gas utilization rate. A method for measuring the temperature distribution in the furnace height direction at the above measurement points is disclosed.

(発明が解決しようとする問題点) 上記従来の方法では、円周方向の一方向の値を代表値と
するためζ;実炉では円周方向のばらつきが大きくなり
、炉全体の状態を把握できず、この方法を操業管理に使
用することはできない。仮に、円周方向の測定点を増し
て円周方向に、10画程度のサンプリング口のある複数
の検出端を設け、この炉内複数点の検出端での測定によ
る水素ガス利用率を数学的に積分しても、炉直径が10
m程度の高炉においては、全体に対してサンプル量が小
さいために大きな誤差を生じ、適切な処置が行なえない
。さらに、上記の方法では、径方向に複数点のサンプリ
ングが必要であV%その分析に多大の手間とコストを要
するとともにデーターの解析が複雑であり、たとえ解析
しても前記の通り実炉の炉況に曾致しない等の欠点があ
り炉況管理方法としては十分とは言い難い。
(Problem to be solved by the invention) In the conventional method described above, since the value in one direction in the circumferential direction is used as the representative value, the variation in the circumferential direction becomes large in actual furnaces, and it is difficult to grasp the condition of the entire furnace. This method cannot be used for operational management. If we increase the number of measuring points in the circumferential direction and install multiple detection ends with sampling ports of about 10 strokes in the circumferential direction, we can mathematically calculate the hydrogen gas utilization rate by measuring at the detection ends at multiple points in the furnace. Even if the furnace diameter is 10
In a blast furnace with a diameter of about m, large errors occur because the sample amount is small relative to the whole, and appropriate measures cannot be taken. Furthermore, the above method requires sampling at multiple points in the radial direction, which requires a great deal of effort and cost to analyze the V%, and the data analysis is complicated. It has drawbacks such as not being able to match the furnace condition, so it cannot be said to be sufficient as a furnace condition management method.

本発明は、上記の従来の方法によるよりも、簡単な方法
であって、精度高く炉内状況の把握ができ、この把握し
た炉内状況に基づいて制御が可能であり、極めて効果的
な炉内温度分布の制御法を提供することを目的とする。
The present invention is a simpler method than the above-mentioned conventional methods, and allows the situation inside the furnace to be grasped with high precision, and control can be performed based on this grasped situation inside the furnace, resulting in an extremely effective furnace. The purpose is to provide a method for controlling internal temperature distribution.

(問題点を解決するための手段) 本発F!Aは、高炉炉頂ガス中のH2量の測定によって
求めらnる排出H2量とインプットのH2量とから求め
た水素ガス利用率ηH2〔(インプラ)Hz量−排出H
2量)/インプットH2量xioo)と、各種ゾンデを
用いて測定した炉半径、炉高方向の炉内温度分布とが一
定の関係にあり、しかも該水素ガス利らnた。
(Means to solve the problem) Original F! A is the hydrogen gas utilization rate ηH2 [(implant) Hz amount - discharged H2 amount calculated from the amount of H2 discharged n determined by measuring the amount of H2 in the top gas of the blast furnace and the amount of input H2.
There was a constant relationship between the amount of input H2)/the amount of input H2 (xioo), the furnace radius measured using various sondes, and the temperature distribution inside the furnace in the direction of the furnace height, and the hydrogen gas was used.

而して、本発明は、高炉炉頂ガス中のH2tを測定して
、該高炉の水素ガス利用率を求めるとともに、該水素ガ
ス利用率が50に以下となった際(=、装入物分布変更
、熱レベル変更のいずnか一方の処置、もしくは併用処
置を行なうことを特徴とする高炉炉頂ガスの水素ガス利
用率を用いた炉内温度分布制御法である。
Therefore, the present invention measures H2t in the blast furnace top gas to determine the hydrogen gas utilization rate of the blast furnace, and when the hydrogen gas utilization rate becomes 50 or less (=, charging This is a furnace temperature distribution control method using the hydrogen gas utilization rate of blast furnace top gas, which is characterized by performing one or both of distribution change and heat level change, or a combination thereof.

以下に、上記知見を得ることとなったいろいろなデ゛−
ターについて説明する。
Below are various data that led to the above findings.
Let me explain about the tar.

先づ、高炉炉内の温度分布を第1図に示す。第1図(a
) t (b)は大型高炉で3月26日(O印で示す)
と5月29日(Δ印で示す)に垂直ゾンデにより測定し
たデーターであり、(a)は、中心C(炉壁から0、5
 fiの位置)、中間M(炉壁から2.5mの位置)周
辺P(炉壁から0.6mの位#!L)における1100
℃ラインを示し、(b)はηH2= 44.7にのと@
(Δ印)とηHs = 52.8 Nのとき(○印)の
中間Mの炉高方向の温度分布を示す。
First, Figure 1 shows the temperature distribution inside the blast furnace. Figure 1 (a
) t (b) is a large blast furnace on March 26th (indicated by O)
The data was measured using a vertical sonde on May 29th (indicated by Δ).
fi position), 1100 at intermediate M (position 2.5m from the furnace wall) and peripheral P (position #!L 0.6m from the furnace wall)
The °C line is shown, and (b) is at ηH2 = 44.7.
The temperature distribution in the furnace height direction at the middle M is shown when (Δ) and when ηHs = 52.8 N (○).

第1図(b)に示し穴温度分布データーと、これに対応
する炉高方向の水素ガス利用率を第2図に示す。この図
で3月26日と5月29日の温度分布データーを比較す
ると、1ooo℃近傍の温度(高温熱保存帯)の長さが
大きく違うことが判る。
The hole temperature distribution data shown in FIG. 1(b) and the corresponding hydrogen gas utilization rate in the furnace height direction are shown in FIG. Comparing the temperature distribution data for March 26th and May 29th in this figure, it can be seen that the length of the temperature around 100°C (high-temperature thermal storage zone) is significantly different.

そして第2図の3月26日と5月29日の温度分布と水
素ガス利用率のデータを書き換えると、第3邸が得らn
る。この図から3月26日、5月29日のデータ共温度
低下(:伴って、水素ガス利用率は上昇することが昶ら
nる。そして、熱保存帯の長い3月26日の水素ガス利
用率と熱保存帯の短い5月29日の水素ガス利用率のプ
ロットが画く線U 100(1℃付近で交差し、100
0℃付近の前後で急速に1lFIfしている。こn、は
、熱保存帯長さの差によるものと考えらnる。つまり、
3月26日データーと5月29日データーの1000℃
近傍におけるH20増加合が異なるのは、ガスの100
0℃近傍滞留時間が3月26日データーは長く、5月2
9日データーは短いためであり、従って滞留時間の短か
い5月29日データーで穀、還元反応が十分に起らず、
゛ウスタイトー銑平衡濃度にまで達しないうちに100
0℃領域を通過することによると考えら九る。
Then, by rewriting the temperature distribution and hydrogen gas utilization data for March 26th and May 29th in Figure 2, we obtain the third residence.
Ru. From this figure, it can be seen that the data for March 26th and May 29th decrease in temperature (accompanyingly, the hydrogen gas utilization rate increases. The line drawn by the plot of the utilization rate and the hydrogen gas utilization rate on May 29th, when the heat reserve zone is short, is U 100 (intersects at around 1℃,
The temperature rapidly changes to 1lFIf around 0°C. This is thought to be due to the difference in the length of the thermal storage zone. In other words,
1000℃ for March 26th data and May 29th data
The difference in the increase in H20 in the vicinity is the difference in the increase in H20 in the vicinity.
The residence time near 0℃ was long on March 26th, and on May 2nd.
This is because the 9-day data is short, and therefore, the grain reduction reaction does not occur sufficiently in the May 29 data, which has a short residence time.
100 before reaching the equilibrium concentration of iron.
This is thought to be due to passing through the 0°C region.

そこで、次に垂直ゾンデ中間部における900〜110
0℃滞留時間と炉頂ガスの水素ガス利用率との関係を求
め、第4図を得た。この図から熱保存帯長さに対応する
900〜1100℃滞留時間が短くなると炉頂ガスの水
素ガス利用率は低下することが判る。なお、中心部、周
辺部(二ついても測定したが、同様の結果となった。こ
のことに、炉頂ガスの水素ガス利用率が低い場合(二は
、熱保存帯長さが短く、シャフト上部での昇温か十分で
ない場合であることを示している。
Therefore, next, 900 to 110 in the middle part of the vertical sonde.
The relationship between the residence time at 0°C and the hydrogen gas utilization rate of the furnace top gas was determined, and Figure 4 was obtained. From this figure, it can be seen that the hydrogen gas utilization rate of the furnace top gas decreases as the residence time at 900 to 1100° C., which corresponds to the length of the heat storage zone, becomes shorter. In addition, measurements were made even if there were two areas (the center and the periphery), but the same results were obtained. This indicates that the rising temperature at the top is not sufficient.

マた、炉頂ガスの水素ガス利用率と中間部1100℃位
置の上位置クラインからの距離の関係を第5図に示す。
Furthermore, FIG. 5 shows the relationship between the hydrogen gas utilization rate of the furnace top gas and the distance from the upper cline at the intermediate 1100° C. position.

なは、図中における1100℃位置はほぼ軟化融着帯上
面に対応すると考えられる。この図から中間部1100
℃位置が上位置ると炉頂ガスの水素ガス利用率は低下す
ることが判る。
In addition, the 1100°C position in the figure is considered to approximately correspond to the upper surface of the softened cohesive zone. From this figure, the middle part 1100
It can be seen that the hydrogen gas utilization rate of the furnace top gas decreases as the temperature rises.

さらに%第6図(a)に1100℃ライン形状(融着帯
形状(:対応する)を示し、(a)のΔH長さと炉頂ガ
スの水素ガス利用率との関係を第6図(b)に示す。
Furthermore, Figure 6 (a) shows the 1100℃ line shape (cohesive zone shape (corresponding)), and the relationship between the ΔH length in (a) and the hydrogen gas utilization rate of the furnace top gas is shown in Figure 6 (b). ).

ここで;ΔHは中心部1100℃位置と周位置1100
℃位置の差である。図から、ΔHが増加すると炉頂ガス
の水素ガス利用率は低下することが判る。
Here; ΔH is the center position at 1100°C and the circumferential position at 1100°C.
This is the difference in temperature. From the figure, it can be seen that as ΔH increases, the hydrogen gas utilization rate of the furnace top gas decreases.

このことから、ΔHの大きい融着帯頂層と根レベル差の
大きい中心流過多の融着帯はど炉頂ガスの水素ガス利用
率は低いと考えら几る。
From this, it is thought that the hydrogen gas utilization rate of the furnace top gas is low in the cohesive zone where the top layer of the cohesive zone has a large ΔH and the cohesive zone has a large center flow with a large difference in the root level.

以上の第5〜6図に示さ几るデーターから、炉頂ガスの
水素ガス利用率を用いて炉高方向のみでなく炉径方向の
温度分布も検知できることがわかつtoまた、この傾向
は精度良く十分な再現性をもって把握できることも知ら
nた。
From the data shown in Figures 5 and 6 above, it is clear that using the hydrogen gas utilization rate of the furnace top gas, it is possible to detect not only the temperature distribution in the furnace height direction but also the temperature distribution in the furnace radial direction. I also learned that it can be determined with sufficient reproducibility.

従って水素ガス利用率の管理基準を設定し操業アクショ
ンを行なうこと(=よって炉況の予防制御が可能である
ことが明らかになった。
Therefore, it has become clear that preventive control of the furnace condition is possible by setting management standards for the hydrogen gas utilization rate and taking operational actions.

なは、炉頂ガスの水素ガス利用率の下限管理値は、各種
ゾンデ(炉頂ゾンデ、シャフトゾンデ。
The lower limit control value for hydrogen gas utilization rate of furnace top gas is for various sondes (top sonde, shaft sonde).

垂直ゾンデ)を用いて測定さtl、fc炉半径、炉高方
向の炉内温度分布を炉頂ガスの水素ガス利用率の関係か
ら予め決めておく。具体的には、設定基準は、炉内の余
剰熱レベルを表わす熱保存帯長さを目安として決定する
が、この際のηH2としては50に以下となる。
The temperature distribution in the furnace in the direction of the furnace height (tl, fc, furnace radius, and furnace height) measured using a vertical sonde is determined in advance from the relationship with the hydrogen gas utilization rate of the furnace top gas. Specifically, the setting standard is determined using the length of the heat storage zone, which represents the surplus heat level in the furnace, as a guide, and in this case, ηH2 is 50 or less.

炉頂ガスの水素ガス利用率が下限値を割った時の炉内温
度分布制御アクションには、ムーバブルアーマ−のシー
ケンス変更、差指レベルの変更。
The temperature distribution control actions in the furnace when the hydrogen gas utilization rate of the furnace top gas falls below the lower limit include changing the sequence of the movable armor and changing the index finger level.

不等量装入(鉱石のIOと■0の装入量を変えて装入す
る方法)、粒度別装入、ベルレスシュートシーケンス変
更等の装入物分布アクションとバッチ増収(一時的く;
数パラチル数十バッチ燃料比を上げる方法)、微粉炭吹
込量変更、送風温度の変更等の熱レベル変更アクション
があり、各々単独あるいはいず几かを綴金せて処置を行
う。
Burden distribution actions such as unequal charging (method of charging by changing the amount of IO and ■0 of ore), charging by particle size, and changing the bellless chute sequence and batch yield increase (temporarily;
There are several heat level change actions such as increasing the fuel ratio by several tens of batches), changing the amount of pulverized coal injected, and changing the blowing temperature, each of which can be done individually or in combination.

(実施例) 次(−大型高炉における実施例を示す。(Example) Next (- An example in a large blast furnace is shown.

炉頂ガスの水素ガス利用率の下限値は、第7図に示す垂
直ゾンデを用いて測定した周辺部900〜1100℃滞
留時間と炉頂ガスの水素ガス利用率との関係を用いて設
定した。前述したように、熱保存帯長さを基準と考え、
鉱石/コークスの値が大きく、温度条件の厳しい周辺部
の900−1100’C滞留時間が130分になる点の
炉頂ガスの水素ガス利用率の値を下限値とした。すなわ
ち、炉頂ガスの水素ガス利用率の管理下限値を50%と
した。
The lower limit of the hydrogen gas utilization rate of the furnace top gas was set using the relationship between the residence time of 900 to 1100°C in the peripheral area measured using a vertical sonde and the hydrogen gas utilization rate of the furnace top gas, as shown in Figure 7. . As mentioned above, considering the length of the thermal conservation zone as the standard,
The value of the hydrogen gas utilization rate of the furnace top gas at the point where the residence time at 900-1100'C in the peripheral area where the ore/coke value is large and the temperature conditions are severe is 130 minutes was set as the lower limit. That is, the control lower limit value of the hydrogen gas utilization rate of the furnace top gas was set to 50%.

この管理基準にもとづいて、第8図に例示するような操
業アクションを行なった。
Based on this management standard, operational actions as illustrated in Figure 8 were carried out.

すなわち、第8 囚(a)に示さnるように、1月3日
から炉頂ガスの水素ガス利用率が低下し、こ几に伴い第
8図(d) (−示すよう(=中部シャフトゾンデ(ポ
イント4=ストツクラインから1lflt%半径位置に
はは垂直ゾンデ中間位置)の温度が低下−同図(g月二
示す突込φ、スリップS等の荷下りの悪化が発生した。
In other words, as shown in Figure 8 (a), the hydrogen gas utilization rate of the top gas decreased from January 3rd, and as a result of this, Figure 8 (d) (- as shown (= middle shaft The temperature of the sonde (Point 4 = 1lflt% radius position from the stock line is the vertical sonde intermediate position) decreased - the same figure (g) Deterioration of unloading such as plunge φ and slip S as shown in Fig. 2 occurred.

なお、この時%第8図(b)に示すようにCOガス利用
率の低下は見ら′!′Lなかった。
At this time, as shown in Figure 8 (b), there was no decrease in the CO gas utilization rate! 'L wasn't there.

炉頂ガスの水素ガス利用率の低下は、第6図の説明で述
べたように中心流過多で周辺が抑制さ几ていると考えら
nるので、第8図(e)に示す通りムーバブルアーマー
のシーケンスを0AOo(Af13.5ノツチを示ス)
カら0AO0,OA、OO,0300に変更し1周辺部
の鉱石/コークスの値を小さくし周辺部にガスが流れや
すいように%3日23時::装入物分布アクションをし
た。
The decrease in the hydrogen gas utilization rate of the furnace top gas is thought to be due to the excessive center flow suppressing the surrounding area as described in the explanation of Figure 6. Armor sequence 0AOo (indicates Af13.5 notch)
Changed from 0AO0, OA, OO, 0300 to 0AO0, OA, OO, 0300, reduced the value of ore/coke around 1, and took charge distribution action at 23:00 on 3rd to make it easier for gas to flow to the surrounding area.

このアクションの後も第8図(a)に示さ几る通り炉頂
ガスの水素ガス利用率は上昇せず、また、同図(d) 
1m示さnる通り中部シャフトゾンデの温度も上昇せず
、同頁(戯(;記載のようC;突込T、スリップS等の
荷下の悪化に続いた。このため、第8図(f)に示すよ
う(−14日1時より15チヤージ、5日10時より1
5チヤージのコークス量を通常の27 T/c hから
27.3T/ch とし炉内熱レベルの上昇を図った。
Even after this action, the hydrogen gas utilization rate of the furnace top gas did not increase as shown in Figure 8 (a), and the hydrogen gas utilization rate in the furnace top gas did not increase as shown in Figure 8 (d).
As shown in Figure 8(f), the temperature of the middle shaft sonde did not rise, and the load condition continued to deteriorate due to thrust T, slip S, etc. As shown in
The amount of coke for 5 charges was changed from the usual 27 T/ch to 27.3 T/ch to increase the heat level in the furnace.

この結果6日(−は炉頂ガスの水素ガス利用率は上昇し
、荷下りも良好となり、中部シャフトゾンデ4ポイント
の温度も回復した。このため6日ムーバブルアーマ−の
シーケンスを0AOOに戻した。
As a result, on the 6th (-), the hydrogen gas utilization rate of the furnace top gas increased, unloading became better, and the temperature at the 4 points of the central shaft sonde also recovered.Therefore, on the 6th, the movable armor sequence was returned to 0AOO. .

なお6日のバッチ増収は、ムーバブルアーマ−変更によ
る周辺の極端なガス流抑制防止のために行なっ穴アクシ
ョンである。以上のように、炉頂ガスの水素ガス利用率
の低下に対して迅速なアクションを行なった結果、第8
図(C)に示すように溶銑温度の急低下もなく安定操業
を持続できた。
The increase in batch yield on the 6th was a hole-in-the-wall action taken to prevent excessive gas flow restriction in the surrounding area due to changes in movable armor. As mentioned above, as a result of taking prompt action to address the decline in the utilization rate of hydrogen gas in the furnace top gas,
As shown in Figure (C), stable operation could be maintained without a sudden drop in hot metal temperature.

(発明の効果) 以上述べた炉頂ガスの水素ガス利用率を用いた炉内温度
分布制御法を用いることにより、簡単な方法で炉内温度
状況を適切、高精度に検知、把握でき、こn(二基づい
て適宜処理を行うことによりいると熱保存帯長さの管理
、融着帯レベル−形状の管理制御も簡単、かつ連続的(
二行なえ、各種検出端使用頻度の減少および設置省略等
によるコスト削減も行栄える。
(Effect of the invention) By using the furnace temperature distribution control method using the hydrogen gas utilization rate of the furnace top gas described above, it is possible to appropriately and accurately detect and grasp the temperature situation inside the furnace in a simple manner. By performing appropriate processing based on n
In addition, costs can be reduced by reducing the frequency of use of various detection terminals and omitting installation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3月26日(0印)と5月29日(Δ印)の1
100℃ラインと中間部の炉高方向の温度分布の関係を
示し、第2図は炉高方向のガス温度と水素ガス利用率の
変化をそ九ぞn示す。第3図炉内温度と水素ガス利用率
の関係を示し、第4図は炉頂ガスの水素ガス利用率と中
間部900〜1100℃滞留時1間の関係を示し、第5
図は炉頂ガスの水素ガス利用率と中間部1100℃位置
の開位置示し、第6図は炉頂ガスの水素ガス利用率と1
100℃ラインの形状、炉の中心Cと周辺Pの位置の高
さの差ΔHとの関係を示し、第7図は実施例における炉
頂ガスの水素ガス利用率と周辺部900〜1100℃滞
留時間の関係を、第8図は本発明の実施例の操業例を示
す。 代理人 弁理士 秋 沢 政 光 外2名
Figure 1 shows 1 for March 26th (0 mark) and May 29th (Δ mark).
The relationship between the temperature distribution in the furnace height direction at the 100° C. line and the intermediate portion is shown, and FIG. 2 shows the change in gas temperature and hydrogen gas utilization rate in the furnace height direction. Figure 3 shows the relationship between the furnace temperature and the hydrogen gas utilization rate, Figure 4 shows the relationship between the hydrogen gas utilization rate of the furnace top gas and the residence time of 900 to 1100°C in the middle part, and Figure 5
The figure shows the hydrogen gas utilization rate of the furnace top gas and the open position at 1100℃ in the middle part, and Figure 6 shows the hydrogen gas utilization rate of the furnace top gas and
The relationship between the shape of the 100°C line and the height difference ΔH between the center C and the periphery P of the furnace is shown. FIG. 8 shows an example of the operation of the embodiment of the present invention. Agent: Patent attorney Masaaki Akizawa, Mitsugai (2 people)

Claims (1)

【特許請求の範囲】[Claims] (1)高炉炉頂ガス中のH_2量を測定して、該高炉の
水素ガス利用率を求めるとともに、該水素ガス利用率が
50%以下となつた際に、装入物分布変更、熱レベル変
更のいずれか一方の処置、もしくは併用処置を行なうこ
とを特徴とする高炉炉頂ガスの水素ガス利用率を用いた
炉内温度分布制御法。 但し、水素ガス利用率=(インプットH_2量−排出H
_2量)/(インプットH_2量)×100
(1) Measure the amount of H_2 in the blast furnace top gas to determine the hydrogen gas utilization rate of the blast furnace, and when the hydrogen gas utilization rate falls below 50%, change the charge distribution, change the heat level A method for controlling temperature distribution in a blast furnace using the hydrogen gas utilization rate of top gas of a blast furnace, characterized in that either one of the changes or a combination of changes is performed. However, hydrogen gas utilization rate = (Input H_2 amount - Emission H
_2 amount) / (input H_2 amount) x 100
JP19457385A 1985-09-03 1985-09-03 Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top Granted JPS6254006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19457385A JPS6254006A (en) 1985-09-03 1985-09-03 Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19457385A JPS6254006A (en) 1985-09-03 1985-09-03 Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top

Publications (2)

Publication Number Publication Date
JPS6254006A true JPS6254006A (en) 1987-03-09
JPS6361366B2 JPS6361366B2 (en) 1988-11-29

Family

ID=16326782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19457385A Granted JPS6254006A (en) 1985-09-03 1985-09-03 Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top

Country Status (1)

Country Link
JP (1) JPS6254006A (en)

Also Published As

Publication number Publication date
JPS6361366B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
Brimacombe et al. Heat transfer in a direct-fired rotary kiln: I. Pilot plant and experimentation
JPS6254006A (en) Method for controlling distribution of temperature in blast furnace using rate of utilization of gaseous hydrogen in said furnace top
US5971286A (en) Method for the determination of the gas flux distribution in a blast furnace
JPS6121284B2 (en)
WO1997012064A9 (en) A method for the determination of the gas flux distribution in a blast furnace
Sheasby et al. The use of a stabilized zirconia cell to study the fluidized bed reduction of iron ore
JPH0424404B2 (en)
JPH0254706A (en) Method for operating blast furnace
JP2897363B2 (en) Hot metal production method
JPS5974209A (en) Detection of distribution of gaseous flow in blast furnace
CN211122396U (en) Experimental device for survey coke reaction start temperature
KR100383277B1 (en) Measurement method of change in blast furnace gas distribution
JPH0320402A (en) Method for operating blast furnace
US3779744A (en) Modification and improvement to dynamic bof control
JPH0327604B2 (en)
CN117604176A (en) Method for judging blast furnace gas flow distribution condition based on blast furnace top temperature field
JPS6361367B2 (en)
JPS5837105A (en) Method for deciding thermal condition of lower part of blast furnace
JPH08157917A (en) Estimation of in-furnace condition at the time of blowing down in blast furnace
Peters et al. Burden Properties and Their Influence on Processes in the Blast Furnace
JPH0625368B2 (en) Blast furnace operation method
CN116183426A (en) Method for measuring carbon reaction rate in carbon-containing composite metal furnace burden by simulating reduction conditions of blast furnace
JPS5633405A (en) Blast furnace operation method
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace